Ground Tire Rubber Recycling in Applications as Insulators in Polymeric Compounds, According to Spanish UNE Standards
Abstract
:1. Introduction
2. Materials and Instruments
2.1. Materials
2.2. Preparation of the Compounds
2.3. Mechanical Analysis Performed
2.4. Dynamic Electric Analysis
3. Results and Discussion
3.1. Mechanical Test Results
3.2. Electrical Results
3.3. Results and Discussion of GTR Influence
4. Development of Industrial Applications
5. Summary of Analyzed Applications
6. Conclusions on the Applications
Author Contributions
Funding
Conflicts of Interest
References
- Medina, N.F.; Garcia, R.; Hajirasouliha, I.; Pilakoutas, K.; Guadagnini, M.; Raoul, S. Composites with recycled rubber aggregates: Properties and opportunities in construction. Constr. Build. Mater. 2018, 188, 884–897. [Google Scholar] [CrossRef]
- Karger-Kocsis, J.; Mészáros, L.; Bárány, T. Ground tyre rubber (GTR) in thermoplastics, thermosets, and rubbers. J. Mater. Sci. 2013, 48, 1–38. [Google Scholar] [CrossRef]
- Ikeda, Y.; Kato, A.; Kohjiya, S.; Nakajima, Y. Rubber Science; Springer: Berlin/Heidelberg, Germany, 2018. [Google Scholar]
- Rajan, V.V.; Dierkes, W.K.; Joseph, R.; Noordermeer, J.W.M. Science and technology of rubber reclamation with special attention to NR-based waste latex products. Prog. Polym. Sci. 2006, 31, 811–834. [Google Scholar] [CrossRef]
- Akiba, M.; Hashim, A.S. Vulcanization and crosslinking in elastomers. Prog. Polym. Sci. 1997, 22, 475–521. [Google Scholar] [CrossRef]
- Sienkiewicz, M.; Kucinska-Lipka, J.; Janik, H.; Balas, A. Progress in used tyres management in the European Union: A review. Waste Manag. 2012, 32, 1742–1751. [Google Scholar] [CrossRef]
- Fazli, A.; Rodrigue, D. Waste rubber recycling: A Review on the evolution and properties of thermoplastic elastomers. Materials 2020, 13, 782. [Google Scholar] [CrossRef] [Green Version]
- Colom, X.; Cañavate, J.; Carrillo, F.; Lis, M.J. Acoustic and mechanical properties of recycled polyvinyl chloride/ground tyre rubber composites. J. Compos. Mater. 2014, 48, 1061–1069. [Google Scholar] [CrossRef]
- Cañavate, J.; Colom, X.; Saeb, M.R.; Przybysz, M.; Zedler, L.; Formela, K. Influence of microwave treatment conditions of GTR on physico-mechanical and structural properties of NBR/NR/GTR composites. AFINIDAD 2019, 76, 171–179. [Google Scholar]
- Amari, T.; Themelis, N.J.; Wernick, I.K. Resource recovery from used rubber tires. Resour. Policy 1999, 25, 179–188. [Google Scholar] [CrossRef]
- Ilkılıç, C.; Aydın, H. Fuel production from waste vehicle tires by catalytic pyrolysis and its application in a diesel engine. Fuel Process. Technol. 2011, 92, 1129–1135. [Google Scholar] [CrossRef]
- Shah, J.; Jan, M.R.; Mabood, F. Catalytic conversion of waste tyres into valuable hydrocarbons. J. Polym. Environ. 2007, 15, 207–211. [Google Scholar] [CrossRef]
- Van Beukering, P.J.; Janssen, M.A. Trade and recycling of used tyres in Western and Eastern Europe. Resour. Conserv. Recycl. 2001, 33, 235–265. [Google Scholar] [CrossRef]
- Canavate, J.; Carrillo, F.; Casas, P.; Colom, X.; Sunol, J.J. The Use of Waxes and Wetting Additives to Improve Compatibility between HDPE and Ground Tyre Rubber. J. Compos. Mater. 2010, 44, 1233–1245. [Google Scholar] [CrossRef]
- Rodgers, B.; Waddell, W. Tire engineering. In Science and technology of rubber; Mark, J.E., Erman, B., Eirich, F.R., Eds.; Elsevier Academic Press: Cambridge, MA, USA, 2011; pp. 619–661. [Google Scholar]
- Behnood, A.; Olek, J. Rheological properties of asphalt binders modified with styrene-butadiene-styrene (SBS), ground tire rubber (GTR), or polyphosphoric acid (PPA). Constr. Build. Mater. 2017, 151, 464–478. [Google Scholar] [CrossRef]
- Behnood, A.; Olek, J. Stress-dependent behavior and rutting resistance of modified asphalt binders: An MSCR approach. Constr. Build. Mater. 2017, 157, 635–646. [Google Scholar] [CrossRef]
- Fukumori, K.; Matsushita, M.; Okamoto, H.; Sato, N.; Suzuki, Y.; Takeuchi, K. Recycling technology of tire rubber. JSAE Rev. 2002, 23, 259–264. [Google Scholar] [CrossRef]
- Sunthonpagasit, N.; Duffey, M.R. Scrap tires to crumb rubber: Feasibility analysis for processing facilities. Resour. Conserv. Recycl. 2004, 40, 281–299. [Google Scholar] [CrossRef]
- Ramarad, S.; Khalid, M.; Ratnam, C.; Chuah, A.L.; Rashmi, W. Waste tire rubber in polymer blends: A review on the evolution, properties and future. Prog. Mater. Sci. 2015, 72, 100–140. [Google Scholar] [CrossRef]
- Cañavate, J.; Casas, P.; Colom, X.; Nogués, F. Formulations for thermoplastic vulcanizates based on high density polyethylene, ethylene-propylene-diene monomer, and ground tire rubber. J. Compos. Mater. 2011, 45, 1189–1200. [Google Scholar] [CrossRef]
- Liu, H.S.; Richard, C.P.; Mead, J.L.; Stacer, R.G. Development of Novel Applications for Using Recycled Rubber in Thermoplastics; Technical Research Program; Chelsea Center for Recycling and Economic Development, University of Massachusetts: Lowell, UK, 2000. [Google Scholar]
- Orrit-Prat, J.; Mujal-Rosas, R.; Rahhali, A.; Marin-Genesca, M.; Colom-Fajula, X.; Belana-Punseti, J. Dielectric and mechanical characterization of PVC composites with ground tire rubber. J. Compos. Mater. 2016, 45, 1233–1243. [Google Scholar] [CrossRef]
- Colom, X.; Carrillo, F.; Canavate, J. Composites reinforced with reused tyres: Surface oxidant treatment to improve the interfacial compatibility. Compos. Part A-Appl. Sci. Manuf. 2007, 38, 44–50. [Google Scholar] [CrossRef]
- Mujal, R.; Orrit-Prat, J.; Ramis-Juan, X.; Marin-Genesca, M. Electrical application of polyamide reinforced with old tire rubber (ground tire rubber): Dielectric, thermal, mechanical and structural properties. J. Thermoplast. Compos. Mater. 2014, 27, 1209–1231. [Google Scholar] [CrossRef]
- Mujal, R.; Orrit-Prat, J.; Ramis-Juan, X.; Marin-Genesca, M.; Rahhali, A. Study on dielectric, thermal, and mechanical properties of the ethylene vinyl acetate reinforced with ground tire rubber. J. Reinf. Plastics Compos. 2011, 30, 581–592. [Google Scholar] [CrossRef]
- Marín-Genescà, M.; García-Amorós, J.; Mujal-Rosas, R.; Salueña Berna, X.; Massagués Vidal, L. Comparison of Mechanical and Electrical Characteristics of Various Polymers Blended with Ground Tire Rubber (GTR) and Applications. Appl. Sci. 2019, 9, 1564. [Google Scholar] [CrossRef] [Green Version]
- Evangelista, L.; de Brito, J. Mechanical behavior of concrete made with fine recycled concrete aggregates. Cement and concrete composites. Cem. Concr. Compos. 2007, 29, 397–401. [Google Scholar] [CrossRef]
- El-Nashar, D.E.; Eid, M.A.M.; Abou Aiad, T.H.; Abd-El-Messieh, S.L. Electrical and Mechanical Investigations on Polyvinyl Chloride Filled with HAF Black. J. Reinf. Plast. Compos. 2009, 28, 1763–1773. [Google Scholar] [CrossRef]
- Mujal, R.; Orrit, J.; Ramis, X.; Marín-Genescà, M.; Rahhali, A. Study on dielectric, mechanical and thermal properties of polypropylene (PP) composites with ground tyre rubber (GTR). Polym. Polym. Compos. 2012, 20, 755–766. [Google Scholar]
- Yehia, A.; Mull, M.A.; Ismail, M.N.; Hefny, Y.A.; Abdel-Bary, E.M. Effect of chemically modified waste rubber powder as a filler in natural rubber vulcanizates. J. Appl. Polym. Sci. 2004, 93, 30–36. [Google Scholar] [CrossRef]
- Mujal, R.; Marin, M.; Orrit, J.; Rahhali, A.; Colom, X. Dielectric, mechanical, and thermal characterization of high-density polyethylene composites with ground tire rubber. J. Thermoplast. Compos. Mater. 2012, 25, 537–559. [Google Scholar] [CrossRef]
- Tang, H.; Chen, X.; Luo, Y. Studies on the PTC/NTC effect of carbon black filled low density polyethylene composites. Eur. Polym. J. 1997, 33, 1383–1386. [Google Scholar] [CrossRef]
- Feller, J.F.; Linossier, I.; Levesque, G. Conductive polymer composites (CPCs): Comparison of electrical properties of poly(ethylene-co-ethyl acrylate)-carbon black with poly(butylene terephthalate)/poly(ethylene-co-ethyl acrylate)-carbon black. Polym. Adv. Technol. 2002, 13, 714–724. [Google Scholar] [CrossRef]
- Zhang, J.F.; Zheng, Q.; Yang, Y.Q.; Yi, X.S. High-density polyethylene/carbon black conductive composites. I. Effect of CB surface modification on its resistivity-temperature behavior. J. Appl. Polym. Sci. 2002, 83, 3112–3116. [Google Scholar] [CrossRef]
- Ehsani, M.; Borsi, H.; Gockenbach, E.; Bakhsahnde, G.R.; Morshedian, J.; Abedi, N. Study of electrical, dynamic mechanical and surface properties of silicone-EPDM blends. In Proceedings of the 2004 IEEE International Conference on Solid Dielectrics, 2004, ICSD 2004, Toulouse, France, 5–9 July 2004; Volume 1, pp. 431–434. [Google Scholar]
- Marín-Genescà, M.; García-Amorós, J.; Mujal-Rosas, R.; Massagués, L.; Colom, X. Study and Characterization of the Dielectric Behavior of Low Linear Density Polyethylene Composites Mixed with Ground Tire Rubber Particles. Polymers 2020, 12, 1075. [Google Scholar] [CrossRef]
- Ishimoto, K.; Tanaka, T.; Ohki, Y.; Sekiguchi, Y.; Murata, Y.; Gosyowaki, M. Comparison of Dielectric Properties of Low-density Polyethylene/MgO Composites with Different Size Fillers. In Proceedings of the Annual Report Conference on Electrical Insulation and Dielectric Phenomena, 2008, CEIDP 2008, Quebec, QC, Canada, 26–29 October 2008; pp. 208–211. [Google Scholar]
- Günter, G. Seip—Electrical Installations; Wiley-VCH Verlag GmbH: Weinheim, Germany, 2000. [Google Scholar]
- Shinyama, K.; Fujita, S. Mechanical and Electrical Properties of Biodegradable Plastics. In Proceedings of the International Symposium on Electrical Insulating Materials, Kitakyushu, Japan, 5–9 June 2005. [Google Scholar]
- Standards UNE and IEC; AENOR: Madrid, Spain, 1993.
- New Spanish Low Voltage Electrotechnical Regulation; Marcombo: Barcelona, Spain, 2020.
Material Type | Car Tire (wt.%) |
---|---|
Rubber | 42–48 |
Carbon black | 24–28 |
Metal | 12–16 |
Textile | 4–6 |
Additives | 9–12 |
Polymer Type | Commercial Name | Fluidity Index or Melt Flow Index (g/min) | Density (kg/m3) | Processing Temperature (°C) | Pressing Temperature (°C) |
---|---|---|---|---|---|
PVC | Etinox | 1.35 | 1.225 | 195–200 | 210 |
EVA | Alcudia PA 539 type | 0.20 | 937 | 105–110 | 120 |
HDPE | Alcudia 4810-B | 1.35 | 960 | 150–155 | 170 |
PA 6 | Ultramid B3S | 1.55 | 1130 | 195–200 | 210 |
ABS | Terluran® HH-106 | 1.45 | 1050 | 180–185 | 195 |
PP | Isplen® 099 K2M type | 0.55 | 902 | 155–165 | 165 |
PS | Polystyrol 486 M | 1.45 | 1050 | 180–185 | 195 |
Polymer Composite | Tensile Strength (MPa) | Elongation at Break (%) |
---|---|---|
PVC/GTR | 35.75 (0% GTR) | 6.31 (5% GTR) |
EVA/GTR | 23.08 (0% GTR) | 704.6 (0% GTR) |
HDPE/GTR | 25.51 (5% GTR) | 50 (0% GTR) |
PP/GTR | 29.9 (0% GTR) | 346.71 (0% GTR) |
ABS/GTR | 44.98 (0% GTR) | 32.91(0% GTR) |
PA/GTR | 50.41 (0% GTR) | 8.46 (70% GTR) |
PS/GTR | 38.89 (0% GTR) | 66.27(0% GTR) |
Polymer Composite | Conductivity σ (S/cm) | Resistivity (Ω·cm) | Loss Tangent |
---|---|---|---|
PVC/GTR | 8.76 × 10−13 (0% GTR) | 1.14 × 1012 (0% GTR) | 0.01119775 (0% GTR) |
EVA/GTR | 8.59 × 10−14 (0% GTR) | 1.16 × 1013 (0% GTR) | 0.001068 (0% GTR) |
HDPE/GTR | 2.06 × 10−14 (0% GTR) | 4.85 × 1013 (0% GTR) | 0.00038912 (0% GTR) |
PP/GTR | 2.39 × 10−14 (0% GTR) | 4.18 × 1013 (0% GTR) | 0.00042918 (0% GTR) |
ABS/GTR | 5.26 × 10−13 (0% GTR) | 1.9 × 1012 (0% GTR) | 0.00659429 (0% GTR) |
PA/GTR | 1 × 10−11 (0% GTR) | 9.96 × 1010 (0% GTR) | 0.09010372 (10% GTR) |
PS/GTR | 3.14 × 10−14 (0% GTR) | 3.18 × 1013 (0% GTR) | 0.00047897 (0% GTR) |
Composite | Tensile Strength (MPa) | Elongation at Break (%) | Conductivity σ (S/cm) | Loss Tangent | Resistivity ρ (Ω·cm) |
---|---|---|---|---|---|
EVA+10% GTR | 12.7 | 438 | 1.29 × 1012 | 0.00854714 | 1.29 × 1012 |
PVC+10% GTR | 32 | 5.4 | 3.93 × 1011 | 0.022369 | 3.93 × 1011 |
HDPE+10% GTR | 23.8 | 27 | 1.76 × 1012 | 0.00815887 | 1.76 × 1012 |
PP+10% GTR | 22.4 | 41.7 | 1.79 × 1012 | 0.0030445 | 1.79 × 1012 |
PA+10% GTR | 42.0 | 1.7 | 8.05 × 1010 | 0.09010372 | 8.05 × 1010 |
ABS+10% GTR | 33.4 | 4.8 | 6.13 × 1011 | 0.01712194 | 6.13 × 1011 |
PS+10% GTR | 28.5 | 37.5 | 1.11 × 1012 | 0.0106162 | 1.11 × 1012 |
Application Type | Specific Industrial Application | Number of Applications |
---|---|---|
Medium high voltage application | Fillers for electrical cables Insulators for overhead power lines | 2 |
Electrical applications for low voltage | Splice for cables and spacers for power lines Trays for electrical cables. Cable pipes Electric canalizations Electrical insulating tape Low voltage electrical insulation applications for electric fences and shepherds | 5 |
Labor safety and occupational risk prevention | Protection on hands and arms (dielectric gloves) Footwear for work use (insulating and highly resistive) | 2 |
Total applications | 9 |
Consultation Standard Code | Rule Specific Content |
---|---|
UNE-EN 60335-2-76, IEC 60335-2-76, UNE-EN 60.831 -1, ITC-BT-39, 22, 23, 24 | Components of electrical circuits. Insulation for electric shepherds. |
IEC 61854 | Auxiliary elements for power lines. Spacer for power lines |
IEC 60840 UNE HD 628 | Connecting elements for electrical cables. Splice for electrical cables |
UNE EN 61537, UNE EN 50085-1: IEC 61537 (EN 61537) | Auxiliary elements for power lines. Pipes for electrical cables |
UNE-EN ISO 20345/6/7: 2005 UNE 53510 | Regulations on footwear for work use (insulating), anti-electrostatic, insulating and high electrical resistance. Physical criteria on protective equipment |
UNE-21115, IEC 502 | Criteria on insulation for overhead power lines |
IEC 60454-3 | Insulating elements for electrical connections |
UNE-EN 1149-5: 2008. | Personal protective equipment and anti-electrostatic clothing |
UNE-EN 60903: 2005 | Individual Protection Equipment. Dielectric gloves |
UNE-HD 620-1 | Electrical distribution cables with extruded insulation, rated voltage from 3.6/6 (7.2) kV to 20.8/36 (42) kV. Part 1: General Requirements |
UNE-HD 632-1 | Extruded insulated power cables and their accessories for rated voltages greater than 36 kV (Um = 42 kV) up to 150 kV (Um = 170 kV). Part 1: general testing requirements |
UNE 21143 | Test of outer sheaths of cables that have a special protection function and that are applied by extrusion |
UNE-HD 632, UNE-EN 60811-4-1, UNE-EN 60811-1-1 (EN 60811-1-1, IEC 811-1-1) | Component regulations for electrical cables |
Components Analyzed | Electrical Criterion | Mechanical Criterion | Application Standard | Polymers + GTR Suitable |
---|---|---|---|---|
Insulation for electric shepherds | Conductivity: <10−12 S/cm Tg δ < 104 | Tensile strength: 12.5 MPa Elongation at break: 300% | ITC-BT-39, 22, 23, 24 UNE-EN 60335-2-76 IEC 60335-2-76 | EVA + 10% |
Spacer for power lines | Resistivity: >5.5 × 105 Ω·cm | Minimum tensile strength: 17.2 MPa Minimum elongation at break: 300% | IEC 61854 | EVA + 20% |
Universal electrical cable joint | Resistivity: >1012 Ω·cm | Tensile strength: 12.5 MPa Elongation at break: 400% | IEC 60840 UNE HD 628 | EVA + 10% |
Filler for electrical applications | Resistivity: >1012 Ω·cm | Tensile strength: 12.5 MPa Elongation at break: 350% | UNE 53 602; UNE 53 510; UNE-HD 632; UNE-EN 60811-4-1 | EVA + 10% |
Trays and pipes for electrical cables | Resistivity: >1012 Ω·cm | Elongation at break: 80 ± 10% Tensile strength: 15 MPa | UNE EN 61537 UNE EN 50085-1: IEC 61537 (EN 61537). | PP + 10% EVA + 10% |
Footwear for work use (insulating) Insulating: High electrical resistance: | Resistivity: >106 Ω·cm >109 Ω·cm | Tensile strength > 10–12 MPa Elongation at break > 450% | UNE-EN ISO 20345/6/7:2005 UNE 53510 | EVA + 10% |
Components Analyzed | Electrical Criterion | Mechanical Criterion | Application Standard |
---|---|---|---|
1. Insulation for overhead power lines | Resistivity: >1014 Ω·cm | Tensile strength > 25 MPa | UNE-21115 IEC 502 |
2. Electrical insulating tape | 2 × 1015 Ω·cm | Elongation at break: 600% Tensile strength 1.5 MPa | IEC 60454-3 |
3. Protection in hands and arms. Dielectric gloves | 1015 Ω·cm | Tensile strength ≥ 16 MPa Elongation at break ≥ 600% | UNE-EN 60903:2005 |
Selected Applications | Selected Compounds: Polymers + GTR |
---|---|
1. Electrical shepherds’ insulation | EVA + 10% |
2. Spacer for electric lines | EVA + 10% EVA + 20% |
3. Joint for electrical cables universal | EVA + 10% |
4. Filling for electrical applications | EVA + 10% |
5. Tray and Pipes for electrical cables | PP + 10% EVA + 10% |
6. Work use footwear (insulated). Insulating and high electrical resistance | EVA + 10% |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Marín-Genescà, M.; García-Amorós, J.; Mujal-Rosas, R.; Vidal, L.M.; Arroyo, J.B.; Fajula, X.C. Ground Tire Rubber Recycling in Applications as Insulators in Polymeric Compounds, According to Spanish UNE Standards. Recycling 2020, 5, 16. https://doi.org/10.3390/recycling5030016
Marín-Genescà M, García-Amorós J, Mujal-Rosas R, Vidal LM, Arroyo JB, Fajula XC. Ground Tire Rubber Recycling in Applications as Insulators in Polymeric Compounds, According to Spanish UNE Standards. Recycling. 2020; 5(3):16. https://doi.org/10.3390/recycling5030016
Chicago/Turabian StyleMarín-Genescà, Marc, Jordi García-Amorós, Ramon Mujal-Rosas, Lluís Massagués Vidal, Jordi Bordes Arroyo, and Xavier Colom Fajula. 2020. "Ground Tire Rubber Recycling in Applications as Insulators in Polymeric Compounds, According to Spanish UNE Standards" Recycling 5, no. 3: 16. https://doi.org/10.3390/recycling5030016
APA StyleMarín-Genescà, M., García-Amorós, J., Mujal-Rosas, R., Vidal, L. M., Arroyo, J. B., & Fajula, X. C. (2020). Ground Tire Rubber Recycling in Applications as Insulators in Polymeric Compounds, According to Spanish UNE Standards. Recycling, 5(3), 16. https://doi.org/10.3390/recycling5030016