Using Cassava Starch Processing By-Product for Bioproduction of 1-Hydroxyphenazine: A Novel Fungicide against Fusarium oxysporum
Abstract
:1. Introduction
2. Results and Discussion
2.1. The Nutrient Ingredient Content of Cassava Starch Processing By-Product
2.2. Production of 1-Hydroxyphenazine via Fermentation
2.2.1. Establishing 1-Hydroxyphenazine Biosynthesis in Small Flasks
2.2.2. Scaling Up of 1-Hydroxyphenazine Production Using a 14 L Bioreactor System
2.3. Evaluation of the Novel Bio-Effect of 1-Hydroxyphenazine against Phytopathogen Fungi
2.4. The Anti-Fungal Activity of 1-Hydroxyphenazine via Docking Simulation
3. Materials and Methods
3.1. Materials
3.2. Determination of Nutrient Ingredients of Cassava Starch Processing By-Product
3.3. Biosynthesis of 1-Hydroxyphenazine from Cassava Starch Processing By-Product via Fermentation
3.4. Yield Quantification, Extraction, Purification, and Identification of 1-Hydroxyphenazine
3.5. Determination of the Anti-Fungal Effect of 1-Hydroxyphenazine
3.6. Molecular Docking Protocol
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Le, D.P.; Labarta, R.A.; Haan, S.; Maredia, M.; Becerra, L.A.; Nhu, L.; Ovalle, T.; Nguyen, V.; Pham, N.; Nguyen, H.; et al. Characterization of cassava production systems in Vietnam. Work. Paper CIAT 2019, 480, 1–54. [Google Scholar]
- WorldAtlas, Top Cassava Producing Countries in the World. Available online: https://www.worldatlas.com/articles/top-cassava-producing-countries-in-the-world.html (accessed on 1 August 2023).
- Li, S.; Cui, Y.; Zhou, Y.; Luo, Z.; Liu, J.; Zhao, M. The industrial applications of cassava: Current status, opportunities and prospects. J. Sci. Food Agric. 2017, 97, 2282–2290. [Google Scholar] [CrossRef]
- Zhang, M.; Xie, L.; Yin, Z.; Khanal, S.K.; Zhou, Q. Biorefinery approach for cassava-based industrial wastes: Current status and opportunities. Bioresour. Technol. 2016, 215, 50–62. [Google Scholar] [CrossRef]
- Nair, M.P.D.; Padmaja, G.; Moorthy, S.N. Biodegradation of cassava starch factory residue using a combination of cellulases, xylanases and hemicellulases. Biomass Bioenergy 2011, 35, 1211–1218. [Google Scholar] [CrossRef]
- Zheng, Y.; Xue, S.; Zhao, Y.; Li, S. Effect of cassava residue substituting for crushed maize on in vitro ruminal fermentation characteristics of dairy cows at mid-lactation. Animals 2020, 10, 893. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Deng, Y.; Yang, Y.; Wei, Z.; Cheng, J.; Cao, L.; Mu, D.; Luo, S.; Zheng, Z.; Jiang, S.; et al. Fermentation process and metabolic flux of ethanol production from the detoxified hydrolyzate of cassava residue. Front. Microbiol. 2017, 8, 290853. [Google Scholar] [CrossRef] [PubMed]
- Xie, L.; Liu, H.; Chen, Y.G.; Zhou, Q. pH-adjustment strategy for volatile fatty acid production from high-strength wastewater for biological nutrient removal. Water Sci. Technol. 2014, 69, 2043–2051. [Google Scholar] [CrossRef] [PubMed]
- Shi, X.; Chen, Y.; Ren, H.; Liu, D.; Zhao, T.; Zhao, N.; Ying, H. Economically enhanced succinic acid fermentation from cassava bagasse hydrolysate using Corynebacterium glutamicum immobilized in porous polyurethane filler. Bioresour. Technol. 2014, 174, 190–197. [Google Scholar] [CrossRef] [PubMed]
- Andin, V.A.; Fidia, F.; Talitha, W.; Risa, D.H. Bioconversion and valorization of cassava-based industrial wastes to bioethanol gel and its potential application as a clean cooking fuel. Biocatal. Agric. Biotechnol. 2021, 35, 102093. [Google Scholar]
- Cimmino, A.; Evidente, A.; Mathieu, V.; Andolfi, A.; Lefranc, F.; Kornienko, A.; Kiss, A. Phenazines and cancer. Nat. Prod. Rep. 2012, 29, 487. [Google Scholar] [CrossRef] [PubMed]
- Liu, H.; He, Y.; Jiang, H.; Peng, H.; Huang, X.; Zhang, X.; Linda, S.T.; Xu, Y. Characterization of a phenazine-producing strain Pseudomonas chlororaphis GP72 with broad-spectrum antifungal activity from green pepper rhizosphere. Curr. Microbiol. 2007, 54, 302–306. [Google Scholar] [CrossRef]
- Nikolaus, G.; Wulf, B.; Rolf, B. Recent developments in the isolation, biological function, biosynthesis, and synthesis of phenazine natural products. Bioorg. Med. Chem. 2017, 25, 6149–6166. [Google Scholar]
- Alka, R.; Wamik, A. An overview on biosynthesis and applications of extracellular pyocyanin pigment and its role in Pseudomonas aeruginosa pathogenesis. Ann. Phytomed. 2019, 8, 28–42. [Google Scholar]
- Liu, T.T.; Ye, F.C.; Pang, C.P.; Yong, T.Q.; Tang, W.D.; Xiao, J.; Shang, C.H.; Lu, Z.L. Isolation and identification of bioactive substance 1-hydroxyphenazine from Pseudomonas aeruginosa and its antimicrobial activity. Lett. Appl. Microbiol. 2017, 71, 303–310. [Google Scholar] [CrossRef]
- Nguyen, T.H.; Wang, S.-L.; Nguyen, A.D.; Doan, M.D.; Tran, T.N.; Doan, C.T.; Nguyen, V.B. Novel α-amylase inhibitor hemi-pyocyanin produced by microbial conversion of chitinous discards. Mar. Drugs 2022, 20, 283. [Google Scholar] [CrossRef]
- Nguyen, T.H.; Wang, S.L.; Nguyen, T.H.; Doan, M.D.; Tran, T.H.T.; Ngo, V.A.; Ho, N.D.; Tran, T.N.; Doan, C.T.; Do, V.C.; et al. Utilization of fishery-processing by-product squid pens for scale-up production of phenazines via microbial conversion and its novel potential antinematode effect. Fishes 2022, 7, 113. [Google Scholar] [CrossRef]
- Aqel, H.; Sannan, N.; Foudah, R.; Al-Hunaiti, A. enzyme production and inhibitory potential of Pseudomonas aeruginosa: Contrasting clinical and environmental isolates. Antibiotics 2023, 12, 1354. [Google Scholar] [CrossRef] [PubMed]
- Raju, E.V.N.; Divakar, G. Production of amylase by using Pseudomonas aeruginosa isolated from garden soil. IJAPBC 2013, 2, 50–56. [Google Scholar]
- Nguyen, V.B.; Wang, S.-L.; Nguyen, A.D. Bioconversion of a peanut oil processing by-product into a novel α-glucosidase inhibitor: Hemi-pyocyanin. Processes 2023, 11, 1468. [Google Scholar] [CrossRef]
- Abdelaziz, A.A.; Kamer, A.M.A.; Monofy, K.B.A. Pseudomonas aeruginosa’s greenish-blue pigment pyocyanin: Its production and biological activities. Microb. Cell Fact. 2023, 22, 110. [Google Scholar] [CrossRef] [PubMed]
- Serafim, B.; Bernardino, A.R.; Freitas, F.; Torres, C.A.V. Recent Developments in the Biological Activities, Bioproduction, and Applications of Pseudomonas spp. Phenazines. Molecules 2023, 28, 1368. [Google Scholar] [CrossRef]
- Dharni, S.; Alam, A.; Kalani, K.; Abdul, K.; Samad, A.; Srivastava, S.K.; Patra, D.D. Production, purification, and characterization of antifungal metabolite from Pseudomonas aeruginosa SD12, a new strain obtained from tannery waste polluted soil. J. Microbiol. Biotechnol. 2012, 22, 674–683. [Google Scholar] [CrossRef] [PubMed]
- Luo, Q.; Hu, H.; Peng, H.; Zhang, X.; Wang, W. Isolation and structural identification of two bioactive phenazines from Streptomyces griseoluteus P510. Chin. J. Chem. Eng. 2015, 23, 699–703. [Google Scholar] [CrossRef]
- Slawecki, R.A.; Ryan, E.P.; Young, D.H. Novel fungitoxicity assays for inhibition of germination-associated adhesion of Botrytis cinerea and Puccinia recondita spores. Appl. Environ. Microbiol. 2002, 68, 597–601. [Google Scholar] [CrossRef]
- Abd El-Ghany, M.N.; Hamdi, S.A.; Korany, S.M.; Elbaz, R.M.; Farahat, M.G. Biosynthesis of Novel Tellurium Nanorods by Gayadomonas sp. TNPM15 Isolated from Mangrove Sediments and Assessment of Their Impact on Spore Germination and Ultrastructure of Phytopathogenic Fungi. Microorganisms 2023, 11, 558. [Google Scholar] [CrossRef]
- Rypniewski, W.R.; Dambmann, C.; Von, C.D.O.; Dauter, M.; Wilson, K.S. Structure of inhibited trypsin from Fusarium oxysporum at 1.55 Å. Acta Cryst. 1995, D51, 73–85. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, D.N.; Wang, S.-L.; Nguyen, A.D.; Doan, M.D.; Tran, D.M.; Nguyen, T.H.; Ngo, V.A.; Doan, C.T.; Tran, T.N.; Do, V.C.; et al. Potential Application of rhizobacteria isolated from the Central Highland of Vietnam as an effective biocontrol agent of robusta coffee nematodes and as a bio-fertilizer. Agronomy 2021, 11, 1887. [Google Scholar] [CrossRef]
- Carvalho, G.G.P.; Fernandes, F.E.P.; Pires, A.J.V. Determination of starch and pectin in animal feed. Electron. J. Vet. Med. 2006, 8, 1. [Google Scholar]
- Horwitz, W.; Latimer, G.W., Jr. Official Methods of Analysis of AOAC International, 22nd ed.; AOAC: Washington, DC, USA, 2023. [Google Scholar]
- Oko, J.O.; Abriba, C.; Audu, J.A.; Kutman, N.A.; Okeh, Q. Bacteriological and nutritional analysis of groundnut cake sold in an open market in Samaru, Zaria-Kaduna state. Int. J. Sci. Technol. Res. 2015, 4, 225–228. [Google Scholar]
- Señoráns, F.J.; Luna, P. Sample preparation techniques for the determination of fats in food. Compr. Sampl. Sample Preparat. 2012, 4, 203–211. [Google Scholar]
- Miller, G.L. Use of dinitrosalicylic acid reagent for determination of reducing sugar. Anal. Chem. 1959, 31, 426–428. [Google Scholar] [CrossRef]
- Dubois, M.; Gilles, K.A.; Hamilton, J.K.; Rebers, P.A.; Smith, F. Colorimetric method for determination of sugars and related substances. Anal. Chem. 1956, 28, 350–356. [Google Scholar] [CrossRef]
- Shibli, S.; Siddique, F.; Raza, S.; Ahsan, Z.; Raza, I. Chemical composition and sensory analysis of peanut butter from indigenous peanut cultivars of Pakistan. Pak. J. Agric. Sci. 2019, 32, 159–169. [Google Scholar] [CrossRef]
- Lee, K.W.; Omar, D.; Cheng, G.L.E.; Nasehi, A.; Wong, M.Y. Characterization of phenazine and phenazine-1-carboxylic acid isolated from Pseudomonas aeruginosa UPMP3 and their antifungal activities against ganoderma boninense. Pertanika J. Trop. Agri. Sc. 2018, 41, 1795–1809. [Google Scholar]
- Li, H.; He, Z.; Shen, Q.; Fan, W.; Tan, G.; Zou, Y.; Mei, Q.; Qian, Z. Rapid screening alpha-glucosidase inhibitors from polygoni vivipari rhizoma by multi-step matrix solid-phase dispersion, ultrafiltration and HPLC. Molecules 2021, 26, 6111. [Google Scholar] [CrossRef]
- Mamadalieva, N.Z.; Youssef, F.S.; Hussain, H.; Zengin, G.; Mollica, A.; Al Musayeib, N.M.; Ashour, M.L.; Westermann, B.; Wessjohann, L.A. Validation of the antioxidant and enzyme inhibitory potential of selected triterpenes using in vitro and in silico studies, and the evaluation of their ADMET properties. Molecules 2021, 26, 6331. [Google Scholar] [CrossRef]
- Nguyen, V.B.; Wang, S.-L.; Nguyen, T.H.; Phan, T.Q.; Nguyen, T.H.; Tran, T.H.T.; Doan, M.D.; Ngo, V.A.; Nguyen, A.D. Recycling fish heads for the production of prodigiosin, a novel fungicide via experimental and molecular docking characterization. Fishes 2023, 8, 468. [Google Scholar] [CrossRef]
- Mollica, A.; Zengin, G.; Durdagi, S.; Ekhteiari, S.R.; Macedonio, G.; Stefanucci, A.; Dimmito, M.P.; Novellino, E. Combinatorial peptide library screening for discovery of diverse α-glucosidase inhibitors using molecular dynamics simulations and binary QSAR models. J. Biomol. Str. Dynam. 2019, 37, 726–740. [Google Scholar] [CrossRef]
Starch (%) | Crude Fiber (%) | Protein (%) | Lipid (%) | Total Dissolved Sugar (%) | Reducing Sugar (%) | Ash (%) | Ca (%) | Mg (%) | K (%) | P (ppm) |
---|---|---|---|---|---|---|---|---|---|---|
9.954 ± 0.065 | 16.61 ± 0.053 | 1.83 ± 0.037 | 0.87 ± 0.025 | 0.61 ± 0.042 | 0.14 ± 0.013 | 6.73 ± 0.045 | 0.149 ± 0.011 | 0.083 ± 0.015 | 0.137 ± 0.034 | 0.023 ± 0.009 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Phan, T.Q.; Wang, S.-L.; Nguyen, T.H.; Nguyen, T.H.; Pham, T.H.T.; Doan, M.D.; Tran, T.H.T.; Ngo, V.A.; Nguyen, A.D.; Nguyen, V.B. Using Cassava Starch Processing By-Product for Bioproduction of 1-Hydroxyphenazine: A Novel Fungicide against Fusarium oxysporum. Recycling 2024, 9, 12. https://doi.org/10.3390/recycling9010012
Phan TQ, Wang S-L, Nguyen TH, Nguyen TH, Pham THT, Doan MD, Tran THT, Ngo VA, Nguyen AD, Nguyen VB. Using Cassava Starch Processing By-Product for Bioproduction of 1-Hydroxyphenazine: A Novel Fungicide against Fusarium oxysporum. Recycling. 2024; 9(1):12. https://doi.org/10.3390/recycling9010012
Chicago/Turabian StylePhan, Tu Quy, San-Lang Wang, Thi Hanh Nguyen, Thi Huyen Nguyen, Thi Huyen Thoa Pham, Manh Dung Doan, Thi Ha Trang Tran, Van Anh Ngo, Anh Dzung Nguyen, and Van Bon Nguyen. 2024. "Using Cassava Starch Processing By-Product for Bioproduction of 1-Hydroxyphenazine: A Novel Fungicide against Fusarium oxysporum" Recycling 9, no. 1: 12. https://doi.org/10.3390/recycling9010012
APA StylePhan, T. Q., Wang, S. -L., Nguyen, T. H., Nguyen, T. H., Pham, T. H. T., Doan, M. D., Tran, T. H. T., Ngo, V. A., Nguyen, A. D., & Nguyen, V. B. (2024). Using Cassava Starch Processing By-Product for Bioproduction of 1-Hydroxyphenazine: A Novel Fungicide against Fusarium oxysporum. Recycling, 9(1), 12. https://doi.org/10.3390/recycling9010012