The Potential for Glass Wool Waste as a Filler in UF Adhesive to Promote Particleboard Strength
Abstract
1. Introduction
2. Results and Discussion
2.1. Wood Density, Moisture Content, and Slenderness Ratio
2.2. Technological Properties of the Adhesives
2.3. Density and Compaction Ratio of the Particleboards
2.4. Mechanical Properties of the Particleboards
2.5. Acoustic Properties of the Particleboard Panels
2.6. Scanning Electron Microscopy (SEM)
3. Material and Methods
3.1. Raw Materials
3.2. Wood Density and Particle Aspect Ratio
3.3. Evaluation of the Technological Properties of the Adhesives
3.4. Production of Adhesives and Particleboards
3.5. Physical, Mechanical, and Acoustic Tests on the Panels
3.6. Microstructural Behavior by SEM
3.7. Statistics
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Calvez, I.; Garcia, R.; Koubaa, A.; Landry, V.; Cloutier, A. Recent Advances in Bio-Based Adhesives and Formaldehyde-Free Technologies for Wood-Based Panel Manufacturing. Curr. For. Rep. 2024, 10, 386–400. [Google Scholar] [CrossRef] [PubMed]
- Réh, R.; Krišťák, Ľ.; Sedliačik, J.; Bekhta, P.; Božiková, M.; Kunecová, D.; Vozárová, V.; Tudor, E.M.; Antov, P.; Savov, V. Utilization of Birch Bark as an Eco-Friendly Filler in Urea-Frrmaldehyde Adhesives for Plywood Manufacturing. Polymers 2021, 13, 511. [Google Scholar] [CrossRef]
- Kawalerczyk, J.; Walkiewicz, J.; Sedliačik, J.; Dukarska, D.; Woźniak, M.; Mirski, R. Modified Buckwheat Husk as a Filler for Urea-Formaldehyde Resin in Plywood Production. Polymers 2024, 16, 1350. [Google Scholar] [CrossRef]
- Mensah, P.; Melo, R.R.; Mitchual, S.J.; Owusu, F.W.; Mensah, M.A.; Donkoh, M.B.; Paula, E.A.O.; Pedrosa, T.D.; Junior, F.R.; Rusch, F. Ecological Adhesive Based on Cassava Starch: A Sustainable Alternative to Replace Urea-Formaldehyde (UF) in Particleboard Manufacture. Matéria 2024, 29, e202330373. [Google Scholar] [CrossRef]
- Gadhave, R.V.I.; Dhawale, P.V. State of Research and Trends in the Development of Polyvinyl Acetate-Based Wood Adhesive. Open J. Polym. Chem. 2022, 12, 13–42. [Google Scholar] [CrossRef]
- Albuquerque, C.E.C.; Iwakiri, S.; Júnior, S.K.; Trianoski, R. Adesão e Adesivos. In Painéis de Madeira Reconstituída; Iwakiri, S., Trianoski, R., Eds.; Fupef: Curitiba, PR, Brazil, 2020; pp. 10–36. [Google Scholar]
- Furtini, A.C.C.; Santos, C.A.; Miranda, E.H.N.; Villarruel, D.C.V.; Gomes, D.A.C.; Ferreira, G.C.; Silva, M.G.; Mendes, L.M.; Júnior, J.B.G. Using Miriti Petiole to Produce Particleboards. Ambient. Construído 2023, 23, 149–162. [Google Scholar] [CrossRef]
- IBA. Brazilian Tree Industry; Annual Report; IBA: Brasília, DF, Brazil, 2024. (In Portuguese) [Google Scholar]
- Wang, H.; Wang, H.; Liao, J.; Zhou, X.; Du, G. Technological Properties of a Branched Polyethyleneimine Derivative as a Cross-Linker for Low Molar Ratio Urea-Formaldehyde Resins. Polym. Test. 2023, 118, 107914. [Google Scholar] [CrossRef]
- Yildirim, M.; Candan, Z. Performance Properties of Particleboard Panels Modified with Nanocellulose/Boric Acid. BioResources 2021, 16, 1875–1890. [Google Scholar] [CrossRef]
- Taghiyari, H.R.; Esmailpour, A.; Majidi, R.; Hassani, V.; Mirzaei, A.; Bibalan, O.F.; Papadopoulos, A.N. The Effect of Silver and Copper Nanoparticles as Resin Fillers on Less-Studied Properties of UF-Based Particleboards. Wood Mater. Sci. Eng. 2022, 17, 317–327. [Google Scholar] [CrossRef]
- Zhang, L.; Chen, Y.; Geng, S.; Huang, Z.; Qiu, R.; Chen, T.; Liu, W. Development of Plant Oil-Based Adhesives for Formaldehyde-Free Bamboo Particleboards. Ind. Crops Prod. 2024, 210, 118146. [Google Scholar] [CrossRef]
- Martins, R.S.F.; Gonçalves, F.G.; Lelis, R.C.C.; Segundinho, P.G.A.; Nunes, A.M.; Vidaurre, G.B.; Chaves, I.L.S.; Santiago, S.B. Physical Properties and Formaldehyde Emission in Particleboards of Eucalyptus sp. and Lignocellulosic Agro-Industrial Waste. Sci. For. 2020, 48, e2926. [Google Scholar] [CrossRef]
- Oktay, S.; Pizzi, A.; Köken, N.; Bengü, B. Tannin-Based Wood Panel Adhesives. Int. J. Adhes. Adhes. 2024, 130, 103621. [Google Scholar] [CrossRef]
- Oktay, S.; Kızılcan, N.; Bengü, B. Environment-Friendly Cornstarch and Tannin-Based Wood Adhesives for Interior Particleboard Production as an Alternative to Formaldehyde-Based Wood Adhesives. Pigment Resin Technol. 2024, 53, 173–182. [Google Scholar] [CrossRef]
- Brito, F.M.S.; Bortoletto Júnior, G.; Ferreira, G.; Furtini, A.C.C.; Paes, J.B. Painéis Aglomerados: Um Referencial Teórico. In Estudos e Tendências Atuais em Ciências Ambientais e Agrarias; Andrade, J.K.B., Ed.; Licuri: Campina Grande, Brazil, 2023; pp. 90–104. ISBN 9786585562188. [Google Scholar]
- Hemmilä, V.; Adamopoulos, S.; Karlsson, O.; Kumar, A. Development of Sustainable Bio-Adhesives for Engineered Wood Panels—A Review. RSC Adv. 2017, 7, 38604–38630. [Google Scholar] [CrossRef]
- Su, M.; Wu, J.; Pan, P.; Wang, H. Polyamide-Formaldehyde Resin as a Low-Toxic Adhesive for Wood Bonding. J. Adhes. Sci. Technol. 2022, 36, 1964–1977. [Google Scholar] [CrossRef]
- Xiao, J.; Guo, D.; Xia, C.; Li, T.; Lian, H. Application of Nano-SiO2 Reinforced Urea-Formaldehyde Resin and Molecular Dynamics Simulation Study. Materials 2022, 15, 8716. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Li, Y.; Mo, H.; Xie, E.; Fang, J.; Gan, W. Current Utilization of Waste Biomass as Filler for Wood Adhesives: A Review. J. Ind. Eng. Chem. 2022, 115, 48–61. [Google Scholar] [CrossRef]
- Ghani, A.; Ashaari, Z.; Bawon, P.; Lee, S.H. Reducing Formaldehyde Emission of Urea Formaldehyde-Bonded Particleboard by Addition of Amines as Formaldehyde Scavenger. Build. Environ. 2018, 142, 188–194. [Google Scholar] [CrossRef]
- Kawalerczyk, J.; Antov, P.; Dziurka, D.; Mirski, R.; Lee, S.H. The Effect of Pressing Parameters and Hardener Content on the Properties of Plywood Bonded with Propylamine-UF Adhesive. Wood Mater. Sci. Eng. 2023, 19, 710–717. [Google Scholar] [CrossRef]
- Bertolini, M.S.; Moares, C.A.G.; Christoforo, A.L.; Bertoli, S.R.; Santos, W.N.; Lahr, F.A.R. Acoustic Absorption and Thermal Insulation of Wood Panels: Indluence of Porosity. BioResources 2019, 14, 3746–3757. [Google Scholar] [CrossRef]
- Ghofrani, M.; Ashori, A.; Mehrabi, R. Mechanical and Acoustical Properties of Particleboards Made with Date Palm Branches and Vermiculite. Polym. Test. 2017, 60, 153–159. [Google Scholar] [CrossRef]
- Ferrandez-Villena, M.; Ferrandez-Garcia, A.; Garcia-Ortuño, T.; Ferrandez-Garcia, M.T. Acoustic and Thermal Properties of Particleboards Made from Mulberry Wood (Morus alba L.) Pruning Residues. Agronomy 2022, 12, 1803. [Google Scholar] [CrossRef]
- Zatloukal, P.; Doskočil, T.; Tippner, J. Acoustic Properties of Wood-Based and Non-Wood-Based Materials for Piano—Case Making. Drv. Ind. 2024, 75, 227–236. [Google Scholar] [CrossRef]
- Bem, G.; Mulhbauer, M.; La Roche, P.; Matias, A.; Almeida, R.; Kruger, E. Implementation of a Dynamic Thermal and Illuminance Control System in Responsive Facades: Shading Study. Adv. Environ. Eng. Res. 2022, 3, 038. [Google Scholar] [CrossRef]
- Ülker, O.; Burdurlu, E. Effect of Glass Wool and Stone Wool Additives on Some Mechanical Properties of Wood Composites. BioResources 2016, 11, 5974–5986. [Google Scholar] [CrossRef]
- Kowatsc, S. Mineral Wool Insulation Binders. In Phenolic Resins: A Century of Progress; Pilato, L., Ed.; Springer: Berlin/Heidelberg, Germany, 2010; pp. 209–242. [Google Scholar]
- Bennett, T.M.; Allan, J.F.; Garden, J.A.; Shaver, M.P. Low Formaldehyde Binders for Mineral Wool Insulation: A Review. Glob. Chall. 2022, 6, 2100110. [Google Scholar] [CrossRef]
- Maloney, T.M. Modern Particleboard and Dry-Process Fiberboard Manufacturing; Miller Freeman Publications: San Francisco, CA, USA, 1993. [Google Scholar]
- Miranda, E.H.N.; Gomes, D.A.C.; Furtini, A.C.C.; Villarruel, D.C.V.; Santos, C.A.; Mendes, L.M.; Guimarães Júnior, J.B. Evaluation of Bean Residues in the Produxtion of Agglomerated Panels. Maderas-Ciência Tecnol. 2023, 25, 1–21. [Google Scholar]
- Ramesh, M.; Rajeshkumar, L.; Sasikala, G.; Balaji, D.; Saravanakumar, A.; Bhuvaneswari, V.; Bhoopathi, R. A Critical Review on Wood-Based Polymer Composites: Processing, Properties, and Prospects. Polymers 2022, 14, 589. [Google Scholar] [CrossRef]
- Cai, Z.; Senalik, C.A.; Ross, R.J. Mechanical Properties of Wood-Based Composite Materials. In Wood Handbook—Wood as an Engineering Material; Departament of Agriculture, Forest Service, Forest Products Laboratory: Madison, WI, USA, 2021; General Technical Report, Chapter 12; p. 15. [Google Scholar]
- Iwakiri, S.; Albuquerque, C.E.C.; Mendes, L.M.; Latorraca, J.V.F.; Trianoski, R. Painéis de Madeira Aglomerada. In Painéis de Madeira Reconstituída; Iwakiri, S., Trianoski, R., Eds.; Fupef: Curitiba, PR, Brazil, 2020; pp. 136–177. [Google Scholar]
- Araujo, C.K.C.; Campos, C.I.; Camargo, S.K.C.A.; Camargo, B.S. Caracterização Mecânica de Painéis Particulados de Média Densidade Produzidos a Partir de Resíduos de Madeira. Rev. Gestão Ind. 2019, 15, 197–211. [Google Scholar] [CrossRef]
- Fehrmann, J.; Belleville, B.; Ozarska, B. Effects of Particle Dimension and Constituent Proportions on Internal Bond Strength of Ultra-Low-Density Hemp Hurd Particleboard. Forests 2022, 13, 1967. [Google Scholar] [CrossRef]
- Engehausen, N.; Benthien, J.T.; Lüdtke, J. Influence of Particle Size on the Mechanical Properties of Single-Layer Particleboards. Fibers 2024, 12, 32. [Google Scholar] [CrossRef]
- Arabi, M.; Faezipour, M.; Gholizadeh, H. Reducing Resin Content and Board Density without Adversely Affecting the Mechanical Properties of Particleboard through Controlling Particle Size. J. For. Res. 2011, 22, 659–664. [Google Scholar] [CrossRef]
- Baldin, T.; Silveira, A.G.; Vidrano, B.R.A.; Cancian, L.C.; Spatt, L.L.; Haselein, C.R. Qualidade de Painéis Aglomerados Produzidos Com Diferentes Proporções de Madeira e Capim-Annoni. Rev. Bras. Cienc. Agrárias 2016, 11, 230–237. [Google Scholar] [CrossRef]
- Ghani, A.; Bawon, P.; Lee, S.H.; Ashaari, Z. Physico-Mechanical Properties and Formaldehyde Emission of Rubberwood Particleboard Made with UF Resin Admixed with Ammonium and Aluminium-Based Hardeners. Pertanika J. Sci. Technol. 2019, 27, 473–488. [Google Scholar]
- Luckman, S.S.; Cunha, A.B.; Rios, P.D.; Zanatta, P. Influência Da Incorporação de Lignina Kraft à Resina Ureia-Formaldeído Nas Propriedades Tecnológicas de Painéis Aglomerados Convencionais. Sci. For. 2021, 49, e3527. [Google Scholar] [CrossRef]
- Moslemi, A.; Zolfagharlou koohi, M.; Behzad, T.; Pizzi, A. Addition of Cellulose Nanofibers Extracted from Rice Straw to Urea Formaldehyde Resin: Effect on the Adhesive Characteristics and Medium Density Fiberboard Properties. Int. J. Adhes. Adhes. 2020, 99, 102582. [Google Scholar] [CrossRef]
- Almeida, V.C. Efeito Da Adição de Carga e Extensor Nas Propriedades Do Adesivo Uréia-Formaldeído e Dos Compensados de Pinus e Paricá. Master’s Dissertation, Universidade Federal de Viçosa, Viçosa, MG, Brazil, 2009. Mestrado em Ciência Florestal. [Google Scholar]
- Hosseini, S.B.; Asadollahzadeh, M.; Najfai, S.K.; Taherzadeh, M.J. Partial Replacement of Urea-Formaldehyde Adhesive with Fungal Biomass and Soy Flour in Plywood Fabrication. J. Adhes. Sci. Technol. 2020, 34, 1371–1384. [Google Scholar] [CrossRef]
- Karagiannidis, E.; Markessini, C.; Athanassiadou, E. Micro-Fibrillated Cellulose in Adhesive Systems for the Production of Wood-Based Panels. Molecules 2020, 25, 4846. [Google Scholar] [CrossRef] [PubMed]
- Roumeli, E.; Papadopoulou, E.; Pavlidoua, E.; Vourliasa, G.; Bikiarisc, D.; Paraskevopoulosa, K.M.; Chrissafi, K. Synthesis, Characterization and Thermal Analysis of Urea–Formaldehyde/NanoSiO2 Resins. Thermochim. Acta 2012, 527, 33–39. [Google Scholar] [CrossRef]
- Salari, A.; Tabarsa, T.; Khazaeian, A.; Saraeian, A. Improving Some of Applied Properties of Oriented Strand Board (OSB) Made from Underutilized Low Quality Paulownia (Paulownia fortunie) Wood Employing Nano-SiO2. Ind. Crops Prod. 2013, 42, 1–9. [Google Scholar] [CrossRef]
- NBR 14810-2; Painéis de Partículas de Média Densidade: Requisitos e Métodos de Ensaio. Associação Brasileira de Normas Técnicas—ABNT: Rio de Janeiro, Brazil, 2024.
- Lima, F.O.; Lirya Silva, L.C.; Maia, R.A.; Oliveira, I.R.; Oliveira, C.R.; Favarim, H.R.; Campos, C.I. ZnO Nanoparticle: Production and Use for Particleboard Improvement. Concilium 2023, 23, 420–429. [Google Scholar] [CrossRef]
- Lee, H.; Kim, N.K.; Verbeek, C.J.R.; Bhattacharyya, D. Effects of Casein on Flammability and Mechanical Characteristics of Medium Density Fibreboards Based on Formaldehyde-Free Resin System. Mater. Today Proc. 2023, 2023, 2214–7853. [Google Scholar] [CrossRef]
- A208.1; Particleboard. ANSI American National Standard Particleboard: Gaithersburg, MD, USA, 1999.
- Costa, D.; Serra, J.; Quinteiro, P.; Dias, A.C. Life Cycle Assessment of Wood-Based Panels: A Review. J. Clean. Prod. 2024, 444, 140955. [Google Scholar] [CrossRef]
- Lima, A.J.M.; Iwakiri, S.; Satyanarayana, K.G.; Lomelí-Ramírez, M.G. Studies on the Durability of Wood-Cement Particleboards Produced with Residues of Pinus spp., Silica Fume, and Rice Husk Ash. BioResources 2020, 15, 3064–3086. [Google Scholar] [CrossRef]
- Gumus, N.; Doganci, E.; Aytac, A. Evaluations of the Effects of Different Flame Retardants Combinations on Particleboards Produced Using Urea-Formaldehyde Resin. Eur. J. Wood Wood Prod. 2024, 82, 747–759. [Google Scholar] [CrossRef]
- Bansal, R.; Barshilia, H.C.; Pandey, K.K. Nanotechnology in Wood Science: Innovations and Applications. Int. J. Biol. Macromol. 2024, 262, 130025. [Google Scholar] [CrossRef]
- Chaydarreh, K.C.; Lin, X.; Guan, L.; Hu, C. Interaction between Particle Size and Mixing Ratio on Porosity and Properties of Tea Oil Camellia (Camellia oleifera Abel.) Shells-Based Particleboard. J. Wood Sci. 2022, 68, 43. [Google Scholar] [CrossRef]
- Bazzetto, J.T.L.; Bortoletto Junior, G.; Brito, F.M.S. Effect of Particle Size on Bamboo Particle Board Properties. Floresta Ambient. 2019, 26, e20170125. [Google Scholar] [CrossRef]
- Martins, R.S.F.; Gonçalves, F.G.; Segundinho, P.G.A.; Lelis, R.C.C.; Paes, J.B.; Lopez, Y.M.; Chaves, I.L.S.; Oliveira, R.G.E. Investigation of Agro-Industrial Lignocellulosic Wastes in Fabrication of Particleboard for Construction Use. J. Build. Eng. 2021, 43, 102903. [Google Scholar] [CrossRef]
- Leng, W.; Hunt, J.F.; Tajvidi, M. Screw and Nail Withdrawal Strength and Water Soak Properties of Wet-Formed Cellulose Nanofibrils Bonded Particleboard. BioResources 2017, 12, 7692–7710. [Google Scholar] [CrossRef]
- Taquetti, V.B.; Silva, V.V.; Chaves, I.L.S.; Oliveira, R.G.E.; Maffioletti, F.D.; Ferreira, G.; Mendonça, J.P.C.; Silva, E.S.G.; Gonçalves, F.G. Performance of Eucalypt Particleboard with the Addition of Farm Waste. Heliyon 2023, 9, e22760. [Google Scholar] [CrossRef] [PubMed]
- Gillela, S.; Yadav, S.M.; Sihag, K.; Kelkar, B.U.; Dangtungee, R.; Bhuyar, P. Effects of Addition of Nanoclay in Phenol-Formaldehyde Resins on the Properties of Lantana camara Fibre Composites. J. Trop. For. Sci. 2024, 36, 40–50. [Google Scholar] [CrossRef]
- Rafighi, A.; Dorostkar, A.; Madhoush, M. Investigation on Mechanical Properties between of Composite Made of Poplar and Alder Sawdust and High Density Polyethylene. Int. J. Innov. Sci. Eng. Technol. 2014, 1, 134–141. [Google Scholar]
- Ulker, O. Surface Roughness of Composite Panels as a Quality Control Tool. Materials 2018, 11, 407. [Google Scholar] [CrossRef] [PubMed]
- Srivabut, C.; Ratanawilai, T.; Hiziroglu, S. Effect of Nanoclay, Talcum, and Calcium Carbonate as Filler on Properties of Composites Manufactured from Recycled Polypropylene and Rubberwood Fiber. Constr. Build. Mater. 2018, 162, 450–458. [Google Scholar] [CrossRef]
- Carrasco, E.V.M.; Vargas, C.B.; Souza, M.d.F.; Mantilla, J.N.R. Avaliação Das Características Mecânicas Da Madeira Por Meio de Excitação Por Impulso. Rev. Matéria 2017, 22, 11936. [Google Scholar] [CrossRef]
- Taghiyari, H.R.; Taheri, A.; Omrani, P. Correlation between Acoustic and Physical–Mechanical Properties of Insulating Composite Boards Made from Sunflower Stalk and Wood Chips. Eur. J. Wood Wood Prod. 2017, 75, 409–418. [Google Scholar] [CrossRef]
- Laudares, F.A.L.; Nascimento, A.M.; Oliveira, R.N.; Santos, R.R.; Moura, F.D.G. Avaliação Das Propriedades Acústicas de Mogno Africano (Khaya ivorensis) Submetido a Tratamento Térmico Em Estufa e Autoclave. Rev. Mater. 2023, 28, 20230035. [Google Scholar] [CrossRef]
- NBR 11941; Madeira—Determinação Da Densidade Básica. Associação Brasileira de Normas Técnicas—ABNT: Rio de Janeiro, Brazil, 2003.
- Brito, E.O. Produção de Chapas de Partículas de Madeira a Partir de Maravalhas de Pinus elliottii Engelm. Var. Elliottii Plantado No Sul Do Brasil. Ph.D. Thesis, Universidade Federal do Paraná, Curitiba, PR, Brazil, 1995. Doutorado em Engenharia Florestal. [Google Scholar]
- Dhanapal, S.; Singh, M.; Nagammanavar, U. Influence of Rice Straw and Wood Fiber Combination on Physical and Mechanical Properties of Rice Straw Pulverized Composite Board. Maderas. Cienc. y Tecnol. 2024, 26, 1–14. [Google Scholar] [CrossRef]
- Oliveira Júnior, J.N.; Lopes, F.P.D.; Simonassi, N.T.; Oliveira, M.P.; Gonçalves, F.G.; Vieira, C.M.F. Evaluation of Hot Pressing Processing by Physical Properties of Ecofriendly Composites Reinforced by Eucalyptus Sawdust and Chamotte Residues. Polymers 2023, 15, 1931. [Google Scholar] [CrossRef]
- Fassarella, M.V. Efeitos Da Adição de Lã de Vidro à Resina Ureia-Formaldeído Nas Propriedades de Painel Aglomerado Homogêneo. Master’s Dissertation, Universidade Federal do Espírito Santo, Jerônimo Monteiro, ES, Brazil, 2025. Mestrado em Ciências Florestais. [Google Scholar]
- ATCP. Manual de Instalação e Operação: Sonelastic; ATCP Engenharia Física: Ribeirão Preto, SP, Brazil, 2015. [Google Scholar]
- Arunkumar, M.P.; Jagadeesh, M.; Pitchaimani, J.; Gangadharan, K.V.; Babu, M.C.L. Sound Radiation and Transmission Loss Characteristics of a Honeycomb Sandwich Panel with Composite Facings: Effect of Inherent Material Damping. J. Sound Vib. 2016, 383, 221–232. [Google Scholar] [CrossRef]








| Treatment * | pH | CV (%) | SC (%) | CV (%) | Visc. (cP) | CV (%) | GT (s) | CV (%) |
|---|---|---|---|---|---|---|---|---|
| T1—Control | 7.91 d | 1.4 | 62.88 c | 2.2 | 1141.98 c | 15.5 | 83.2 c | 12.8 |
| T2—3.34% | 8.20 c | 67.41 b | 1288.88 c | 68.2 d | ||||
| T3—4.93% | 8.15 c | 63.79 c | 1671.96 b | 93.8 b | ||||
| T4—6.52% | 8.29 b | 68.14 b | 1747.26 b | 67.2 d | ||||
| T5—9.49% | 8.37 b | 68.63 b | 1960,16 b | 78.4 c | ||||
| T6—12.35% | 8.59 a | 71.85 a | 7970.72 a | 111.2 a |
| Treatment | ρ * (kg m−3) | IIS (dB) | Edin (MPa) | Dl (m−4 kg−1 kg−1 s−1) | ACE (m−4 kg−1 s−1) |
|---|---|---|---|---|---|
| T1—0% | 694 a | 101.7 a | 4301.1 c | 0.0877 a | 154.34 b |
| T2—3.34% | 704 a | 102.1 a | 4746.7 a | 0.0835 c | 165.35 a |
| T3—4.93% | 708 a | 101.8 a | 4491.1 b | 0.0859 b | 154.85 b |
| T4—6.52% | 705 a | 102.3 a | 4488.9 b | 0.0859 b | 156.10 b |
| T5—9.49% | 702 a | 101.3 b | 4302.2 c | 0.0871 a | 151.70 b |
| T6—12.35% | 699 a | 101.2 b | 4251.1 c | 0.0882 a | 150.25 b |
| Treatments (Adhesive) | Glass Wool Content in Particleboard (%) | Glass Wool Content in Urea–Formaldehyde Adhesive (%) |
|---|---|---|
| T1 | 0 | 0 |
| T2 | 0.50 | 3.34 |
| T3 | 0.75 | 4.93 |
| T4 | 1.00 | 6.52 |
| T5 | 1.50 | 9.49 |
| T6 | 2.00 | 12.35 |
| Test | Type | Specimen Dimensions (mm) | Number of Specimens per Treatment | Standard |
|---|---|---|---|---|
| Apparent density | Physical | 50 × 50 | 12 | NBR 14810-2 [49] |
| Static bending (FEMOE) | Mechanical | 310 × 50 | 13 | |
| Internal bond (IB) | 50 × 50 | 10 | ||
| Screw withdrawal (SW) | 50 × 50 | 9 | ||
| Static bending (FEMOR) | 310 × 50 | 14 | ANSI A208.1 [52] | |
| Janka hardness (DJ) | 50 × 50 | 11 | ||
| Sound insulation (IIS) # | Acoustic | 400 × 400 | 9 | * |
| Logarithmic damping decrement (Dl) # | 9 | |||
| Acoustic efficiency (ACE) | 9 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fassarella, M.V.; Chaves, I.L.S.; Segundinho, P.G.A.; Paes, J.B.; Lelis, R.C.C.; Oliveira, M.P.; Silva, E.S.G.; Gonçalves, F.G. The Potential for Glass Wool Waste as a Filler in UF Adhesive to Promote Particleboard Strength. Recycling 2025, 10, 220. https://doi.org/10.3390/recycling10060220
Fassarella MV, Chaves ILS, Segundinho PGA, Paes JB, Lelis RCC, Oliveira MP, Silva ESG, Gonçalves FG. The Potential for Glass Wool Waste as a Filler in UF Adhesive to Promote Particleboard Strength. Recycling. 2025; 10(6):220. https://doi.org/10.3390/recycling10060220
Chicago/Turabian StyleFassarella, Michelângelo Vargas, Izabella Luzia Silva Chaves, Pedro Gutemberg Alcântara Segundinho, Juarez Benigno Paes, Roberto Carlos Costa Lelis, Michel Picanço Oliveira, Emilly Soares Gomes Silva, and Fabricio Gomes Gonçalves. 2025. "The Potential for Glass Wool Waste as a Filler in UF Adhesive to Promote Particleboard Strength" Recycling 10, no. 6: 220. https://doi.org/10.3390/recycling10060220
APA StyleFassarella, M. V., Chaves, I. L. S., Segundinho, P. G. A., Paes, J. B., Lelis, R. C. C., Oliveira, M. P., Silva, E. S. G., & Gonçalves, F. G. (2025). The Potential for Glass Wool Waste as a Filler in UF Adhesive to Promote Particleboard Strength. Recycling, 10(6), 220. https://doi.org/10.3390/recycling10060220

