How Do Industrial Ecology, Energy Efficiency, and Waste Recycling Technology (Circular Economy) Fit into China’s Plan to Protect the Environment? Up to Speed
Abstract
:1. Introduction
1.1. Research Question(s) and Novelty of This Study
1.2. Research Objectives
- (i)
- To examine the presence of the EKC hypothesis for EFPRINTS as a significant measure of human strain on the natural environment in the premises of a circular economic system in China;
- (ii)
- To analyze the effect of REC in lowering a country’s EFPRINTS; and
- (iii)
- To investigate the relationship between China’s current levels of EG, including urbanization, industrialization, and oil resources, and the state of EFPRINTS.
2. Literature Review
2.1. Circular Economy and Environmental Considerations
2.2. Literature Review on Industrial Ecology, Energy Efficiency, Technology Innovation, and Ecological Footprints
3. Materials and Methods
- (i)
- ‘Sustainable circular economy’;
- (ii)
- ‘Circular economy and environment’; and
- (iii)
- ‘Circular economy and technology.’
- (iv)
- ‘Circular economy and economic model’;
- (v)
- ‘Circular economy and environmental model’; and
- (vi)
- ‘Circular economy and innovation.
3.1. Theoretical Framework
3.1.1. Theory of Sustainable Circular Economy
3.1.2. Theory of Green Energy
3.1.3. Theory of Innovation
3.2. Econometric Framework
- (i)
- Unit Root Tests
- (ii)
- ARDL Bounds testing approach
- (iii)
- Granger Causality
- (iv)
- Innovation Accounting Matrix
4. Results
5. Discussion
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
CE | Circular Economy |
EG | Economic Growth |
EC | Energy Consumption |
EFPRINTS | Ecological Footprints |
PM2.5 | Particulate Matters 2.5 |
REC | Renewable Energy Consumption |
URB | Urbanization |
NRE | Non Renewable Energy |
GDPPC | GDP Per Capita |
IND | Industrialization |
WRTECH | Waste Recycling Technology |
NR | Natural Resources |
ARDL | Autoregressive Distributed Lag |
ORENTS | Oil Rents |
R&D | Research and Development |
References
- Ari, I.; Yikmaz, R.F. Greening of industry in a resource-and environment-constrained world. In Handbook of Green Economics; Academic Press: Cambridge, MA, USA, 2019; pp. 53–68. [Google Scholar]
- Husgafvel, R.; Linkosalmi, L.; Sakaguchi, D.; Hughes, M. How to advance sustainable and circular economy-oriented public procurement—A review of the operational environment and a case study from the Kymenlaakso region in Finland. In Circular Economy and Sustainability; Elsevier: Amsterdam, The Netherlands, 2022; pp. 227–277. [Google Scholar]
- Alhawari, O.; Awan, U.; Bhutta, M.K.S.; Ülkü, M.A. Insights from circular economy literature: A review of extant definitions and unravelling paths to future research. Sustainability 2021, 13, 859. [Google Scholar] [CrossRef]
- Nautiyal, H.; Goel, V. Sustainability assessment: Metrics and methods. In Methods in Sustainability Science; Elsevier: Amsterdam, The Netherlands, 2021; pp. 27–46. [Google Scholar]
- Majeed, M.T.; Mazhar, M. Financial development and ecological footprint: A global panel data analysis. Pak. J. Comm. Soc. Sci. 2019, 13, 487–514. [Google Scholar]
- Xu, L. On the evaluation of performance system incorporating “green credit” policies in China’s financial industry. J. Financ. Risk Manag. 2013, 2, 33–37. [Google Scholar] [CrossRef] [Green Version]
- Zakaria, M.; Bibi, S. Financial development and environment in South Asia: The role of institutional quality. Environ. Sci. Pollut. Res. 2019, 26, 7926–7937. [Google Scholar] [CrossRef] [PubMed]
- Shahbaz, M.; Mahalik, M.K.; Shahzad, S.J.H.; Hammoudeh, S. Does the environment Kuznets curve exist between globalization and energy consumption? Global evidence from the cross-correlation method. Int. J. Financ. Econ. 2019, 24, 540–557. [Google Scholar] [CrossRef] [Green Version]
- Sabir, S.; Gorus, M.S. The impact of globalization on ecological footprint: Empirical evidence from the South Asian countries. Environ. Sci. Pollut. Res. 2019, 26, 33387–33398. [Google Scholar] [CrossRef]
- UNESCAP. Asia and the Pacific SDG Progress Report 2020. United Nations Economic and Social Commission for Asia and the Pacific. Available online: https://www.unescap.org/publications/asia-and-pacific-sdg-progress-report-2020 (accessed on 12 June 2022).
- Zhang, X.; Gu, X.; Cheng, C.; Yang, D. Spatiotemporal heterogeneity of PM2.5 and its relationship with urbanization in North China from 2000 to 2017. Sci. Total Environ. 2020, 744, 140925. [Google Scholar] [CrossRef]
- Rees, W.E. Ecological footprints and appropriated carrying capacity: What urban economics leaves out. Environ. Urban 1992, 4, 121–130. [Google Scholar] [CrossRef]
- Wackernagel, M.; Onisto, L.; Bello, P.; Linares, A.C.; Falfán, I.S.L.; García, J.M.; Guerrero, A.I.S.; Guerrero, M.G.S. National natural capital accounting with the ecological footprint concept. Ecol. Econ. 1999, 29, 375–390. [Google Scholar] [CrossRef]
- Hanif, I.; Aziz, B.; Chaudhry, I.S. Carbon emissions across the spectrum of renewable and nonrenewable energy use in developing economies of Asia. Renew Energy 2019, 143, 586–595. [Google Scholar] [CrossRef]
- Xue, L.; Haseeb, M.; Mahmood, H.; Alkhateeb, T.T.Y.; Murshed, M. Renewable energy use and ecological footprints mitigation: Evidence from selected South Asian economies. Sustainability 2021, 13, 1613. [Google Scholar] [CrossRef]
- Wu, D. Spatially and temporally varying relationships between ecological footprint and influencing factors in China’s provinces Using Geographically Weighted Regression (GWR). J. Clean. Prod. 2020, 261, 121089. [Google Scholar] [CrossRef]
- Ferdous, R.; Ahmed, M.T. Is Environmental Kuznets Hypothesis Vice-Versa for Bangladesh Especially in the Times of Global Climate Change?—An ARDL Econometric Modeling Approach. Energy Econ. Lett. 2022, 9, 55–66. [Google Scholar] [CrossRef]
- Chen, J.; Gao, M.; Li, D.; Li, L.; Song, M.; Xie, Q. Changes in PM2.5 emissions in China: An extended chain and nested refined laspeyres index decomposition analysis. J. Clean. Prod. 2021, 294, 126248. [Google Scholar] [CrossRef]
- Delina, L.L. Promises and pitfalls of China-Southeast Asia energy connectivity. Energy Strategy Rev. 2021, 33, 100574. [Google Scholar] [CrossRef]
- Alola, A.A.; Adebayo, T.S.; Onifade, S.T. Examining the dynamics of ecological footprint in China with spectral Granger causality and quantile-on-quantile approaches. Int. J. Sustain. Dev. World Ecol. 2022, 29, 263–276. [Google Scholar] [CrossRef]
- Luo, X.; Sun, K.; Li, L.; Wu, S.; Yan, D.; Fu, X.; Luo, H. Impacts of urbanization process on PM2.5 pollution in “2 + 26” cities. J. Clean. Prod. 2021, 284, 124761. [Google Scholar] [CrossRef]
- Huang, Y.; Shen, H.; Chen, H.; Wang, R.; Zhang, Y.; Su, S.; Chen, Y.; Lin, N.; Zhuo, S.; Zhong, Q.; et al. Quantification of global primary emissions of PM 2.5, PM 10, and TSP from combustion and industrial process sources. Environ. Sci. Technol 2014, 48, 13834–13843. [Google Scholar] [CrossRef]
- Wang, S.; Liu, X.; Yang, X.; Zou, B.; Wang, J. Spatial variations of PM (2.5) in Chinese cities for the joint impacts of human activities and natural conditions: A global and local regression perspective. J. Clean. Prod. 2018, 203, 143–152. [Google Scholar] [CrossRef]
- Cramer, W.; Guiot, J.; Fader, M.; Garrabou, J.; Gattuso, J.-P.; Iglesias, A.; Lange, M.A.; Lionello, P.; Llasat, M.C.; Paz, S.; et al. Climate change and interconnected risks to sustainable development in the Mediterranean. Nat. Clim. Chang. 2018, 8, 972–980. [Google Scholar] [CrossRef] [Green Version]
- Geng, Y.; Zhang, L.; Chen, X.; Xue, B.; Fujita, T.; Dong, H. Urban ecological footprint analysis: A comparative study between Shenyang in China and Kawasaki in Japan. J. Clean. Prod. 2014, 75, 130–142. [Google Scholar] [CrossRef]
- Ozcan, B.; Tzeremes, P.G.; Tzeremes, N.G. Energy consumption, economic growth and environmental degradation in OECD countries. Econ. Model. 2020, 84, 203–213. [Google Scholar] [CrossRef]
- Ikram, M.; Xia, W.; Fareed, Z.; Shahzad, U.; Rafique, M.Z. Exploring the nexus between economic complexity, economic growth and ecological footprint: Contextual evidences from Japan. Sustain. Energy Technol Assess. 2021, 47, 101460. [Google Scholar] [CrossRef]
- Schlüter, M.; Orach, K.; Lindkvist, E.; Martin, R.; Wijermans, N.; Bodin, Ö.; Boonstra, W.J. Toward a methodology for explaining and theorizing about social-ecological phenomena. Curr. Opin. Environ. Sustain. 2019, 39, 44–53. [Google Scholar] [CrossRef]
- Manisalidis, I.; Stavropoulou, E.; Stavropoulos, A.; Bezirtzoglou, E. Environmental and health impacts of air pollution: A review. Front. Public Health 2020, 8, 14. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Anjum, M.S.; Ali, S.M.; Subhani, M.A.; Anwar, M.N.; Nizami, A.S.; Ashraf, U.; Khokhar, M.F. An emerged challenge of air pollution and ever-increasing particulate matter in Pakistan; a critical review. J. Hazard. Mater. 2021, 402, 123943. [Google Scholar] [CrossRef]
- Wang, L.; Vo, X.V.; Shahbaz, M.; Ak, A. Globalization and carbon emissions: Is there any role of agriculture value-added, financial development, and natural resource rent in the aftermath of COP21? J. Environ. Manag. 2020, 268, 110712. [Google Scholar] [CrossRef]
- Sahoo, M.; Sethi, N. The dynamic impact of urbanization, structural transformation, and technological innovation on ecological footprint and PM2.5: Evidence from newly industrialized countries. Environ. Dev. Sustain. 2022, 24, 4244–4277. [Google Scholar] [CrossRef]
- Du, Y.; Wan, Q.; Liu, H.; Liu, H.; Kapsar, K.; Peng, J. How does urbanization influence PM2.5 concentrations? Perspective of spillover effect of multi-dimensional urbanization impact. J. Clean. Prod. 2019, 220, 974–983. [Google Scholar] [CrossRef]
- Mao, L.; Yu, X.X.; Zhao, Y.; Sun, F.B.; Mo, N. Correlation analysis between urbanization and particle pollution in Beijing. Ecol. Environ. Sci. 2014, 5, 806–811. [Google Scholar]
- Ali, R.; Bakhsh, K.; Yasin, M.A. Impact of urbanization on CO2 emissions in emerging economy: Evidence from Pakistan. Sustain. Cities Soc. 2019, 48, 101553. [Google Scholar] [CrossRef]
- Bashir, M.A.; Sheng, B.; Doğan, B.; Sarwar, S.; Shahzad, U. Export product diversification and energy efficiency: Empirical evidence from OECD countries. Struct. Chang. Econ. Dyn. 2020, 55, 232–243. [Google Scholar] [CrossRef]
- Zhu, H.; Duan, L.; Guo, Y.; Yu, K. The effects of FDI, economic growth and energy consumption on carbon emissions in ASEAN-5: Evidence from panel quantile regression. Econ. Model. 2016, 58, 237–248. [Google Scholar] [CrossRef] [Green Version]
- Zafar, M.W.; Zaidi, S.A.; Khan, N.R.; Mirza, F.M.; Hou, F.; Kirmani, S.A. The impact of natural resources, human capital, and foreign direct investment on the ecological footprint: The case of the United States. Resour. Policy 2019, 63, 101428. [Google Scholar] [CrossRef]
- Xiong, H.; Li, Y.; He, J. Construction and Application of the Evaluation System of Natural Resources Asset Accountability Audit of Officials: A Case Study of Jiangxi, China. Sustainability 2022, 14, 528. [Google Scholar] [CrossRef]
- Ahmed, Z.; Asghar, M.M.; Malik, M.N.; Nawaz, K. Moving towards a sustainable environment: The dynamic linkage between natural resources, human capital, urbanization, economic growth, and ecological footprint in China. Resour. Policy 2020, 67, 101677. [Google Scholar] [CrossRef]
- Yasin, I.; Ahmad, N.; Chaudhary, M.A. Catechizing the environmental-impression of urbanization, financial development, and political institutions: A circumstance of ecological footprints in 110 developed and less-developed countries. Soc. Indic. Res. 2020, 147, 621–649. [Google Scholar] [CrossRef]
- Awan, U.; Sroufe, R. Sustainability in the circular economy: Insights and dynamics of designing circular business models. Appl. Sci. 2022, 12, 1521. [Google Scholar] [CrossRef]
- Awan, U.; Sroufe, R.; Bozan, K. Designing Value Chains for Industry 4.0 and a Circular Economy: A Review of the Literature. Sustainability 2022, 14, 7084. [Google Scholar] [CrossRef]
- Awan, U.; Gölgeci, I.; Makhmadshoev, D.; Mishra, N. Industry 4.0 and circular economy in an era of global value chains: What have we learned and what is still to be explored? J. Clean. Prod. 2022, 371, 133621. [Google Scholar] [CrossRef]
- Sasmoko; Zaman, K.; Malik, M.; Awan, U.; Handayani, W.; Jabor, M.K.; Asif, M. Environmental Effects of Bio-Waste Recycling on Industrial Circular Economy and Eco-Sustainability. Recycling 2022, 7, 60. [Google Scholar] [CrossRef]
- Vanhuyse, F.; Fejzić, E.; Ddiba, D.; Henrysson, M. The lack of social impact considerations in transitioning towards urban circular economies: A scoping review. Sustain. Cities Soc. 2021, 75, 103394. [Google Scholar] [CrossRef]
- Kyriakopoulos, G.L. Environmental legislation in European and international contexts: Legal practices and social planning toward the circular economy. Laws 2021, 10, 3. [Google Scholar] [CrossRef]
- Calzolari, T.; Genovese, A.; Brint, A. Circular Economy indicators for supply chains: A systematic literature review. Environ. Sustain. Indic. 2022, 13, 100160. [Google Scholar] [CrossRef]
- Pizzi, S.; Corbo, L.; Caputo, A. Fintech and SMEs sustainable business models: Reflections and considerations for a circular economy. J. Clean. Prod. 2021, 281, 125217. [Google Scholar] [CrossRef]
- D’Amato, D. Sustainability narratives as transformative solution pathways: Zooming in on the circular economy. Circ. Econ. Sustain. 2021, 1, 231–242. [Google Scholar] [CrossRef]
- Van Fan, Y.; Jiang, P.; Klemeš, J.J.; Liew, P.Y.; Lee, C.T. Integrated regional waste management to minimise the environmental footprints in circular economy transition. Resour. Conserv. Recycl. 2021, 168, 105292. [Google Scholar] [CrossRef]
- Jinru, L.; Changbiao, Z.; Ahmad, B.; Irfan, M.; Nazir, R. How do green financing and green logistics affect the circular economy in the pandemic situation: Key mediating role of sustainable production. Econ. Res. Ekon. Istraz. 2021. [Google Scholar] [CrossRef]
- Babbitt, C.W.; Althaf, S.; Rios, F.C.; Bilec, M.M.; Graedel, T.E. The role of design in circular economy solutions for critical materials. One Earth 2021, 4, 353–362. [Google Scholar] [CrossRef]
- Meglin, R.; Kytzia, S.; Habert, G. Regional environmental-economic assessment of building materials to promote circular economy: Comparison of three Swiss cantons. Resour. Conserv. Recycl. 2022, 181, 106247. [Google Scholar] [CrossRef]
- Chen, H.; Hao, Y.; Li, J.; Song, X. The impact of environmental regulation, shadow economy, and corruption on environmental quality: Theory and empirical evidence from China. J. Clean. Prod. 2018, 195, 200–214. [Google Scholar] [CrossRef]
- Hao, Y.; Peng, H.; Temulun, T.; Liu, L.Q.; Mao, J.; Lu, Z.N.; Chen, H. How harmful is air pollution to economic development? New evidence from PM2. 5 concentrations of Chinese cities. J. Clean. Prod. 2018, 172, 743–757. [Google Scholar] [CrossRef]
- Zhao, S.; Yu, Y.; Yin, D.; Qin, D.; He, J.; Dong, L. Spatial patterns and temporal variations of six criteria air pollutants during 2015 to 2017 in the city clusters of Sichuan Basin, China. Sci. Total Environ. 2018, 624, 540–557. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Zhu, K.; Wang, S. Polycentric and dispersed population distribution increases PM2. 5 concentrations: Evidence from 286 Chinese cities, 2001–2016. J. Clean. Prod. 2020, 248, 119202. [Google Scholar] [CrossRef]
- Sarkodie, S.A.; Strezov, V. Empirical study of the environmental Kuznets curve and environmental sustainability curve hypothesis for Australia, China, Ghana and USA. J. Clean. Prod. 2018, 201, 98–110. [Google Scholar] [CrossRef]
- Du, G.; Liu, S.; Lei, N.; Huang, Y. A test of environmental Kuznets curve for haze pollution in China: Evidence from the penal data of 27 capital cities. J. Clean. Prod. 2018, 205, 821–827. [Google Scholar] [CrossRef]
- Miao, Z.; Baležentis, T.; Shao, S.; Chang, D. Energy use, industrial soot and vehicle exhaust pollution—China’s regional air pollution recognition, performance decomposition and governance. Energ. Econ. 2019, 83, 501–514. [Google Scholar] [CrossRef]
- Liu, K.; Lin, B. Research on influencing factors of environmental pollution in China: A spatial econometric analysis. J. Clean. Prod. 2019, 206, 356–364. [Google Scholar] [CrossRef]
- Liang, L.; Wang, Z.; Li, J. The effect of urbanization on environmental pollution in rapidly developing urban agglomerations. J. Clean. Prod. 2019, 237, 117649. [Google Scholar] [CrossRef]
- Xu, F.; Huang, Q.; Yue, H.; He, C.; Wang, C.; Zhang, H. Reexamining the relationship between urbanization and pollutant emissions in China based on the STIRPAT model. J. Environ. Manag. 2020, 273, 111134. [Google Scholar] [CrossRef]
- Hao, Y.; Zheng, S.; Zhao, M.; Wu, H.; Guo, Y.; Li, Y. Reexamining the relationships among urbanization, industrial structure, and environmental pollution in China—New evidence using the dynamic threshold panel model. Energy Rep. 2020, 6, 28–39. [Google Scholar] [CrossRef]
- Shahbaz, M.; Raghutla, C.; Song, M.; Zameer, H.; Jiao, Z. Public-private partnerships investment in energy as new determinant of CO2 emissions: The role of technological innovations in China. Energy Econ. 2020, 86, 104664. [Google Scholar] [CrossRef]
- Kazemzadeh, E.; Fuinhas, J.A.; Koengkan, M.; Osmani, F.; Silva, N. Do energy efficiency and export quality affect the ecological footprint in emerging countries? A two-step approach using the SBM–DEA model and panel quantile regression. Environ. Syst. Decis. 2022. [Google Scholar] [CrossRef]
- Ansari, M.A.; Haider, S.; Kumar, P.; Kumar, S.; Akram, V. Main determinants for ecological footprint: An econometric perspective from G20 countries. Energy Ecol. Environ. 2022, 7, 250–267. [Google Scholar] [CrossRef]
- Irfan, M.; Cherian, J.; Rahman, A.A.A.; Haddad, A.M.; Sial, M.S.; Ali, B.; Brugni, T.V. Measuring the Impact of Air Pollutants on Ecological Footprint, Forest Area and Cropland. Int. J. Energy Econ. Policy 2022, 12, 444–452. [Google Scholar] [CrossRef]
- Kazemzadeh, E.; Fuinhas, J.A.; Koengkan, M. The impact of income inequality and economic complexity on ecological footprint: An analysis covering a long-time span. J. Environ. Econ. Policy 2022, 11, 133–153. [Google Scholar] [CrossRef]
- Pata, U.K. Renewable and non-renewable energy consumption, economic complexity, CO2 emissions, and ecological footprint in the USA: Testing the EKC hypothesis with a structural break. Environ. Sci. Pollut. Res. 2021, 28, 846–861. [Google Scholar] [CrossRef]
- Murshed, M.; Haseeb, M.; Alam, M. The environmental Kuznets curve hypothesis for carbon and ecological footprints in South Asia: The role of renewable energy. GeoJournal 2022, 87, 2345–2372. [Google Scholar] [CrossRef]
- Yao, L.; Sun, S.; Song, C.; Li, J.; Xu, W.; Xu, Y. Understanding the spatiotemporal pattern of the urban heat island footprint in the context of urbanization, a case study in Beijing, China. Appl. Geog. 2021, 133, 102496. [Google Scholar] [CrossRef]
- Usman, M.; Makhdum, M.S.A.; Kousar, R. Does financial inclusion, renewable and non-renewable energy utilization accelerate ecological footprints and economic growth? Fresh evidence from 15 highest emitting countries. Sustain. Cities Soc. 2021, 65, 102590. [Google Scholar] [CrossRef]
- Liu, C.; Nie, G.H. Identifying the driving factors of food nitrogen footprint in China, 2000–2018: Econometric analysis of provincial spatial panel data by the STIRPAT Model. Sustainability 2021, 13, 6147. [Google Scholar] [CrossRef]
- Chu, L.K. Determinants of ecological footprint in OCED countries: Do environmental-related technologies reduce environmental degradation? Environ. Sci. Pollut. Res. 2022, 29, 23779–23793. [Google Scholar] [CrossRef] [PubMed]
- Salman, M.; Zha, D.; Wang, G. Interplay between urbanization and ecological footprints: Differential roles of indigenous and foreign innovations in ASEAN-4. Environ. Sci. Policy 2022, 127, 161–180. [Google Scholar] [CrossRef]
- Castellani, D.; Marin, G.; Montresor, S.; Zanfei, A. Greenfield foreign direct investments and regional environmental technologies. Res. Policy 2022, 51, 104405. [Google Scholar] [CrossRef]
- Xu, P.; Hussain, M.; Ye, C.; Wang, J.; Wang, C.; Geng, J.; Liu, Y.; Chen, J. Natural resources, economic policies, energy structure, and ecological footprints’ nexus in emerging seven countries. Resour. Policy 2022, 77, 102747. [Google Scholar] [CrossRef]
- Kahouli, B.; Miled, K.; Aloui, Z. Do energy consumption, urbanization, and industrialization play a role in environmental degradation in the case of Saudi Arabia? Energy Strategy Rev. 2022, 40, 100814. [Google Scholar] [CrossRef]
- Popescu, G.C.; Popescu, M.; Khondker, M.; Clay, D.E.; Pampana, S.; Umehara, M. Agricultural sciences and the environment: Reviewing recent technologies and innovations to combat the challenges of climate change, environmental protection and food security. Agron. J. 2022, 114, 1895–1901. [Google Scholar] [CrossRef]
- Yue, X.; Peng, M.Y.P.; Anser, M.K.; Nassani, A.A.; Haffar, M.; Zaman, K. The role of carbon taxes, clean fuels, and renewable energy in promoting sustainable development: How green is nuclear energy? Renew Energy 2022, 193, 167–178. [Google Scholar] [CrossRef]
- Akhtar, M.Z.; Zaman, K.; Rehman, F.U.; Nassani, A.A.; Haffar, M.; Abro, M.M.Q. Evaluating pollution damage function through carbon pricing, renewable energy demand, and cleaner technologies in China: Blue versus green economy. Environ. Sci. Pollut. Res. 2022, 29, 24878–24893. [Google Scholar] [CrossRef]
- Jia, J.; Anser, M.K.; Peng, M.Y.P.; Yousaf, S.U.; Hyder, S.; Zaman, K.; Sasmoko; Nordin, M.S.B. Economic determinants of national carbon emissions: Perspectives from 119 countries. Econ. Res. Ekon. Istra. 2022, 1–21. [Google Scholar] [CrossRef]
- Shaheen, F.; Lodhi, M.S.; Rosak-Szyrocka, J.; Zaman, K.; Awan, U.; Asif, M.; Ahmed, W.; Siddique, M. Cleaner Technology and Natural Resource Management: An Environmental Sustainability Perspective from China. Clean Technol. 2022, 4, 584–606. [Google Scholar] [CrossRef]
- Zaman, K. Environmental cost of deforestation in Brazil’s Amazon Rainforest: Controlling biocapacity deficit and renewable wastes for conserving forest resources. Ecol. Manag. 2022, 504, 119854. [Google Scholar] [CrossRef]
- Yang, L.; Wang, L.; Ren, X. Assessing the impact of digital financial inclusion on PM2.5 concentration: Evidence from China. Environ. Sci. Pollut. Res. 2022, 29, 22547–22554. [Google Scholar] [CrossRef]
- Sadiqa, B.A.; Zaman, K.; Rehman, F.U.; Nassani, A.A.; Haffar, M.; Abro, M.M.Q. Evaluating race-to-the-top/bottom hypothesis in high-income countries: Controlling emissions cap trading, inbound FDI, renewable energy demand, and trade openness. Environ. Sci. Pollut. Res. 2022, 29, 50552–50565. [Google Scholar] [CrossRef]
- Anwar, M.A.; Zhang, Q.; Asmi, F.; Hussain, N.; Plantinga, A.; Zafar, M.W.; Sinha, A. Global perspectives on environmental kuznets curve: A bibliometric review. Gondwana Res. 2022, 103, 135–145. [Google Scholar] [CrossRef]
- Ali, R.; Rehman, M.A.; Rehman, R.U.; Ntim, C.G. Sustainable environment, energy and finance in China: Evidence from dynamic modelling using carbon emissions and ecological footprints. Environ. Sci. Pollut. Res. 2022. [Google Scholar] [CrossRef]
- Jiang, S.; Mentel, G.; Shahzadi, I.; Jebli, M.B.; Iqbal, N. Renewable energy, trade diversification and environmental footprints: Evidence for Asia-Pacific Economic Cooperation (APEC). Renew Energy 2022, 187, 874–886. [Google Scholar] [CrossRef]
- Yousaf, U.S.; Ali, F.; Aziz, B.; Sarwar, S. What causes environmental degradation in Pakistan? Embossing the role of fossil fuel energy consumption in the view of ecological footprint. Environ. Sci. Pollut. Res. 2022, 29, 33106–33116. [Google Scholar] [CrossRef]
- Murshed, M.; Nurmakhanova, M.; Al-Tal, R.; Mahmood, H.; Elheddad, M.; Ahmed, R. Can intra-regional trade, renewable energy use, foreign direct investments, and economic growth mitigate ecological footprints in South Asia? Energy Sources B Econ. Plan. Policy 2022. [Google Scholar] [CrossRef]
- Ahmad, M.; Jabeen, G.; Irfan, M.; Işık, C.; Rehman, A. Do inward foreign direct investment and economic development improve local environmental quality: Aggregation bias puzzle. Environ. Sci. Pollut. Res. 2021, 28, 34676–34696. [Google Scholar] [CrossRef]
- Khan, A.; Chenggang, Y.; Xue Yi, W.; Hussain, J.; Sicen, L.; Bano, S. Examining the pollution haven, and environmental kuznets hypothesis for ecological footprints: An econometric analysis of China, India, and Pakistan. J. Asia Pac. Econ. 2021, 26, 462–482. [Google Scholar] [CrossRef]
- Usman, M.; Balsalobre-Lorente, D. Environmental concern in the era of industrialization: Can financial development, renewable energy and natural resources alleviate some load? Energy Policy 2022, 162, 112780. [Google Scholar] [CrossRef]
- Opoku, E.E.O.; Aluko, O.A. Heterogeneous effects of industrialization on the environment: Evidence from panel quantile regression. Struct. Chang. Econ. Dyn. 2021, 59, 174–184. [Google Scholar] [CrossRef]
- Wang, J.; Li, T.; Li, Z.; Fang, C. Study on the Spatial and Temporal Distribution Characteristics and Influencing Factors of Particulate Matter Pollution in Coal Production Cities in China. Int. J. Environ. Res. Public Health 2022, 19, 3228. [Google Scholar] [CrossRef] [PubMed]
- Jahanger, A.; Usman, M.; Murshed, M.; Mahmood, H.; Balsalobre-Lorente, D. The linkages between natural resources, human capital, globalization, economic growth, financial development, and ecological footprint: The moderating role of technological innovations. Resour. Policy 2022, 76, 102569. [Google Scholar] [CrossRef]
- Shahzad, U.; Ferraz, D.; Nguyen, H.H.; Cui, L. Investigating the spill overs and connectedness between financial globalization, high-tech industries and environmental footprints: Fresh evidence in context of China. Technol. Forecast. Soc. Chang. 2022, 174, 121205. [Google Scholar] [CrossRef]
- Alfalih, A.A.; Hadj, T.B. Financialization, natural resources rents and environmental sustainability dynamics in Saudi Arabia under high and low regimes. Resour. Policy 2022, 76, 102593. [Google Scholar] [CrossRef]
- Adekoya, O.B.; Ajayi, G.E.; Suhrab, M.; Oliyide, J.A. How critical are resource rents, agriculture, growth, and renewable energy to environmental degradation in the resource-rich African countries? The role of institutional quality. Energy Policy 2022, 164, 112888. [Google Scholar] [CrossRef]
- Afshan, S.; Yaqoob, T. The potency of eco-innovation, natural resource and financial development on ecological footprint: A quantile-ARDL-based evidence from China. Environ. Sci. Pollut. Res. 2022, 29, 50675–50685. [Google Scholar] [CrossRef]
- Qarnain, S.S.; Muthuvel, S.; Bathrinath, S. Review on government action plans to reduce energy consumption in buildings amid COVID-19 pandemic outbreak. Mater. Today Proc. 2021, 45, 1264–1268. [Google Scholar] [CrossRef]
- UNDP, U. Population Growth: Implications for Human Development 2019; United Nations Development Programme: Islamabad, Pakistan, 2019. [Google Scholar]
- Lyu, L.; Khan, I.; Zakari, A. A study of energy investment and environmental sustainability nexus in China: A bootstrap replications analysis. Environ. Sci. Pollut. Res. 2022, 29, 8464–8472. [Google Scholar] [CrossRef] [PubMed]
- Wackernagel, M.; Rees, W. Our Ecological Footprint: Reducing Human Impact on the Earth; New Society: Philadelphia, PA, USA, 1998; Volume 9. [Google Scholar]
- Iheonu, C.O.; Anyanwu, O.C.; Odo, O.K.; Nathaniel, S.P. Does economic growth, international trade, and urbanization uphold environmental sustainability in sub-Saharan Africa? Insights from quantile and causality procedures. Environ. Sci. Pollut. Res. 2021, 28, 28222–28233. [Google Scholar] [CrossRef] [PubMed]
- Zeraibi, A.; Balsalobre-Lorente, D.; Murshed, M. The influences of renewable electricity generation, technological innovation, financial development, and economic growth on ecological footprints in ASEAN-5 countries. Environ. Sci. Pollut. Res. 2021, 28, 51003–51021. [Google Scholar] [CrossRef] [PubMed]
- Zhong, J.; Hu, X.; Yüksel, S.; Dinçer, H.; Ubay, G.G. Analyzing the investments strategies for renewable energies based on multi-criteria decision model. IEEE Access 2020, 8, 118818–118840. [Google Scholar] [CrossRef]
- Meng, Y.; Dinçer, H.; Yüksel, S. TRIZ-based green energy project evaluation using innovation life cycle and fuzzy modeling. IEEE Access 2021, 9, 69609–69625. [Google Scholar] [CrossRef]
- Budak, G.; Chen, X.; Celik, S.; Ozturk, B. A systematic approach for assessment of renewable energy using analytic hierarchy process. Energy Sustain. Soc. 2019, 9, 1–4. [Google Scholar] [CrossRef] [Green Version]
- Chummee, P. The Determinants of Product Innovation and Marketing Innovation Effecting to the Innovation Performance. Turk. J. Comput. Math. Educ. 2022, 13, 1–6. [Google Scholar]
- Blok, V.; Long, T.B.; Gaziulusoy, A.I.; Ciliz, N.; Lozano, R.; Huisingh, D.; Csutora, M.; Boks, C. From best practices to bridges for a more sustainable future: Advances and challenges in the transition to global sustainable production and consumption: Introduction to the ERSCP stream of the Special volume. J. Clean. Prod. 2015, 108, 19–30. [Google Scholar] [CrossRef]
- Roy, V.; Singh, S. Mapping the business focus in sustainable production and consumption literature: Review and research framework. J. Clean. Prod. 2017, 150, 224–236. [Google Scholar] [CrossRef]
- Dickey, D.A.; Fuller, W.A. Distribution of the estimators for autoregressive time series with a unit root. J. Am. Stat. Assoc. 1979, 74, 427–431. [Google Scholar]
- Perron, P.; Qu, Z. A simple modification to improve the finite sample properties of Ng and Perron’s unit root tests. Econ. Lett. 2007, 94, 12–19. [Google Scholar] [CrossRef]
- Enders, W.; Granger, C.W.J. Unit-root tests and asymmetric adjustment with an example using the term structure of interest rates. J. Bus. Econ. Stat. 1998, 16, 304–311. [Google Scholar]
- Güriş, B. A new nonlinear unit root test with Fourier function. Commun. Stat. Simul. Comput. 2019, 48, 3056–3062. [Google Scholar] [CrossRef] [Green Version]
- Kapetanios, G.; Shin, Y.; Snell, A. Testing for a unit root in the nonlinear STAR framework. J. Econ. 2003, 112, 359–379. [Google Scholar] [CrossRef]
- Sollis, R. A simple unit root test against asymmetric STAR nonlinearity with an application. Stat. Pap. 2009, 52, 71–85. [Google Scholar] [CrossRef]
- Kruse, R. A new unit root test against ESTAR based on a class of modified statistics. Stat. Pap. 2011, 52, 71–85. [Google Scholar] [CrossRef] [Green Version]
- Dickey, D.; Fuller, W. Likelihood Ratio Tests for Autoregressive Time Series with a Unit Root. Econometrica 1981, 49, 1057–1072. [Google Scholar] [CrossRef]
- Wang, D.; Tomek, W.G. Commodity prices and unit root tests. Am. J. Agri Econ. 2007, 89, 873–889. [Google Scholar] [CrossRef]
- Diebold, F.X.; Rudebusch, G.D. Long memory and persistence in aggregate output. J. Monet Econ. 1989, 24, 189–209. [Google Scholar] [CrossRef] [Green Version]
- Hall, A.D. Testing for a unit root in time series with pretest data based model selection. J. Bus. Econ. Stat. 1994, 12, 461–470. [Google Scholar]
- Ng, S.; Perron, P. Unit root tests in ARMA models with data dependent methods for the selection of the truncation lag. J. Am. Stat. Assoc. 1995, 90, 268–281. [Google Scholar] [CrossRef]
- Waheed, M.; Alam, T.; Ghauri, S.P. Structural breaks and unit root: Evidence from Pakistani macroeconomic time series. SSRN Electron. J. 2006, 963958. [Google Scholar] [CrossRef] [Green Version]
- Pesaran, H.H.; Shin, Y. Generalized impulse response analysis in linear multivariate models. Econ. Lett. 1998, 58, 17–29. [Google Scholar] [CrossRef]
- Pesaran, M.H.; Shin, Y.; Smith, R.J. Bounds testing approaches to the analysis of level relationships. J. Appl. Econ. 2001, 16, 289–326. [Google Scholar] [CrossRef]
- Louail, B. The relationship between economic growth and immigration in Australia Economy during 1970–2020: ARDL bounds testing approach. Migr. Dev. 2021, 50–58. Available online: https://www.researchgate.net/profile/Sabrina-Mortet/publication/358039604_Migration_and_developement_experiences_and_strategies/links/61ec69cd8d338833e38b6848/Migration-and-developement-experiences-and-strategies.pdf#page=53 (accessed on 12 September 2022).
- Hacker, R.S.; Hatemi-J, A. Tests for causality between integrated variables using asymptotic and bootstrap distributions: Theory and application. Appl. Econ. 2006, 38, 1489–1500. [Google Scholar] [CrossRef]
- Hatemi-J, A.; Uddin, G.S. Is the causal nexus of energy utilization and economic growth asymmetric in the US? Econ. Syst. 2012, 36, 461–469. [Google Scholar] [CrossRef]
- Toda, H.Y.; Yamamoto, T. Statistical inference in vector autoregressions with possibly integrated processes. J. Econ. 1995, 66, 22–50. [Google Scholar] [CrossRef]
- Kim, K.Y.; Patel, P.C. Employee ownership and firm performance: A variance decomposition analysis of European firms. J. Bus. Res. 2017, 70, 248–254. [Google Scholar] [CrossRef] [Green Version]
- Abid, M.; Gheraia, Z.; Abdelli, H. Does renewable energy consumption affect ecological footprints in Saudi Arabia? A bootstrap causality test. Rev. Energy 2022, 189, 813–821. [Google Scholar] [CrossRef]
- Deng, W.; Akram, R.; Mirza, N. Economic performance and natural resources: Evaluating the role of economic risk. Resour. Policy 2022, 78, 102840. [Google Scholar] [CrossRef]
- Akinlo, A. Enisan. The stability of money demand in Nigeria: An autoregressive distributed lag approach. J. Policy Model. 2006, 28, 445–452. [Google Scholar] [CrossRef]
- Dritsakis, N. Demand for money in Hungary: An ARDL approach. Rev. Econ. Financ. 2011, 5, 1–14. [Google Scholar]
- Naqvi, S.A.A.; Shah, S.A.R.; Mehdi, M.A. Revealing empirical association among ecological footprints, renewable energy consumption, real income, and financial development: A global perspective. Environ. Sci Pollut Res. 2020, 27, 42830–42849. [Google Scholar] [CrossRef]
- Hussain, M.; Usman, M.; Khan, J.A.; Tarar, Z.H.; Sarwar, M.A. Reinvestigation of environmental Kuznets curve with ecological footprints: Empirical analysis of economic growth and population density. J. Pub. Aff. 2022, 22, e2276. [Google Scholar] [CrossRef]
- Rafique, M.Z.; Fareed, Z.; Ferraz, D.; Ikram, M.; Huang, S. Exploring the heterogenous impacts of environmental taxes on environmental footprints: An empirical assessment from developed economies. Energy 2022, 238, 121753. [Google Scholar] [CrossRef]
- Altıntaş, H.; Kassouri, Y. The impact of energy technology innovations on cleaner energy supply and carbon footprints in Europe: A linear versus nonlinear approach. J. Clean. Prod. 2020, 276, 124140. [Google Scholar] [CrossRef]
- Oryani, B.; Moridian, A.; Han, C.S.; Rezania, S.; Kasyoka, K.K.; Darajeh, N.; Ghahroud, M.L.; Shahzad, U. Modeling the environmental impact of energy poverty in South Korea: Do environment-related technologies matter? Fuel 2022, 329, 125394. [Google Scholar] [CrossRef]
- Yang, B.; Jahanger, A.; Ali, M. Remittance inflows affect the ecological footprint in BICS countries: Do technological innovation and financial development matter? Environ. Sci. Pollut. Res. 2022, 28, 23482–23500. [Google Scholar] [CrossRef]
- Yasmeen, R.; Zhaohui, C.; Shah, W.U.H.; Kamal, M.A.; Khan, A. Exploring the role of biomass energy consumption, ecological footprint through FDI and technological innovation in B&R economies: A simultaneous equation approach. Energy 2022, 244, 122703. [Google Scholar]
- Fakher, H.A. Investigating the determinant factors of environmental quality (based on ecological carbon footprint index). Environ. Sci. Pollut. Res. 2019, 26, 10276–10291. [Google Scholar] [CrossRef] [PubMed]
- Kucukvar, M.; Onat, N.C.; Abdella, G.M.; Tatari, O. Assessing regional and global environmental footprints and value added of the largest food producers in the world. Res. Conser Recy. 2019, 144, 187–197. [Google Scholar] [CrossRef]
- Ulucak, R.; Khan, S.U.D. Determinants of the ecological footprint: Role of renewable energy, natural resources, and urbanization. Sustain. Cities Soc. 2020, 54, 101996. [Google Scholar]
- Nassani, A.A.; Aldakhil, A.M.; Zaman, K. Ecological footprints jeopardy for mineral resource extraction: Efficient use of energy, financial development and insurance services to conserve natural resources. Resour. Policy 2021, 74, 102271. [Google Scholar] [CrossRef]
- Khan, S.U.; Cui, Y. Identifying the impact factors of sustainable development efficiency: Integrating environmental degradation, population density, industrial structure, GDP per capita, urbanization, and technology. Environ. Sci. Pollut. Res. 2022, 29, 56098–56113. [Google Scholar] [CrossRef]
- Pahlavani, M.; Rahimi, M. Sources of inflation in Iran: An application of the ARDL approach. Int. J. Appl. Econ. Quant. Stud. 2009, 6, 61–76. [Google Scholar]
- Sun, Y.; Guan, W.; Asif, R.; Shahzad, M.; An, N.B. Transition toward secological sustainability through fiscal decentralization, renewable energy and green investmentin OECD countries. Rev. Energy 2022, 190, 385–395. [Google Scholar] [CrossRef]
- Lee, T.C.; Anser, M.K.; Nassani, A.A.; Haffar, M.; Zaman, K.; Abro, M.M.Q. Managing Natural Resources through Sustainable Environmental Actions: A Cross-Sectional Study of 138 Countries. Sustainability 2021, 13, 12475. [Google Scholar] [CrossRef]
- Wahab, S.; Imran, M.; Safi, A.; Wahab, Z.; Kirikkaleli, D. Roleof financial stability, technological innovation, and renewable energy in achieving sustainable development goals in BRICS countries. Environ. Sci. Pollut. Res. 2022, 29, 48827–48838. [Google Scholar] [CrossRef]
- Negash, Y.T.; Filketu, S.A. A hierarchical framework for the transition to sustainable manufacturing practices: Technical and social developments drive eco-friendly tanning in Ethiopia. J. Clean. Prod. 2022, 368, 133208. [Google Scholar] [CrossRef]
- Han, Y.; Guo, H. Governmental support strategies and their effects on private capital engagement in public–private partnerships. PublicManag. Rev. 2022, 1–9. [Google Scholar] [CrossRef]
- Huseien, G.F.; Shah, K.W. A review on 5G technology for smart energy management and smart buildings in Singapore. Energy AI 2022, 7, 100116. [Google Scholar] [CrossRef]
- Amer, E.A.; Meyad, E.M.; Gao, Y.; Niu, X.; Chen, N.; Xu, H.; Zhang, D. Exploring the link between natural resources, urbanization, human capital, and ecological footprint: A case of GCC countries. Ecol. Indic. 2022, 144, 109556. [Google Scholar] [CrossRef]
- Attah-Boakye, R.; Adams, K.; Yu, H.; Koukpaki, A.S. Eco-environmental footprint and value chains of technology multinational enterprises operating in emerging economies. Strat. Chang. 2022, 31, 99–116. [Google Scholar] [CrossRef]
Authors | Country | Time Period | Results |
---|---|---|---|
Irfan et al. [69] | Pakistan | 1975–2020 | Air pollution strains EFPRINTS over the long term and potentially harms ecosystems. |
Kazemzadeh et al. [70] | 25 Countries | 1970–2016 | Economic complexity index, gross domestic product, fuel consumption, and population increase positively affect EFPRINTS. Economic openness has had a detrimental impact on EFPRINTS. |
Pata et al. [71] | China | 1980–2016 | Human capital has a long-term beneficial effect on the environment, but globalization, trade openness, and income contribute to environmental harm. REC had no effect. |
Ahmed et al. [17] | G7 countries | 1985–2017 | The economy’s complexity lowers EFPRINTS and is strengthened by democratic responsibility, followed by a U-shaped relationship. REC and continue EG have been shown to alleviate EFPRINTS. |
Murshed et al. [72] | South Asian countries | 1990–2014 | Environmental regulations are essential in reducing South Asia’s EFPRINTS directly and indirectly. NRE rises as REC declines. |
Yao et al. [73] | China | 2000–2019 | Economic, demographic, and urban land use concerns are responsible for propagating EFPRINTS. |
Usman et al. [74] | China | 2000–2018 | The agricultural added value, NRE, and financial growth raise the ecological impact. At the same time, the decrease in the environmental footprint may be attributed to an increase in forestry and the usage of RE sources. |
Liu &Nie [75] | China | 2000–2018 | Strong geographical spillover effects are associated with EFPRINTS. China’s provincial per capita has a geographical agglomeration effect and a positive spatial dependency link. |
Chu [76] | OECD economies | 1990–2015 | By reducing EFPRINTS, increased trade integration may aid the environment. |
Salman et al. [77] | ASEAN-4 | 1980–2017 | Urbanization and EFPRINTS do not exhibit an inverted U-shaped curve over the short and long term. Population, economic development, and NRE significantly increase EFPRINTS while REC has a rebound effect. |
Variables | Symbol | Measurement | Expected Signs | Theoretical Support |
---|---|---|---|---|
Ecological Footprint | EFPRINT | Arable land (Hectares) | ----- | |
Independent Variables | ||||
GDP Per Capita | GDPPC | Constant 2015 US$ | Positive | Ali et al. [90], Jiang et al. [91], and Yousaf et al. [92]. |
Renewable Energy Consumption | REC | % of total EC | Negative | Murshed et al. [93] and Usman et al. [74]. |
Urbanization | URB | % of total population | Positive | Salman et al. [77], Ahmad et al. [94], and Khan et al. [95]. |
Industrialization Value Added | IND | % of GDP | Positive | Usman et al. [96], Sahoo &Sethi [32], and Opoku et al. [97]. |
Waste Recycling Technology | WRTECH | Total number of patent applications served as a proxy for waste recycling technology | Negative | Wang et al. [98], Jahanger et al. [99], and Shahzad et al. [100]. |
Natural Resource Rents | ORENTS | Oil Rents (% of GDP) | Positive | Alfalih & Hadj [101], Adekoya et al. [102], and Afshan & Yaqoob [103]. |
Methods | EFPRINT | WRTECH | REC | ORENTS | GDPPC | IND | URB |
---|---|---|---|---|---|---|---|
Mean | 1.166068 | 233,419.7 | 26.25654 | 2.902339 | 2734.934 | 44.65823 | 33.93226 |
Maximum | 1.266068 | 1,542,002 | 34.08361 | 11.79766 | 9619.192 | 48.05769 | 59.15200 |
Minimum | 96,949,000 | 8009 | 11.33820 | 0.082889 | 295.3796 | 39.58062 | 17.18400 |
Std. Dev. | 9,590,862 | 409,659.8 | 9.175358 | 2.691226 | 2756.061 | 2.288441 | 13.30026 |
Skewness | −1.210178 | 1.993800 | −0.658364 | 1.696357 | 1.119079 | −0.646872 | 0.398951 |
Kurtosis | 2.675074 | 5.799941 | 1.650482 | 5.732401 | 2.980519 | 2.472628 | 1.859522 |
Variables | EFPRINT | WRTECH | REC | ORENTS | GDPPC | IND | URB |
---|---|---|---|---|---|---|---|
EFPRINT | 1 | ||||||
WRTECH | (0.086) | 1 | |||||
0.255 | |||||||
REC | −0.443 | −0.787 | 1 | ||||
(0.002) | (0.000) | ||||||
ORENTS | −0.548 | −0.431 | 0.538 | 1 | |||
(0.000) | (0.002) | (0.000) | |||||
GDPPC | 0.431 | 0.941 | −0.938 | −0.544 | 1 | ||
(0.002) | (0.000) | (0.000) | (0.000) | ||||
IND | −0.207 | −0.517 | 0.072 | 0.268 | −0.322 | 1 | |
(0.166) | (0.000) | (0.631) | (0.071) | (0.029) | |||
URB | 0.610 | 0.821 | −0.951 | −0.614 | 0.958 | −0.193 | 1 |
(0.000) | (0.000) | (0.000) | (0.000) | (0.000) | (0.197) |
Variables | Level [I(0) Values] | First Difference [I(1) Values] | Decision | ||
---|---|---|---|---|---|
Intercept | Trend and Intercept | Intercept | Trend and Intercept | ||
EFPRINT | −3.509 (0.012) | −3.156 (0.107) | −2.426 (0.140) | −2.594 (0.284) | I(0) |
WRTECH a | −5.285 a (<0.01) | −7.257 a (<0.01) | −7.674 a (<0.01) | −10.447 a (<0.01) | I(0) |
REC | −0.513 (0.878) | −2.498 (0.327) | −3.003 (0.042) | −2.965 (0.153) | I(1) |
ORENTS | −2.123 (0.236) | −4.060 (0.013) | −5.754 (0.000) | −5.803 (0.000) | I(0) |
GDPPC a | 0.142 a (>0.99) | 0.025 a (>0.99) | −2.671 a (0.841) | 5.400 a (<0.01) | I(1) |
IND | −1.934 (0.314) | −1.998 (0.585) | −4.791 (0.000) | −4.956 (0.001) | I(1) |
URB b | 5.151 b (1.000) | −3.620 b (0.039) | −3.284 b (0.021) | −2.610 b (0.277) | I(0) |
Lag | LogL | LR | FPE | AIC | SC | HQ |
---|---|---|---|---|---|---|
0 | −1999.793 | NA | 8.12 × 1031 | 93.33920 | 93.62591 | 93.44493 |
1 | −1460.563 | 877.8167 | 1.05 × 1022 | 70.53780 | 72.83145 * | 71.38362 * |
2 | −1406.972 | 69.79232 | 1.02 × 1022 | 70.32428 | 74.62489 | 71.91021 |
3 | −1333.611 | 71.65518 * | 5.57 × 1021 * | 69.19120 * | 75.49875 | 71.51723 |
Dependent Variable: EFPRINT | ||||
Variables | Coefficient | Std. Error | t-Statistic | Prob. |
D(EFPRINT(-1)) | −0.121 | 0.075 | −1.607 | 0.183 |
D(EFPRINT(-2)) | 0.045 | 0.050 | 0.900 | 0.419 |
D(GDPPC) | −16,315.438 | 5418.223 | −3.011 | 0.040 |
D(GDPPC(-1)) | 25,151.742 | 9563.619 | 2.630 | 0.058 |
D(GDPPC(-2)) | 13,571.794 | 8358.486 | 1.624 | 0.180 |
D(GDPPC(-3)) | 36,691.699 | 6892.930 | 5.323 | 0.006 |
D(SQGDPPC) | 0.956 | 0.594 | 1.610 | 0.183 |
D(SQGDPPC(-1)) | −4.083 | 1.103 | −3.703 | 0.021 |
D(SQGDPPC(-2)) | −1.097 | 1.128 | −0.972 | 0.386 |
D(SQGDPPC(-3)) | −6.373 | 1.060 | −6.012 | 0.004 |
D(WRTECH) | −23.317 | 2.818 | −8.274 | 0.001 |
D(WRTECH(-1)) | 52.987 | 5.295 | 10.008 | 0.001 |
D(WRTECH(-2)) | 28.602 | 5.352 | 5.344 | 0.006 |
D(WRTECH(-3)) | 31.916 | 6.103 | 5.230 | 0.006 |
D(REC) | 423,355.417 | 119,328.837 | 3.548 | 0.024 |
D(REC(-1)) | 1,068,096.017 | 106,808.050 | 10.000 | 0.001 |
D(REC(-2)) | 984,287.921 | 177,619.515 | 5.542 | 0.005 |
D(REC(-3)) | −244,287.921 | 93,610.888 | −2.610 | 0.059 |
D(ORENTS) | 4386.590 | 57,170.272 | 0.077 | 0.943 |
D(ORENTS(-1)) | 435,647.430 | 72,287.025 | 6.027 | 0.004 |
D(ORENTS(-2)) | 300,351.150 | 74,377.224 | 4.038 | 0.016 |
D(ORENTS(-3)) | −141,043.427 | 57,435.860 | −2.456 | 0.070 |
D(IND) | −1,046,168.798 | 124,836.408 | −8.380 | 0.001 |
D(IND(-1)) | 332,956.051 | 97,503.776 | 3.415 | 0.027 |
D(IND(-2)) | 104,706.178 | 113,734.214 | 0.921 | 0.409 |
D(URB) | 5,338,842.909 | 2,051,455.933 | 0.000 | 0.000 |
D(URB(-1)) | 1,944,407.638 | 2,431,329.323 | 0.000 | 0.000 |
D(URB(-2)) | −9,748,534.633 | 1,700,152.022 | 0.000 | 0.000 |
D(URB(-3)) | 7,482,632.278 | 1,130,506.443 | 0.000 | 0.000 |
CointEq(-1) | −0.869 | 0.064 | −13.526 | 0.000 |
Long Run Coefficients | ||||
Variables | Coefficient | Std. Error | t-Statistic | Prob. |
GDPPC | −42,578.575 | 3039.301 | −14.009 | 0.000 |
SQGDPPC | 7.474 | 0.443 | 16.886 | 0.000 |
WRTECH | −191.567 | 10.060 | −19.043 | 0.000 |
REC | −1,835,620.527 | 164,051.540 | −11.189 | 0.000 |
ORENTS | −695,065.950 | 305,377.792 | −2.276 | 0.085 |
IND | −3,421,460.648 | 82,856.278 | −41.294 | 0.000 |
URB | 2,461,788.421 | 451,649.964 | 5.451 | 0.006 |
C | 289,524,022.832 | 11,189,842.784 | 25.874 | 0.000 |
Variables | |||||||
---|---|---|---|---|---|---|---|
----- | ≠ | ≠ | → | ≠ | ≠ | ≠ | |
≠ | ----- | → | ≠ | ↔ | ≠ | → | |
≠ | ≠ | ----- | ≠ | ≠ | ≠ | ≠ | |
≠ | ≠ | ≠ | ----- | ≠ | ≠ | ≠ | |
→ | ↔ | ≠ | → | ----- | → | → | |
≠ | → | → | ≠ | ≠ | ----- | → | |
≠ | ≠ | → | ≠ | ≠ | ≠ | ----- |
Period | S.E. | EFPRINT | GDPPC | SQGDPPC | WRTECH | REC | ORENTS | IND | URB |
---|---|---|---|---|---|---|---|---|---|
2022 | 1,195,472 | 100 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
2023 | 2,308,263 | 99.08579 | 0.005092 | 0.191304 | 0.010138 | 0.011390 | 0.003007 | 0.587133 | 0.106147 |
2024 | 3,215,532 | 96.33529 | 0.011255 | 1.304857 | 1.116794 | 0.026326 | 0.223904 | 0.500705 | 0.480873 |
2025 | 3,896,612 | 90.77090 | 0.218892 | 2.880151 | 2.914998 | 0.104166 | 1.356172 | 0.362502 | 1.392214 |
2026 | 4,366,532 | 84.32223 | 0.625406 | 4.022843 | 4.235238 | 0.244720 | 3.340541 | 0.290782 | 2.918239 |
2027 | 4,658,794 | 78.63048 | 1.080200 | 4.392098 | 4.812456 | 0.400126 | 5.771730 | 0.282552 | 4.630358 |
2028 | 4,837,053 | 74.01080 | 1.488858 | 4.310789 | 4.974657 | 0.466557 | 8.318755 | 0.324043 | 6.105536 |
2029 | 4,958,580 | 70.46698 | 1.821934 | 4.142205 | 4.999288 | 0.447196 | 10.53684 | 0.411920 | 7.173636 |
2030 | 5,053,487 | 67.97548 | 2.081744 | 4.001700 | 5.012354 | 0.495455 | 12.05213 | 0.553479 | 7.827658 |
2031 | 5,135,661 | 66.26590 | 2.288601 | 3.912087 | 5.075377 | 0.769769 | 12.79805 | 0.758940 | 8.131269 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sasmoko, S.; Akhtar, M.Z.; Khan, H.u.R.; Sriyanto, S.; Jabor, M.K.; Rashid, A.; Zaman, K. How Do Industrial Ecology, Energy Efficiency, and Waste Recycling Technology (Circular Economy) Fit into China’s Plan to Protect the Environment? Up to Speed. Recycling 2022, 7, 83. https://doi.org/10.3390/recycling7060083
Sasmoko S, Akhtar MZ, Khan HuR, Sriyanto S, Jabor MK, Rashid A, Zaman K. How Do Industrial Ecology, Energy Efficiency, and Waste Recycling Technology (Circular Economy) Fit into China’s Plan to Protect the Environment? Up to Speed. Recycling. 2022; 7(6):83. https://doi.org/10.3390/recycling7060083
Chicago/Turabian StyleSasmoko, Sasmoko, Muhammad Zaheer Akhtar, Haroon ur Rashid Khan, Sriyanto Sriyanto, Mohd Khata Jabor, Awais Rashid, and Khalid Zaman. 2022. "How Do Industrial Ecology, Energy Efficiency, and Waste Recycling Technology (Circular Economy) Fit into China’s Plan to Protect the Environment? Up to Speed" Recycling 7, no. 6: 83. https://doi.org/10.3390/recycling7060083
APA StyleSasmoko, S., Akhtar, M. Z., Khan, H. u. R., Sriyanto, S., Jabor, M. K., Rashid, A., & Zaman, K. (2022). How Do Industrial Ecology, Energy Efficiency, and Waste Recycling Technology (Circular Economy) Fit into China’s Plan to Protect the Environment? Up to Speed. Recycling, 7(6), 83. https://doi.org/10.3390/recycling7060083