Avocado Waste Biorefinery: Towards Sustainable Development
Abstract
:1. Introduction
2. Composition and Properties of Avocado Residues
3. Alternatives for Avocado Waste Valorization
3.1. Production of Biofuels
3.1.1. Biodiesel
3.1.2. Bioethanol
Avocado Source | Obtained Product | Pre-Treatment | Processing Technology | Treatment Conditions | Yield | Reference |
---|---|---|---|---|---|---|
Seed | Biodiesel | Sun-drying and milling. | Transesterification of oil obtained by Soxhlet extraction | Transesterification: 20% methanol; 1% NaOH as catalyst; 2 days reaction time. | 20% (v/w) | [51] |
Seed | Biodiesel | Sun-drying and milling. | Transesterification of oil obtained by Soxhlet extraction | Transesterification: 20% methanol; 0.85% KOH as catalyst; 8–10 min reaction time | 78% (v/w) | [52] |
Seed | Biodiesel | Sun-drying, milling, and sieving. | In situ transesterification | In situ transesterification: THF as extraction–reaction solvent, 0.05% KOH as catalyst; 5% MeOH; 65 °C; 50 min reaction time. | 94.4% (v/w) | [53] |
Seed | Biodiesel | Milling and drying in oven. | Oil extraction with n-hexane and transesterification | Extraction: 65 °C during 4 h. Transesterification: 6:1 ratio of MeOH:avocado oil; 5% CaO as catalyst; 60 min reaction time | 75% (v/w) | [54] |
Seed and peel | Biodiesel | Seed and peel: drying and milling. oil: acid pre-treatment with H2SO4. | Transesterification of pre-treated oil obtained by Soxhlet extraction | Transesterification: 8:1 MeOH:pre-treated oil ratio; 0.7% NaOH as catalyst; 60 min reaction time. | 90% (v/w) | [55] |
Seed | Bioethanol | Seed: washing, drying, and milling. Thermal pre-treatment. Microwave pre-treatment. Enzymatic hydrolysis. | Sugar fermentation | Thermal pre-treatment: suspension of milled seeds in an alkaline solution (1% NaOH) placed for 10 min in a 13 L autoclave. Microwave pre-treatment: suspension of milled seeds in an alkaline solution (1% NaOH) placed in a microwave oven at 300 W for 25 min. Enzymatic hydrolysis: pH 5; 50 °C; 48 h | 102 mL/L (thermal pre-treatment) 154 mL/L (Microwave pre-treatment) | [16] |
Seed | Bioethanol | - | Sugar fermentation | pH 5.5; 30 °C; 3 days. | 6.36% (v/w) | [56] |
Seed | Biogas | Seed: washing, drying, and milling. Thermal pre-treatment. Enzymatic hydrolysis. | Biomass digestion | Thermal pre-treatment: suspension of milled seeds in an alkaline solution (1% NaOH) placed for 10 min in a 13 L autoclave. Enzymatic hydrolysis: pH 5; 50 °C; 48 h Biomass digestion: anaerobic process; 37 °C. | 214.2 NmL/g | [16] |
Peel | Biogas | Sun-drying and milling. | Biomass co-digestion | Co-digestion: 50% avocado peel and 50% poultry manure; 25 °C; pH 7; 4 days. | - | [58] |
Pulp | Biogas | - | Biomass co-digestion | Co-digestion: avocado pulp with cow manure, 1:1 ratio; 30 days | - | [59] |
Seed | Bioplastic | Starch extraction. | Manufacturing of bioplastic by casting method | Heating a solution of starch and chitosan in a 7:3 ratio. Addition of ethylene glycol (5, 10, 15, 20, and 25%), 70–90 °C. | - | [60] |
Peel and Seed | Bioplastic (Biofilm) | Starch extraction. | Biofilm by the casting method | Biofilm with plasticizer: heating a solution of 2 g of starch and 0.5 g of glycerol in 70 mL of water. Thirty min with agitation. Drying over plates for 72 h at 30° C. Biofilm without plasticizer: Heating a solution of 2 g of starch in 70 mL of water. Thirty min with agitation. Drying over plates for 72 h at 30 °C. | 11.38% (starch yield extraction, w/w) | [61] |
Seed | Bioplastic | Starch extraction. Extraction of cellulose from sugar palm fibers. | Manufactured bioplastic | A 7:3 ratio of starch to microcrystalline cellulose, using Schweizer’s reagent as solvent. Glycerol as a plasticizer. Stirring at 85 °C. | 16% (starch yield extraction, w/w) | [62] |
Seed | Polylactic acid (PLA) | Seed hydrolysate. | Fermentation of avocado seed hydrolysates | Performed in 1 L fermenters; 37 °C; pH 7; 400 rpm; aeration rates (0.0–0.5 vvm); 0.037 gdcw/L as initial inoculum. | - | [63] |
Commercial avocado oil | Polyhydroxyalkanoate (PHA) | - | Fermentation with avocado oil | Batch cultivation with C/N ratio of 14; avocado oil was added in different concentrations: 5, 10, 15, 20, and 25% (v/v). | 70.83% (v/v) | [64] |
Seed | Snack | Freeze-drying. Oven-drying. | Extruding | Extrusion of brown rice, barley, and freeze-dried and oven-dried avocado seed through a 5 mm die opening at 130 °C (generated by friction). | - | [11] |
Seed | Snack | Freeze-drying. | - | Formulation of a snack with different proportions of avocado seed powder (6, 12, and 18%). | - | [28] |
Seed | Snack | Slicing, blanching, drying, and milling. | Extruding by hot air puffing | Extrusion at 110–115 °C of maize and avocado seed flour in several proportions (90:10, 80:20, 70:30, 0:100, and 100:0); screw speed of 100 rpm. Hot air puffing: 70 °C; 4 h. | - | [65] |
Seed | Avocado Seed Power | Slicing and milling. Homogenized seeds were mixed with water and sonicated then vacuum filtered. | Spray drying | Spray-drying in different conditions of feed flow rate (20–25 mL/min) and inlet temperature (160–208 °C). | 24.46–35.47% | [66] |
Seed | Extract | Milling, freeze-drying. | Extraction | Extraction: ethanol concentrations (26–93%), time (2.77–55.22 min), and temperature (26.36–93.64 °C) at different values. Cooled to 5 °C, centrifugated, and stored at −20 °C. | - | [67] |
Peel (Hass variety) | Emulsion | Washing, freeze-drying, and milling. | Extraction and emulsion formulations. | Extraction: Soxhlet method, in a 1:36 ratio of ethanol to avocado. Three h of extraction. Emulsion formulation: oil-in-water and water-in-oil. | 23%(extraction) | [68] |
Skins, pits, and leftover flesh | Vermicompost | Pre-composting of the organic residues. | Uses earthworms to break down organic materials. | Layers of shredded avocado waste and bedding material (paper, leaves, etc.) at room temperature. | - | [69] |
Seed | Biochar | Avocado seeds cut. | Pyrolysis | Heating at temperatures between 400 and 550 °C. | - | [70] |
Skins, pits, and leftover flesh | Liquid biofertilizer | Selection and isolation of active microorganisms. | Anaerobic digestion. | Fermentation for 90 h at 30 °C. | - | [71] |
3.1.3. Biogas
3.2. Production of Biodegradable Plastics
3.3. Production of Animal Feed
3.4. Production of Natural Fertilizers
3.4.1. Compost
3.4.2. Vermicompost
3.4.3. Biochar
3.4.4. Liquid Biofertilizers
3.4.5. Avocado Waste as a Substratum for the Cultivation of Mushrooms and Microorganisms
3.5. Production of Food Ingredients and Supplements
4. Role of Avocado Waste Valorization in the Compliance of Sustainable Development Goals
5. Trends and Challenges for Avocado Waste Valorization
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Diniz do Nascimento, L.; Moraes, A.A.B.d.; Costa, K.S.d.; Pereira Galúcio, J.M.; Taube, P.S.; Costa, C.M.L.; Neves Cruz, J.; de Aguiar Andrade, E.H.; Faria, L.J.G.d. Bioactive Natural Compounds and Antioxidant Activity of Essential Oils from Spice Plants: New Findings and Potential Applications. Biomolecules 2020, 10, 988. [Google Scholar] [CrossRef]
- Bhore, S.J.; Ochoa, D.S.; Al Houssari, A.; Zelaya, A.L.; Yang, R.; Chen, Z.; Siddiqui, S.D.; da Silva, S.S.; Schumann, M.; Zhang, Z.; et al. The Avocado (Persea americana Mill.): A Review and Sustainability Perspectives. Preprints 2021, 2021120523. [Google Scholar] [CrossRef]
- Food and Agriculture Organization of the United Nations (FAOSTAT) Cultivos. Available online: http://www.fao.org/faostat/es/#data/QC (accessed on 9 May 2023).
- Bill, M.; Sivakumar, D.; Thompson, A.K.; Korsten, L. Avocado Fruit Quality Management during the Postharvest Supply Chain. Food Rev. Int. 2014, 30, 169–202. [Google Scholar] [CrossRef]
- Jimenez, P.; Garcia, P.; Quitral, V.; Vasquez, K.; Parra-Ruiz, C.; Reyes-Farias, M.; Garcia-Diaz, D.F.; Robert, P.; Encina, C.; Soto-Covasich, J. Pulp, Leaf, Peel and Seed of Avocado Fruit: A Review of Bioactive Compounds and Healthy Benefits. Food Rev. Int. 2021, 37, 619–655. [Google Scholar] [CrossRef]
- García-Vargas, M.C.; Contreras, M.; Gómez-cruz, I.; Romero-garcía, J.M.; Castro, E. Avocado-Derived Biomass: Chemical Composition and Antioxidant Potential. Proc. West Mark Ed Assoc. Conf. 2021, 70, 100. [Google Scholar]
- Mekonnen Tura, A.; Seifu Lemma, T. Production and Evaluation of Biogas from Mixed Fruits and Vegetable Wastes Collected from Arba Minch Market. Am. J. Appl. Chem. 2019, 7, 185. [Google Scholar] [CrossRef]
- Salazar-López, N.J.; Domínguez-Avila, J.A.; Yahia, E.M.; Belmonte-Herrera, B.H.; Wall-Medrano, A.; Montalvo-González, E.; González-Aguilar, G.A. Avocado Fruit and By-Products as Potential Sources of Bioactive Compounds. Food Res. Int. 2020, 138, 109774. [Google Scholar] [CrossRef]
- Iñiguez-Moreno, M.; Ragazzo-Sánchez, J.A.; Barros-Castillo, J.C.; Sandoval-Contreras, T.; Calderón-Santoyo, M. Sodium Alginate Coatings Added with Meyerozyma caribbica: Postharvest Biocontrol of Colletotrichum gloeosporioides in Avocado (Persea americana Mill. cv. Hass). Postharvest Biol. Technol. 2020, 163, 111123. [Google Scholar] [CrossRef]
- Rodríguez-Carpena, J.G.; Morcuende, D.; Estévez, M. Avocado By-Products as Inhibitors of Color Deterioration and Lipid and Protein Oxidation in Raw Porcine Patties Subjected to Chilled Storage. Meat Sci. 2011, 89, 166–173. [Google Scholar] [CrossRef]
- Permal, R.; Leong Chang, W.; Seale, B.; Hamid, N.; Kam, R. Converting Industrial Organic Waste from the Cold-Pressed Avocado Oil Production Line into a Potential Food Preservative. Food Chem. 2020, 306, 125635. [Google Scholar] [CrossRef] [PubMed]
- García-Vargas, M.C.; Contreras, M.D.M.; Castro, E. Avocado-Derived Biomass as a Source of Bioenergy and Bioproducts. Appl. Sci. 2020, 10, 8195. [Google Scholar] [CrossRef]
- Dias, P.G.I.; Sajiwanie, J.W.A.; Rathnayaka, R.M.U.S.K. Chemical Composition, Physicochemical and Technological Properties of Selected Fruit Peels as a Potential Food Source. Int. J. Fruit Sci. 2020, 20, S240–S251. [Google Scholar] [CrossRef]
- Ibáñez-Forés, V.; Bovea, M.D.; Segarra-Murria, J.; Jorro-Ripoll, J. Environmental Implications of Reprocessing Agricultural Waste into Animal Food: An Experience with Rice Straw and Citrus Pruning Waste. Waste Manag. Res. 2023, 41, 653–663. [Google Scholar] [CrossRef]
- Permal, R.; Chia, T.; Arena, G.; Fleming, C.; Chen, J.; Chen, T.; Chang, W.L.; Seale, B.; Hamid, N.; Kam, R. Converting Avocado Seeds into a Ready to Eat Snack and Analysing for Persin and Amygdalin. Food Chem. 2023, 399, 134011. [Google Scholar] [CrossRef]
- Vintila, T.; Ionel, I.; Rufis Fregue, T.T.; Wächter, A.R.; Julean, C.; Gabche, A.S. Residual Biomass from Food Processing Industry in Cameroon as Feedstock for Second-Generation Biofuels. Bioresources 2019, 14, 3731–3745. [Google Scholar] [CrossRef]
- Otieno, O.D.; Mulaa, F.J.; Obiero, G.; Midiwo, J. Utilization of Fruit Waste Substrates in Mushroom Production and Manipulation of Chemical Composition. Biocatal. Agric. Biotechnol. 2022, 39, 102250. [Google Scholar] [CrossRef]
- Nyakang’i, C.O.; Ebere, R.; Marete, E.; Arimi, J.M. Avocado Production in Kenya in Relation to the World, Avocado By-Products (Seeds and Peels) Functionality and Utilization in Food Products. Appl. Food Res. 2023, 3, 100275. [Google Scholar] [CrossRef]
- Araújo, R.G.; Rodriguez-Jasso, R.M.; Ruiz, H.A.; Pintado, M.M.E.; Aguilar, C.N. Avocado By-Products: Nutritional and Functional Properties. Trends Food Sci. Technol. 2018, 80, 51–60. [Google Scholar] [CrossRef]
- Melgar, B.; Dias, M.I.; Ciric, A.; Sokovic, M.; Garcia-Castello, E.M.; Rodriguez-Lopez, A.D.; Barros, L.; Ferreira, I.C.R.F. Bioactive Characterization of Persea americana Mill. by-Products: A Rich Source of Inherent Antioxidants. Ind. Crops Prod. 2018, 111, 212–218. [Google Scholar] [CrossRef]
- Bora, P.S.; Narain, N.; Rocha, R.V.M.; Queiroz Paulo, M. Characterization of the Oils from the Pulp and Seeds of Avocado (Cultivar: Fuerte) Fruits. Grasas Y Aceites. 2001, 52, 171–174. [Google Scholar] [CrossRef]
- Arukwe, U.; Amadi, B.A.; Duru, M.K.C.; Agomou, E.N.; Adindu, E.A.; Odika, P.C.; Lele, K.C.; Egejuru, L.; Anudike, J. Chemical Composition of Persea americana Leaf, Fruit and Seed. IJRRAS 2012, 11, 346–349. [Google Scholar]
- Vinha, A.F.; Moreira, J.; Barreira, S.V.P. Physicochemical Parameters, Phytochemical Composition and Antioxidant Activity of the Algarvian Avocado (Persea americana Mill.). J. Agric. Sci. 2013, 5, 100–109. [Google Scholar] [CrossRef]
- Morais, D.R.; Rotta, E.M.; Sargi, S.C.; Bonafe, E.G.; Suzuki, R.M.; Souza, N.E.; Matsushita, M.; Visentainer, J.V. Proximate Composition, Mineral Contents and Fatty Acid Composition of the Different Parts and Dried Peels of Tropical Fruits Cultivated in Brazil. J. Braz. Chem. Soc. 2017, 28, 308–318. [Google Scholar] [CrossRef]
- Saavedra, J.; Córdova, A.; Navarro, R.; Díaz-Calderón, P.; Fuentealba, C.; Astudillo-Castro, C.; Toledo, L.; Enrione, J.; Galvez, L. Industrial Avocado Waste: Functional Compounds Preservation by Convective Drying Process. J. Food Eng. 2017, 198, 81–90. [Google Scholar] [CrossRef]
- Ejiofor, N.C.; Ezeagu, I.E.; Ayoola, M.B.; Umera, E.A. Determination of the Chemical Composition of Avocado (Persea americana) Seed. Adv. Food Technol. Nutr. Sci. Open J. 2018, 2, S51–S55. [Google Scholar] [CrossRef]
- Haque, S.K.M. Extraction and Characterization of Oil from Avocado Peels. J. Mex. Chem. Soc. 2021, 65, 347–356. [Google Scholar] [CrossRef]
- Siol, M.; Sadowska, A. Chemical Composition, Physicochemical and Bioactive Properties of Avocado (Persea americana) Seed and Its Potential Use in Functional Food Design. Agriculture 2023, 13, 316. [Google Scholar] [CrossRef]
- Amado, D.A.V.; Detoni, A.M.; De Carvalho, S.L.C.; Torquato, A.S.; Martin, C.A.; Tiuman, T.S.; Aguiar, C.M.; Cottica, S.M. Tocopherol and Fatty Acids Content and Proximal Composition of Four Avocado Cultivars (Persea americana Mill). Acta Aliment 2019, 48, 47–55. [Google Scholar] [CrossRef]
- King-Loeza, Y.; Ciprián-Macías, D.A.; Cardador-Martínez, A.; Martín-del-Campo, S.T.; Castañeda-Saucedo, M.C.; Ramírez-Anaya, J.d.P. Functional Composition of Avocado (Persea americana Mill. Var Hass) Pulp, Extra Virgin Oil, and Residues Is Affected by Fruit Commercial Classification. J. Agric. Food Res. 2023, 12, 100573. [Google Scholar] [CrossRef]
- Rodríguez-Carpena, J.G.; Morcuende, D.; Andrade, M.J.; Kylli, P.; Estevez, M. Avocado (Persea americana Mill.) Phenolics, in Vitro Antioxidant and Antimicrobial Activities, and Inhibition of Lipid and Protein Oxidation in Porcine Patties. J. Agric. Food Chem. 2011, 59, 5625–5635. [Google Scholar] [CrossRef]
- Araújo, R.G.; Rodriguez-Jasso, R.M.; Ruiz, H.A.; Govea-Salas, M.; Pintado, M.E.; Aguilar, C.N. Process Optimization of Microwave-Assisted Extraction of Bioactive Molecules from Avocado Seeds. Ind. Crops Prod. 2020, 154, 112623. [Google Scholar] [CrossRef]
- Kosińska, A.; Karamać, M.; Estrella, I.; Hernández, T.; Bartolomé, B.; Dykes, G.A. Phenolic Compound Profiles and Antioxidant Capacity of Persea americana Mill. Peels and Seeds of Two Varieties. J. Agric. Food Chem. 2012, 60, 4613–4619. [Google Scholar] [CrossRef] [PubMed]
- Rosero, J.C.; Cruz, S.; Osorio, C.; Hurtado, N. Analysis of Phenolic Composition of Byproducts (Seeds and Peels) of Avocado (Persea americana Mill.) Cultivated in Colombia. Molecules 2019, 24, 3209. [Google Scholar] [CrossRef] [PubMed]
- Segovia, F.J.; Hidalgo, G.I.; Villasante, J.; Ramis, X.; Almajano, M.P. Avocado Seed: A Comparative Study of Antioxidant Content and Capacity in Protecting Oil Models from Oxidation. Molecules 2018, 23, 2421. [Google Scholar] [CrossRef] [PubMed]
- Tremocoldi, M.A.; Rosalen, P.L.; Franchin, M.; Massarioli, A.P.; Denny, C.; Daiuto, É.R.; Paschoal, J.A.R.; Melo, P.S.; De Alencar, S.M. Exploration of Avocado By-Products as Natural Sources of Bioactive Compounds. PLoS ONE 2018, 13, 1–12. [Google Scholar] [CrossRef]
- Figueroa, J.G.; Borrás-Linares, I.; Lozano-Sánchez, J.; Segura-Carretero, A. Comprehensive Identification of Bioactive Compounds of Avocado Peel by Liquid Chromatography Coupled to Ultra-High-Definition Accurate-Mass Q-TOF. Food Chem. 2018, 245, 707–716. [Google Scholar] [CrossRef]
- Velderrain-Rodríguez, G.R.; Salvia-Trujillo, L.; Martín-Belloso, O. Lipid Digestibility and Polyphenols Bioaccessibility of Oil-in-Water Emulsions Containing Avocado Peel and Seed Extracts as Affected by the Presence of Low Methoxyl Pectin. Foods 2021, 10, 2193. [Google Scholar] [CrossRef]
- Calderón-Oliver, M.; Escalona-Buendía, H.B.; Medina-Campos, O.N.; Pedraza-Chaverri, J.; Pedroza-Islas, R.; Ponce-Alquicira, E. Optimization of the Antioxidant and Antimicrobial Response of the Combined Effect of Nisin and Avocado Byproducts. LWT Food Sci. Technol. 2016, 65, 46–52. [Google Scholar] [CrossRef]
- López-Cobo, A.; Gómez-Caravaca, A.M.; Pasini, F.; Caboni, M.F.; Segura-Carretero, A.; Fernández-Gutiérrez, A. HPLC-DAD-ESI-QTOF-MS and HPLC-FLD-MS as Valuable Tools for the Determination of Phenolic and Other Polar Compounds in the Edible Part and by-Products of Avocado. LWT Food Sci. Technol. 2016, 73, 505–513. [Google Scholar] [CrossRef]
- Wang, W.; Bostic, T.R.; Gu, L. Antioxidant Capacities, Procyanidins and Pigments in Avocados of Different Strains and Cultivars. Food Chem. 2010, 122, 1193–1198. [Google Scholar] [CrossRef]
- Figueroa, J.G.; Borrás-Linares, I.; Del Pino-García, R.; Curiel, J.A.; Lozano-Sánchez, J.; Segura-Carretero, A. Functional Ingredient from Avocado Peel: Microwave-Assisted Extraction, Characterization and Potential Applications for the Food Industry. Food Chem. 2021, 352. [Google Scholar] [CrossRef] [PubMed]
- Soldera-Silva, A.; Seyfried, M.; Campestrini, L.H.; Zawadzki-Baggio, S.F.; Minho, A.P.; Molento, M.B.; Maurer, J.B.B. Assessment of Anthelmintic Activity and Bio-Guided Chemical Analysis of Persea americana Seed Extracts. Vet. Parasitol. 2018, 251, 34–43. [Google Scholar] [CrossRef] [PubMed]
- Alkaltham, M.S.; Uslu, N.; Özcan, M.M.; Salamatullah, A.M.; Mohamed Ahmed, I.A.; Hayat, K. Effect of Drying Process on Oil, Phenolic Composition and Antioxidant Activity of Avocado (cv. Hass) Fruits Harvested at Two Different Maturity Stages. LWT Food Sci. Technol. 2021, 148, 111716. [Google Scholar] [CrossRef]
- de Oliveira, C.S.; Andrade, J.K.S.; Rajan, M.; Narain, N. Influence of the Phytochemical Profile on the Peel, Seed and Pulp of Margarida, Breda and Geada Varieties of Avocado (Persea americana Mill) Associated with Their Antioxidant Potential. Food Sci. Technol. 2022, 42, e25822. [Google Scholar] [CrossRef]
- Flores, M.; Ortiz-Viedma, J.; Curaqueo, A.; Rodriguez, A.; Dovale-Rosabal, G.; Magaña, F.; Vega, C.; Toro, M.; López, L.; Ferreyra, R.; et al. Preliminary Studies of Chemical and Physical Properties of Two Varieties of Avocado Seeds Grown in Chile. J. Food Qual. 2019, 2019, 3563750. [Google Scholar] [CrossRef]
- Wang, M.; Yu, P.; Chittiboyina, A.G.; Chen, D.; Zhao, J.; Avula, B.; Wang, Y.; Khan, I.A. Assessment of Avocado (Persea americana Mill) Oils. Molecules 2020, 25, 1453. [Google Scholar] [CrossRef]
- Kumar, J.A.; Sathish, S.; Prabu, D.; Renita, A.A.; Saravanan, A.; Deivayanai, V.C.; Anish, M.; Jayaprabakar, J.; Baigenzhenov, O.; Hosseini-Bandegharaei, A. Agricultural Waste Biomass for Sustainable Bioenergy Production: Feedstock, Characterization and Pre-Treatment Methodologies. Chemosphere 2023, 331, 138680. [Google Scholar] [CrossRef]
- Wang, B.; Wang, B.; Shukla, S.K.; Wang, R. Enabling Catalysts for Biodiesel Production via Transesterification. Catalysts 2023, 13, 740. [Google Scholar] [CrossRef]
- Mandari, V.; Devarai, S.K. Biodiesel Production Using Homogeneous, Heterogeneous, and Enzyme Catalysts via Transesterification and Esterification Reactions: A Critical Review. Bioenergy Res. 2022, 15, 935–961. [Google Scholar] [CrossRef]
- Sutrisno; Anggono, W.; Suprianto, F.D.; Santosa, C.D.; Suryajaya, M.; Gotama, G.J. Experimental Investigation of Avocado Seed Oil Utilization in Diesel Engine Performance. E3S Web Conf. 2019, 130, 01030. [Google Scholar] [CrossRef]
- Dagde, K.K. Extraction of Vegetable Oil from Avocado Seeds for Production of Biodiesel. J. Appl. Sci. Environ. Manag. 2019, 23, 215. [Google Scholar] [CrossRef]
- Deepalakshmi, S.; Sivalingam, A.; Thirumarimurugan, M.; Yasvanthrajan, N.; Sivakumar, P. In-situ Transesterification and Process Optimization of Biodiesel from Waste Avocado Seed. J. Chem. Pharm. Sci. 2014, 2014, 115–118. [Google Scholar]
- Valensya, D.; Rozalia, I.; Zuhra; Syamsuddin, Y. Utilization of Avocado Seed Waste as Raw Material for Producing Biodiesel with CaO Catalyst from Eggshell. IOP Conf. Ser. Mater. Sci. Eng. 2020, 845, 2020. [Google Scholar] [CrossRef]
- Chimezie, E.C.; Wang, Z.; Yu, Y.; Nonso, U.C.; Duan, P.G.; Kapusta, K. Yield Optimization and Fuel Properties Evaluation of the Biodiesel Derived from Avocado Pear Waste. Ind. Crops Prod. 2023, 191, 115884. [Google Scholar] [CrossRef]
- Woldu, A.R.; Ashagrie, Y.N.; Tsigie, Y.A. Bioethanol Production from Avocado Seed Wastes Using Saccharomyces cerevisiae. Am. J. Environ. Energy Power Res. 2015, 3, 1–9. [Google Scholar]
- Chen, S.J.; Chen, X.; Zhu, M.J. Xylose Recovery and Bioethanol Production from Sugarcane Bagasse Pretreated by Mild Two-Stage Ultrasonic Assisted Dilute Acid. Bioresour. Technol. 2022, 345, 126463. [Google Scholar] [CrossRef]
- Kenasa, G.; Kena, E. Optimization of Biogas Production from Avocado Fruit Peel Wastes Co-Digestion with Animal Manure Collected from Juice Vending House in Gimbi Town, Ethiopia. Ferment. Technol. 2019, 8, 1–6. [Google Scholar]
- Langat, K.; Njogu, P.; Kamau, J. Biogas Energy Potential from Co-Digestion of Avocado Pulp with Cow Manure in Kaitui Location, Kericho County, Kenya. Int. Res. J. Innov. Eng. Technol. 2018, 2, 28–34. [Google Scholar]
- Ginting, M.H.S.; Hasibuan, R.; Lubis, M.; Alanjani, F.; Winoto, F.A.; Siregar, R.C. Utilization of Avocado Seeds as Bioplastic Films Filler Chitosan and Ethylene Glycol Plasticizer. Asian J. Chem. 2018, 30, 1569–1573. [Google Scholar] [CrossRef]
- Jiménez, R.; Sandoval-Flores, G.; Alvarado-Reyna, S.; Alemán-Castillo, S.E.; Santiago-Adame, R.; Velázquez, G. Extraction of Starch from Hass Avocado Seeds for the Preparation of Biofilms. Food Sci. Technol. 2022, 42, e56820. [Google Scholar] [CrossRef]
- Sartika, M.; Lubis, M.; Harahap, M.B.; Afrida, E.; Ginting, M.H.S. Production of Bioplastic from Avocado Seed Starch as Matrix and Microcrystalline Cellulose from Sugar Palm Fibers with Schweizer’s Reagent as Solvent. Asian J. Chem. 2018, 30, 1051–1056. [Google Scholar] [CrossRef]
- Sierra-Ibarra, E.; Leal-Reyes, L.J.; Huerta-Beristain, G.; Hernández-Orihuela, A.L.; Gosset, G.; Martínez-Antonio, A.; Martinez, A. Limited Oxygen Conditions as an Approach to Scale-up and Improve d and l-Lactic Acid Production in Mineral Media and Avocado Seed Hydrolysates with Metabolically Engineered Escherichia coli. Bioprocess Biosyst. Eng. 2021, 44, 379–389. [Google Scholar] [CrossRef] [PubMed]
- Flores-Sánchez, A.; López-Cuellar, M.D.R.; Pérez-Guevara, F.; Figueroa López, U.; Martín-Bufájer, J.M.; Vergara-Porras, B. Synthesis of Poly-(R-Hydroxyalkanoates) by Cupriavidus Necator ATCC 17699 Using Mexican Avocado (Persea americana) Oil as a Carbon Source. Int. J. Polym. Sci. 2017, 2017, 6942950. [Google Scholar] [CrossRef]
- Arueya, G.L.; Oluwatobi, A.; Arueya, G.L. Avocado (Persia americana) Seed Processing into a Third Generation (3 g) Functional Food Snack: Nutritional, Antioxidative Stress and Safety Potentials. Afr. J. Food Sci. Technol. 2021, 12, 1–15. [Google Scholar]
- Alissa, K.; Hung, Y.C.; Hou, C.Y.; Lim, G.C.W.; Ciou, J.Y. Developing New Health Material: The Utilization of Spray Drying Technology on Avocado (Persea americana Mill.) Seed Powder. Foods 2020, 9, 139. [Google Scholar] [CrossRef]
- Gómez, F.S.; Peirósánchez, S.; Iradi, M.G.G.; Azman, N.A.M.; Almajano, M.P. Avocado Seeds: Extraction Optimization and Possible Use as Antioxidant in Food. Antioxidants 2014, 3, 439–454. [Google Scholar] [CrossRef]
- Ferreira, S.M.; Santos, L. From By-Product to Functional Ingredient: Incorporation of Avocado Peel Extract as an Antioxidant and Antibacterial Agent. Innov. Food Sci. Emerg. Technol. 2022, 80, 103116. [Google Scholar] [CrossRef]
- Bolaños Villarreal, A.P.; García Tumipamba, D.E.; Cuarán Sarzosa, F.V. Vermicomposting: Production of Humus and Biol. In Communication, Smart Technologies and Innovation for Society Proceedings of CITIS 2021; Rocha, A., López-López, P.C., Salgado-Guerrero, J.P., Eds.; Springer: Shoreham-by-Sea, UK, 2022. [Google Scholar]
- Demissie, H.; Gedebo, A.; Agegnehu, G. Agronomic Potential of Avocado-Seed Biochar in Comparison with Other Locally Available Biochar Types: A First-Hand Report from Ethiopia. Appl. Environ. Soil. Sci. 2023, 2023, 7531228. [Google Scholar] [CrossRef]
- Thanh Chi, L.; Ha, N. Multipurpose Fertilizer Composition and Method of Manufacturing the Same. U.S. Patent 11,512,029 B1, 2022. [Google Scholar]
- Streitwieser, D.A.; Cadena, I.A. Preliminary Study of Biomethane Production of Organic Waste Based on Their Content of Sugar, Starch, Lipid, Protein and Fibre. Chem. Eng. Trans 2018, 65, 661–666. [Google Scholar] [CrossRef]
- Sun, M.; Shi, Z.; Zhang, C.; Zhang, Y.; Zhang, S.; Luo, G. Novel Long-Chain Fatty Acid (LCFA)-Degrading Bacteria and Pathways in Anaerobic Digestion Promoted by Hydrochar as Revealed by Genome-Centric Metatranscriptomics Analysis. Appl. Environ. Microbiol. 2022, 88, e01042-22. [Google Scholar] [CrossRef]
- Spence, A.; Blanco Madrigal, E.; Patil, R.; Bajón Fernández, Y. Evaluation of Anaerobic Digestibility of Energy Crops and Agricultural By-Products. Bioresour. Technol. Rep. 2019, 5, 243–250. [Google Scholar] [CrossRef]
- Coppola, G.; Gaudio, M.T.; Lopresto, C.G.; Calabro, V.; Curcio, S.; Chakraborty, S. Bioplastic from Renewable Biomass: A Facile Solution for a Greener Environment. Earth Syst. Environ. 2021, 5, 231–251. [Google Scholar] [CrossRef]
- Klai, N.; Yadav, B.; El Hachimi, O.; Pandey, A.; Sellamuthu, B.; Tyagi, R.D. Agro-Industrial Waste Valorization for Biopolymer Production and Life-Cycle Assessment toward Circular Bioeconomy. In Biomass, Biofuels, Biochemicals; Elsevier Inc.: Amsterdam, The Netherlands, 2021; pp. 515–555. ISBN 9780128218785. [Google Scholar]
- Jiménez-Rosado, M.; Maigret, J.E.; Perez-Puyana, V.; Romero, A.; Lourdin, D. Revaluation of a Soy Protein By-Product in Eco-Friendly Bioplastics by Extrusion. J. Polym. Environ. 2022, 30, 1587–1599. [Google Scholar] [CrossRef]
- Sultan, N.F.K.; Johari, W.L.W. The Development of Banana Peel/Corn Starch Bioplastic Film: A Preliminary Study. Bioremediation Sci. Technol. Res. 2017, 5, 12–17. [Google Scholar] [CrossRef]
- de Azêvedo, L.C.; Rovani, S.; Santos, J.J.; Dias, D.B.; Nascimento, S.S.; Oliveira, F.F.; Silva, L.G.A.; Fungaro, D.A. Study of Renewable Silica Powder Influence in the Preparation of Bioplastics from Corn and Potato Starch. J. Polym. Environ. 2021, 29, 707–720. [Google Scholar] [CrossRef]
- Asrofi, M.; Sapuan, S.M.; Ilyas, R.A.; Ramesh, M. Characteristic of Composite Bioplastics from Tapioca Starch and Sugarcane Bagasse Fiber: Effect of Time Duration of Ultrasonication (Bath-Type). Mater. Today Proc. 2020, 46, 1626–1630. [Google Scholar] [CrossRef]
- Merino, D.; Bertolacci, L.; Paul, U.C.; Simonutti, R.; Athanassiou, A. Avocado Peels and Seeds: Processing Strategies for the Development of Highly Antioxidant Bioplastic Films. ACS Appl. Mater Interfaces 2021, 13, 38688–38699. [Google Scholar] [CrossRef]
- Flores-Sánchez, A.; Rathinasabapathy, A.; del Rocío López-Cuellar, M.; Vergara-Porras, B.; Pérez-Guevara, F. Biosynthesis of Polyhydroxyalkanoates from Vegetable Oil under the Co-Expression of FadE and PhaJ Genes in Cupriavidus Necator. Int. J. Biol. Macromol. 2020, 164, 1600–1607. [Google Scholar] [CrossRef]
- Pazla, R.; Jamarun, N.; Elihasridas, A.; Yanti, G.; Ikhlas, Z. The Impact of Replacement of Concentrates with Fermented Tithonia (Tithonia diversifolia) and Avocado Waste (Persea americana Miller) in Fermented Sugarcane Shoots (Saccharum officinarum) Based Rations on Consumption, Digestibility, and Production Perform. Arch. Anesthesiol. Crit. Care 2018, 4, 527–534. [Google Scholar] [CrossRef]
- de Evan, T.; Carro, M.D.; Yepes, J.E.F.; Haro, A.; Arbesú, L.; Romero-Huelva, M.; Molina-Alcaide, E. Effects of Feeding Multinutrient Blocks Including Avocado Pulp and Peels to Dairy Goats on Feed Intake and Milk Yield and Composition. Animals 2020, 10, 194. [Google Scholar] [CrossRef]
- Etemadian, Y.; Ghaemi, V.; Shaviklo, A.R.; Pourashouri, P.; Sadeghi Mahoonak, A.R.; Rafipour, F. Development of Animal/ Plant-Based Protein Hydrolysate and Its Application in Food, Feed and Nutraceutical Industries: State of the Art. J. Clean Prod. 2021, 278, 123219. [Google Scholar] [CrossRef]
- Job, B.; Id, L.C.; Fernando, G.; Roberto, V.; Jorge, B. Effect of Supplementation with Avocado Meal on Lamb Diets on Growth and Carcass Performance. Abanico Vet. 2021, 11, 1–12. [Google Scholar]
- Hernández-López, S.H.; Rodríguez-Carpena, J.G.; Lemus-Flores, C.; Grageola-Nuñez, F.; Estévez, M. Avocado Waste for Finishing Pigs: Impact on Muscle Composition and Oxidative Stability during Chilled Storage. Meat Sci. 2016, 116, 186–192. [Google Scholar] [CrossRef] [PubMed]
- Leontopoulos, S.; Skenderidis, P.; Petrotos, K.; Giavasis, I. Corn Silage Supplemented with Pomegranate (Punica granatum) and Avocado (Persea americana) Pulp and Seed Wastes for Improvement of Meat Characteristics in Poultry Production. Molecules 2021, 26, 5901. [Google Scholar] [CrossRef] [PubMed]
- Oelrichs, P.B.; Ng, J.C.; Seawright, A.A.; Ward, A.; Schaffeler, L.; Macleod, J.K. Isolation and Identification of a Compound from Avocado (Persea americana) Leaves Which Causes Necrosis of the Acinar Epithelium of the Lactating Mammary Gland and the Myocardium. Nat. Toxins 1995, 3, 3344–3349. [Google Scholar] [CrossRef]
- Tesfaye, T.; Ayele, M.; Gibril, M.; Ferede, E.; Limeneh, D.Y.; Kong, F. Beneficiation of Avocado Processing Industry By-Product: A Review on Future Prospect. Curr. Res. Green Sustain. Chem. 2022, 5, 100253. [Google Scholar] [CrossRef]
- Pérez-Murcia, M.D.; Martínez-Sabater, E.; Domene, M.A.; González-Céspedes, A.; Bustamante, M.A.; Marhuenda-Egea, F.C.; Barber, X.; López-Lluch, D.B.; Moral, R. Role of Proteins and Soluble Peptides as Limiting Components during the Co-Composting of Agro-Industrial Wastes. J. Env. Manag. 2021, 300. [Google Scholar] [CrossRef] [PubMed]
- Rashid, M.I.; Shahzad, K. Food Waste Recycling for Compost Production and Its Economic and Environmental Assessment as Circular Economy Indicators of Solid Waste Management. J. Clean Prod. 2021, 317, 128467. [Google Scholar] [CrossRef]
- Rothé, M.; Darnaudery, M.; Thuriès, L. Organic Fertilizers, Green Manures and Mixtures of the Two Revealed Their Potential as Substitutes for Inorganic Fertilizers Used in Pineapple Cropping. Sci. Hortic. 2019, 257, 108691. [Google Scholar] [CrossRef]
- Torres-Climent, A.; Gomis, P.; Martín-Mata, J.; Bustamante, M.A.; Marhuenda-Egea, F.C.; Pérez-Murcia, M.D.; Pérez-Espinosa, A.; Paredes, C.; Moral, R. Chemical, Thermal and Spectroscopic Methods to Assess Biodegradation of Winery-Distillery Wastes during Composting. PLoS ONE 2015, 10, e0138925. [Google Scholar] [CrossRef]
- Mohanapriya, T.; Sindhu, M.; Annapoorani, C.A. Comparative Analysis of Composting and Vermicomposting from Peel of Musa acuminata. Int. J. Zool. Investig. 2021, 7, 792–800. [Google Scholar] [CrossRef]
- González-Fernández, J.J.; Galea, Z.; Álvarez, J.M.; Hormaza, J.I.; López, R. Evaluation of Composition and Performance of Composts Derived from Guacamole Production Residues. J. Environ. Manage. 2015, 147, 132–139. [Google Scholar] [CrossRef] [PubMed]
- Granados, P.; Mireles, S.; Pereira, E.; Cheng, C.L.; Kang, J.J. Effects of Biochar Production Methods and Biomass Types on Lead Removal from Aqueous Solution. Appl. Sci. 2022, 12, 5040. [Google Scholar] [CrossRef]
- Durak, H.; Aysu, T. Effect of Pyrolysis Temperature and Catalyst on Production of Bio-Oil and Bio-Char from Avocado Seeds. Res. Chem. Intermed. 2015, 41, 8067–8097. [Google Scholar] [CrossRef]
- Kang, J.; Parsons, J.; Gunukula, S.; Tran, D.T. Iron and Magnesium Impregnation of Avocado Seed Biochar for Aqueous Phosphate Removal. Clean Technol. 2022, 4, 690–702. [Google Scholar] [CrossRef]
- Riaz, U.; Mehdi, S.M.; Iqbal, S.; Khalid, H.I.; Qadir, A.A.; Anum, W.; Ahmad, M.; Murtaza, G. Bio-Fertilizers: Eco-Friendly Approach for Plant and Soil Environment. In Bioremediation and Biotechnology. Sustainable Approaches to Pollution Degradation; Hakeem, K.R., Bhat, R.A., Qadri, H., Eds.; Springer: Cham, Switzerland, 2020; p. 334. [Google Scholar]
- Rodríguez-Martínez, B.; Romaní, A.; Eibes, G.; Garrote, G.; Gullón, B.; del Río, P.G. Potential and Prospects for Utilization of Avocado By-Products in Integrated Biorefineries. Bioresour. Technol. 2022, 364, 128034. [Google Scholar] [CrossRef]
- Erbiai, E.H.; Maouni, A.; Pinto da Silva, L.; Saidi, R.; Legssyer, M.; Lamrani, Z.; Esteves da Silva, J.C.G. Antioxidant Properties, Bioactive Compounds Contents, and Chemical Characterization of Two Wild Edible Mushroom Species from Morocco: Paralepista flaccida (Sowerby) Vizzini and Lepista nuda (Bull.) Cooke. Molecules 2023, 28, 1123. [Google Scholar] [CrossRef] [PubMed]
- Alkan, S.; Uysal, A.; Kasik, G.; Vlaisavljevic, S.; Berežni, S.; Zengin, G. Chemical Characterization, Antioxidant, Enzyme Inhibition and Antimutagenic Properties of Eight Mushroom Species: A Comparative Study. J. Fungi 2020, 6, 166. [Google Scholar] [CrossRef]
- Majib, N.M.; Sam, S.T.; Yaacob, N.D.; Rohaizad, N.M.; Tan, W.K. Characterization of Fungal Foams from Edible Mushrooms Using Different Agricultural Wastes as Substrates for Packaging Material. Polymers 2023, 15, 873. [Google Scholar] [CrossRef]
- Doroški, A.; Klaus, A.; Režek Jambrak, A.; Djekic, I. Food Waste Originated Material as an Alternative Substrate Used for the Cultivation of Oyster Mushroom (Pleurotus ostreatus): A Review. Sustainability 2022, 14, 12509. [Google Scholar] [CrossRef]
- Grand View Research Mushroom Market Size, Share & Trends Analysis Report by Product (Button, Shiitake, Oyster), by Form, by Distribution Channel, by Application (Food, Pharmaceuticals, Cosmetics), by Region, and Segment Forecasts, 2022–2030. Available online: https://www.grandviewresearch.com/industry-analysis/mushroom-market (accessed on 16 April 2023).
- Espinel-Ríos, S.; Palmerín-Carreño, D.M.; Hernández-Orihuela, A.L.; Martínez-Antonio, A. A Plackett-Burman Design for Substituting Mrs Medium Components with Avocado Seed Hydrolysate for Growth and Lactic Acid Production by Lactobacillus sp. Rev. Mex. De Ing. Quim. 2019, 18, 131–141. [Google Scholar] [CrossRef]
- Bangar, S.P.; Dunno, K.; Dhull, S.B.; Kumar Siroha, A.; Changan, S.; Maqsood, S.; Rusu, A.V. Avocado Seed Discoveries: Chemical Composition, Biological Properties, and Industrial Food Applications. Food Chem. X 2022, 16, 100507. [Google Scholar] [CrossRef] [PubMed]
- Tan, C.X.; Chin, R.; Tan, S.T.; Tan, S.S. Phytochemicals and Antioxidant Activity of Ultrasound-Assisted Avocado Seed Extract. Malays. J. Anal. Sci. 2022, 26, 439–446. [Google Scholar]
- da Silva, G.G.; Pimenta, L.P.S.; Melo, J.O.F.; Mendonça, H. de O.P.; Augusti, R.; Takahashi, J.A. Phytochemicals of Avocado Residues as Potential. Molecules 2022, 27, 1892. [Google Scholar] [CrossRef]
- Dabas, D.; Ziegler, G.R.; Lambert, J.D. Anti-Inflammatory Properties of a Colored Avocado Seed Extract. Adv. Food Technol. Nutr. Sci. Open J. 2019, 5, 8–12. [Google Scholar] [CrossRef]
- Iñiguez-Moreno, M.; Calderón-Santoyo, M.; Ascanio, G.; Ragazzo-Calderón, F.Z.; Parra-Saldívar, R.; Ragazzo-Sánchez, J.A. Harnessing Emerging Technologies to Obtain Biopolymer from Agro-Waste: Application into the Food Industry. Biomass Convers. Biorefin. 2023. [Google Scholar] [CrossRef]
- Colombo, R.; Papetti, A. Avocado (Persea americana Mill.) by-Products and Their Impact: From Bioactive Compounds to Biomass Energy and Sorbent Material for Removing Contaminants. A Review. Int. J. Food Sci. Technol. 2019, 54, 943–951. [Google Scholar] [CrossRef]
- Puglia, D.; Pezzolla, D.; Gigliotti, G.; Torre, L.; Bartucca, M.L.; Del Buono, D. The Opportunity of Valorizing Agricultural Waste, through Its Conversion into Biostimulants, Biofertilizers, and Biopolymers. Sustainability 2021, 13, 2710. [Google Scholar] [CrossRef]
Cultivar | Source | Component (%, w/w) | ||||||
---|---|---|---|---|---|---|---|---|
Moisture | Protein | Fat | Ash | Carbohydrates | Fiber | Reference | ||
Fuerte | Seed | 56.04 ± 2.58 | 1.95 ± 0.16 | 1.87 ± 0.31 | 1.87 ± 0.24 | 33.17 ± 2.73 | 5.10 ± 1.11 | [21] |
Hass | Seed | 9.92 ± 0.01 | 17.94 ± 1.40 | 16.54 ± 2.10 | 2.40 ± 0.19 | 48.11 ± 4.13 | 3.10 ± 0.18 | [22] |
Pulp | 8.12 ± 0.12 | 1.60 ± 0.09 | 29.94 ± 1.24 | 4.54 ± 1.28 | 53.74 ± 3.41 | 2.06 ± 0.33 | ||
Seed | 54.45 ± 2.33 | 2.19 ± 0.16 | 4.7 ± 0.32 | 1.29 ± 0.0 | - | - | [23] | |
Peel | 69.13 ± 2.58 | 1.91 ± 0.08 | 2.20 ± 1.65 | 1.50 ± 0.08 | - | - | ||
Pulp | 70.83 ± 3.53 | 1.82 ± 0.07 | 43.5 ± 4.62 | 1.77 ± 0.16 | - | - | ||
Seed | 67.2± 0.6 | 9.6 ± 1.6 | 3.9 ± 0.3 | 2.3 ± 0.4 | - | 10.7 ± 2.8 | [24] | |
Peel | 65.7± 3.1 | 6.3 ± 1.1 | 3.5 ± 0.7 | 1.5 ± 0.3 | - | 46.9 ± 2.7 | ||
Pulp | 86.7 ± 0.7 | 12.5 ± 5.1 | 28.6 ± 7.8 | 2.1 ± 0.6 | 41.1 ± 2.8 | |||
Seed | 52.68 ± 1.00 | 2.51± 0.0 | 1.11 ± 0.06 | 1.15 ± 0.0 | - | - | [25] | |
Peel | 72.15 ± 0.41 | 2.58 ± 0.05 | 2.89 ± 0.02 | 1.62 ± 0.01 | - | - | ||
Seed | 15.10 ± 0.14 | 15.55 ± 0.36 | 17.90 ± 0.4 | 2.26 ± 0.23 | 49.03 ± 0.02 | - | [26] | |
Peel ** | 37.79 ± 0.45 | 0.25 ± 0.01 | 35.22 ± 0.58 | 2.94 ± 0.05 | 7.98 ± 0.66 | 53.14 ± 0.17 | [13] | |
Seed | 54.45 ± 2.33 | 2.19 ± 0.16 | 4.7 ± 0.32 | 1.29 ± 0.03 | - | - | [27] | |
Peel | 69.13 ± 2.58 | 1.91 ± 0.0 | 2.20 ± 1.65 | 1.50 ± 0.08 | - | - | ||
Pulp | 70.83 ± 3.53 | 1.82 ± 0.07 | 43.5 ± 4.62 | 1.77 ± 0.16 | - | - | ||
Seed * | - | 3.4 ± 0.01 | 3.2 ± 0.01 | 1.6 ± 0.01 | 67.5 ± 0.01 | 21.6 ± 0.01 | [28] | |
Peel | 65.38 ± 0.37 | 2.71 ± 0.15 | 5.67 ± 0.29 | 0.87 ± 0.03 | - | - | [29] | |
Seed | 49.81 ± 0.17 | 2.48 ± 0.24 | 2.26 ± 0.07 | 0.89 ± 0.04 | - | - | ||
Pulp | 68.16 ± 0.68 | 2.08 ± 0.41 | 14.12 ± 0.06 | 1.69 ± 0.22 | - | - | ||
Quintal | Peel | 62.53 ± 0.23 | 3.67 ± 0.44 | 3.30 ± 0.20 | 0.91 ± 0.03 | - | - | |
Seed | 68.24 ± 0.22 | 2.84 ± 0.27 | 5.33 ± 0.37 | 0.82 ± 0.08 | - | - | ||
Pulp | 72.98 ± 0.31 | 1.55 ± 0.20 | 13.26 ± 0.17 | 0.51 ± 0.11 | - | - | ||
Fortuna | Peel | 64.86 ± 0.27 | 2.36 ± 0.20 | 5.39 ± 0.20 | 0.35 ± 0.05 | - | - | |
Seed | 62.60 ± 0.27 | 2.72 ± 0.29 | 3.67 ± 0.08- | 0.41 ± 0.01 | - | - | ||
Pulp | 75.37 ± 0.38 | 1.51 ± 0.12 | 13.26 ± 0.17 | 0.66 ± 0.03 | - | - | ||
Margarida | Peel | 69.06 ± 0.91 | 2.13 ± 0.26 | 8.55 ± 0.17 | 0.65 ± 0.07 | - | - | |
Seed | 54.35 ± 0.15 | 4.01 ± 0.49 | 1.19 ± 0.10 | 0.68 ± 0.02 | - | - | ||
Pulp | 79.23 ± 0.61 | 1.55 ± 0.20 | 13.59 ± 0.27 | 0.76 ± 0.05 | 0.76 ± 0.05 | - |
Compound | Source | References |
---|---|---|
Catechins | Peel and seed | [31,32,33,34,35,36] |
Epicatechin | Peel and seed | [37,38] |
Procyanidins | Peel and seed | [10,33,34] |
Flavonols | Peel and seed | [31] |
Hydroxycinnamic acids | Peel and seed | [31,37] |
Hydroxybenzoic acids | Peel and seed | [31,37] |
Chlorogenic acid | Peel and seed | [20,35,39,40] |
Procyanidins | Peel and seed | [34,35,36,41] |
Kaempferol | Peel and seed | [37] |
Perseitol | Peel and seed | [32,33,34,35,36,37,38] |
Caffeoylquinic acid | Peel and seed | [32,33,36,38,40] |
Rutin | Peel and seed | [40,42,43] |
Penstemide | Peel and seed | [40,42] |
Caffeoylquinic acids | Peel and seed | [40,42] |
Tyrosol glucoside | Peel and seed | [38,40,42] |
Quercetin | Peel and seed | [20,28,34,42,44] |
Naringenin | Peel and seed | [38,44,45] |
Ferulic Acid | Peel and seed | [25,38,45] |
Fatty acids | Peel and seed | [30,44] |
Tocols | Seed | [46] |
Chlorophyll | Peel and seed | [47] |
Carotenoids | Peel and seed | [28,30,46,47] |
Product | Brand |
---|---|
Refined and unrefined avocado oil | Chosen Foods Chosen Foods® |
Refined avocado oil | Spectrum Naturals® |
Avocado oil | La Tourangelle® |
Cold-pressed, unrefined avocado oil | Bella Vado® |
Cold-pressed, unrefined avocado oil | Avohass® |
Cooking oil and avocado oil infused with various flavors | Olivado® |
Avocado oil for cooking and cosmetic industry | NOW Foods® |
Cooking oils, salad dressings, and mayonnaise | Primal Kitchen® |
Moisturizers, eye creams, and face masks. | Kiehl’s® |
Face masks and eye creams | Origins® |
Moisturizers and eye creams | Clinique® |
Body butters, lotions, and masks | The Body Shop® |
Body lotions and hydrating masks. | Neutrogena® |
Body lotions and creams | Aveeno® |
Moisturizers, serums, and masks | Eminence Organic Skin Care® |
Moisturizers and masks | Peter Thomas Roth® |
Avocado dye for clothing | Patagonia®, Eileen Fisher®, Ace & Jig®, Two Days Off®, Study NY®, Lacausa® |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sandoval-Contreras, T.; González Chávez, F.; Poonia, A.; Iñiguez-Moreno, M.; Aguirre-Güitrón, L. Avocado Waste Biorefinery: Towards Sustainable Development. Recycling 2023, 8, 81. https://doi.org/10.3390/recycling8050081
Sandoval-Contreras T, González Chávez F, Poonia A, Iñiguez-Moreno M, Aguirre-Güitrón L. Avocado Waste Biorefinery: Towards Sustainable Development. Recycling. 2023; 8(5):81. https://doi.org/10.3390/recycling8050081
Chicago/Turabian StyleSandoval-Contreras, Teresa, Fernando González Chávez, Amrita Poonia, Maricarmen Iñiguez-Moreno, and Lizet Aguirre-Güitrón. 2023. "Avocado Waste Biorefinery: Towards Sustainable Development" Recycling 8, no. 5: 81. https://doi.org/10.3390/recycling8050081
APA StyleSandoval-Contreras, T., González Chávez, F., Poonia, A., Iñiguez-Moreno, M., & Aguirre-Güitrón, L. (2023). Avocado Waste Biorefinery: Towards Sustainable Development. Recycling, 8(5), 81. https://doi.org/10.3390/recycling8050081