Mineral Carbonation of Basic Oxygen Furnace Slags
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Methods
2.2.1. Mineral Carbonation
2.2.2. Mineralogical Characterization
2.2.3. Chemical Characterization
3. Results and Discussion
3.1. Mineralogical Analyses
3.2. Chemical Analyses
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Huigen, W.; Witkamp, G.-J.; Comans, R. Mineral CO2 sequestration by steel slag carbonation. Environ. Sci. Technol. 2005, 39, 9676–9682. [Google Scholar] [CrossRef] [PubMed]
- Höllen, D.; Berneder, I.; Capo Tous, F.; Stöllner, M.; Sedlazeck, K.P.; Schwarz, T.; Aldrian, A.; Lehner, M. Stepwise treatment of ashes and slags by dissolution, precipitation of iron phases and carbonate precipitation for production of raw materials for industrial applications. Waste Manag. 2018, 78, 750–762. [Google Scholar] [CrossRef] [PubMed]
- Tian, S.; Jiang, J.; Chen, X.; Yan, F.; Li, K. Direct gas-solid carbonation kinetics of steel slag and the contribution to in situ sequestration of flue gas CO2 in steel making plants. ChemSusChem 2013, 6, 2348–2355. [Google Scholar] [CrossRef] [PubMed]
- Boone, M.; Nielsen, P.; De Kock, T.; Boone, M.; Quaghebeur, M.; Cnudde, V. Monitoring of Stainless-Steel Slag Carbonation Using X-ray Computed Microtomography. Environ. Sci. Technol. 2014, 48, 674–680. [Google Scholar] [CrossRef] [PubMed]
- Berryman, E.; Williams-Jones, A.; Migdisov, A. Steel slag carbonation in a flow-through reactor: The role of fluid-flux. J. Environ. Sci. 2015, 27, 266–275. [Google Scholar] [CrossRef] [PubMed]
- Huijgen, W.; Comans, R. Carbonation of steel slag for CO2 sequestration: Leaching of products and reaction mechanisms. Environ. Sci. Technol. 2006, 40, 2790–2796. [Google Scholar] [CrossRef] [PubMed]
- Brechlmacher, M.; Vollprecht, D. Use of BOF Slags as Mountain-Stabilizing Element; Unpublished Report; Montanuniversität Leoben: Leoben, Austria, 2021. [Google Scholar]
- Chaurand, P.; Rose, J.; Briois, V.; Olivi, L.; Hazemann, J.-L.; Proux, O.; Domas, J.; Bottero, J.-Y. Environmental impacts of steel slag reused in road construction: A crystallographic and molecular (XANES) approach. J. Hazard. Mater. 2007, 139, 537–542. [Google Scholar] [CrossRef] [PubMed]
- Naidu, T.S.; Sheridan, C.M.; van Dyk, L.D. Basic oxygen furnace slag: Review of current and potential uses. Miner. Eng. 2020, 149, 106234. [Google Scholar] [CrossRef]
- ÖNORM EN 15002:2015-07-01; Characterization of Waste—Preparation of Test Portions from the Laboratory Sample. Austrian Standards International: Vienna, Austria, 2015.
- ÖNORM EN 14346:2007-03-01; Characterization of Waste—Calculation of Dry Matter by Determination of Dry Residue or Water Content. Austrian Standards International: Vienna, Austria, 2007.
- ÖNORM L 1084:2016-07-01; Chemical Analyses of Soils—Determination of Carbonate Taking into Account Air Pressure and Temperature. Austrian Standards International: Vienna, Austria, 2016.
- ÖNORM EN 14630:2007-01-01; Products and Systems for the Protection and Repair of Concrete Structures—Test Methods—Determination of Carbonation Depth in Hardened Concrete by the Phenolphthalein Method. Austrian Standards International: Vienna, Austria, 2007.
- ÖNORM EN 12457-4:2003-01; Characterization of Waste—Leaching; Compliance Test for Leaching of Granular Waste Materials and Sludges—Part 4: One Stage Batch Test at a Liquid to Solid Ratio of 10 L/kg for Materials with Particle Size below 10 mm (without or with Limited Size Reduction). German version EN 12457-4:2002; Austrian Standards International: Vienna, Austria, 2003.
- ÖNORM EN ISO 17294-1:2007-01-01; Water Quality—Application of Inductively Coupled Plasma Mass Spectrometry (ICP-MS)—Part 1: General Guidelines (ISO 17294-1:2004). Austrian Standards International: Vienna, Austria, 2007.
- DIN EN ISO 10304-1:2009-07; Water quality—Determination of Dissolved Anions by Liquid Chromatography of Ions—Part 1: Determination of Bromide, Chloride, Fluoride, Nitrate, Nitrite, Phosphate and Sulfate (ISO 10304-1:2007). German version EN ISO 10304-1:2009; Deutsches Institut für Normung: Berlin, Germany, 2009.
- DIN 38405-24:1987-05; German Standard Methods for the Examination of Water, Waste Water and Sludge; Anions (Group D); Photometric Determination of Chromium(VI) Using 1,5-Diphenylcarbonohydrazide (D 24). Deutsches Institut für Normung: Berlin, Germany, 1987.
- Available online: https://www.salzwiki.de/index.php/Gips (accessed on 1 September 2022).
Component | BOF Slag Donawitz [7] | BOF Slag Linz [8] |
---|---|---|
Na2O | 0.03 | n.a. |
CaO | 34.8 | 41.3 |
Fe2O3 | 33.4 | 31.2 |
SiO2 | 15.3 | 12.5 |
MnO | 11.9 | 6.1 |
MgO | 3.4 | 4.3 |
Al2O3 | 1.3 | 2.4 |
TiO2 | 0.26 | 0.8 |
P2O5 | 1.1 | 1.1 |
SO3 | 0.18 | n.a. |
Cr2O3 | 0.58 | 0.35 |
V2O3 | 0.47 | 0.10 |
Sum | 100 | 100 |
Phase | BOF Slag Donawitz [7] | BOF Slag Linz [8] |
---|---|---|
Larnite, β-Ca2SiO4 | x | x |
Calcium ferrite, CaFe2O4 | x | |
Magnesiowuestite, (Fe,Mg,Mn,Ca)O | x | x |
Portlandite, Ca(OH)2 | x | |
Brownmillerite, Ca(Al,Fe)2O5 | x |
Parameter | Unit | Original | 1 d | 3 d | 9 d | 14 d | 24 d |
---|---|---|---|---|---|---|---|
TIC | % | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 |
Cl- | mg/kg DM | <5.0 | <5.0 | 6.4 | 8.3 | 13 | 9.8 |
F- | mg/kg DM | <5.0 | <5.0 | <5.0 | <5.0 | <5.0 | <5.0 |
NO3- | mg/kg DM | <5.0 | <5.0 | <5.0 | <5.0 | <5.0 | <5.0 |
NO2- | mg/kg DM | <5.0 | <5.0 | <5.0 | <5.0 | <5.0 | <5.0 |
PO43- | mg/kg DM | <5.0 | <5.0 | <5.0 | <5.0 | <5.0 | <5.0 |
SO42- | mg/kg DM | 7.8 | 440 | 780 | 4010 | 4310 | 8270 |
Cr (VI) | mg/kg DM | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 |
Li | mg/kg DM | 0.037 | 0.027 | 0.038 | 0.4 | 0.074 | 0.025 |
Be | mg/kg DM | <0.10 | <0.10 | <0.10 | <0.10 | <0.10 | <0.10 |
Na | mg/kg DM | 2.1 | 1.6 | 1.6 | 3 | 3.2 | 2.1 |
Mg | mg/kg DM | 0.82 | 1.5 | 1.8 | 1.1 | 1.7 | 2.2 |
Al | mg/kg DM | 1.89 | 2.3 | 2.3 | 1.7 | 1.1 | <1.0 |
Si | mg/kg DM | 150 | 120 | 120 | 110 | 140 | 130 |
P | mg/kg DM | 0.34 | 0.41 | 0.24 | 0.28 | 0.25 | 0.55 |
K | mg/kg DM | 4 | 2.8 | 3 | 6 | 5.7 | 3.9 |
Ca | mg/kg DM | 940 | 900 | 1060 | 2650 | 2540 | 3860 |
Ti | mg/kg DM | 0.019 | 0.016 | 0.014 | 0.014 | 0.017 | 0.017 |
V | mg/kg DM | 1.1 | 0.6 | 0.56 | 0.37 | 0.54 | 0.45 |
Cr | mg/kg DM | 0.05 | 0.042 | 0.036 | 0.058 | 0.046 | 0.045 |
Mn | mg/kg DM | <0.020 | <0.020 | <0.020 | <0.020 | <0.020 | <0.020 |
Fe | mg/kg DM | <0.10 | 0.079 | <0.10 | 0.068 | 0.068 | 0.11 |
Co | mg/kg DM | <0.010 | <0.010 | <0.010 | <0.010 | <0.010 | 0.012 |
Ni | mg/kg DM | <0.020 | 0.03 | 0.03 | 0.073 | 0.074 | 0.12 |
Cu | mg/kg DM | <0.020 | <0.020 | <0.020 | <0.020 | <0.020 | <0.020 |
Zn | mg/kg DM | <0.10 | <0.10 | <0.10 | <0.10 | <0.10 | <0.10 |
As | mg/kg DM | <0.10 | <0.10 | <0.10 | <0.10 | <0.10 | <0.10 |
Se | mg/kg DM | <0.10 | <0.10 | <0.10 | <0.10 | <0.10 | 0.18 |
Sr | mg/kg DM | 0.54 | 0.47 | 0.53 | 1.3 | 1.5 | 2.5 |
Mo | mg/kg DM | 0.017 | 0.04 | 0.015 | 0.13 | 0.12 | 0.089 |
Pd | mg/kg DM | <0.010 | <0.010 | <0.010 | <0.010 | <0.010 | <0.010 |
Ag | mg/kg DM | <0.010 | <0.010 | <0.010 | <0.010 | <0.010 | <0.010 |
Cd | mg/kg DM | <0.010 | <0.010 | <0.010 | <0.010 | <0.010 | <0.010 |
Sn | mg/kg DM | <0.020 | <0.020 | <0.020 | <0.020 | <0.020 | <0.020 |
Sb | mg/kg DM | <0.010 | <0.010 | <0.010 | <0.010 | <0.010 | 0.18 |
Te | mg/kg DM | <0.020 | <0.020 | <0.020 | <0.020 | <0.020 | 0.058 |
Ba | mg/kg DM | 0.13 | 0.19 | 0.13 | 0.2 | 0.21 | 0.18 |
W | mg/kg DM | 0.035 | 0.029 | 0.035 | 0.058 | 0.067 | 0.058 |
Hg | mg/kg DM | <0.010 | <0.010 | <0.010 | <0.010 | <0.010 | <0.010 |
Tl | mg/kg DM | <0.010 | <0.010 | <0.010 | <0.010 | <0.010 | <0.010 |
Pb | mg/kg DM | <0.010 | <0.010 | <0.010 | <0.010 | <0.010 | <0.010 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vollprecht, D.; Wohlmuth, D. Mineral Carbonation of Basic Oxygen Furnace Slags. Recycling 2022, 7, 84. https://doi.org/10.3390/recycling7060084
Vollprecht D, Wohlmuth D. Mineral Carbonation of Basic Oxygen Furnace Slags. Recycling. 2022; 7(6):84. https://doi.org/10.3390/recycling7060084
Chicago/Turabian StyleVollprecht, Daniel, and Dominik Wohlmuth. 2022. "Mineral Carbonation of Basic Oxygen Furnace Slags" Recycling 7, no. 6: 84. https://doi.org/10.3390/recycling7060084
APA StyleVollprecht, D., & Wohlmuth, D. (2022). Mineral Carbonation of Basic Oxygen Furnace Slags. Recycling, 7(6), 84. https://doi.org/10.3390/recycling7060084