Recycling of Bulk Polyamide 6 by Dissolution-Precipitation in CaCl2-EtOH-H2O Mixtures
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials and Equipment for Dissolution Experiments
2.2. Solvent Formulation
2.3. Dissolution Procedure
2.4. Recovery of PA 6
2.5. Analyses of Recovered PA 6
2.6. Master Plot Analysis
2.7. Experimental Setup to Visualize Ultrasound Enhanced Dissolution
3. Results and Discussion
3.1. Analyses of Recovered PA 6
3.2. Influence of Energy Supply Mode on PA 6 Dissolution
3.3. Influence of Time on PA 6 Dissolution
3.4. Mechanistic Investigations
3.5. Surface Structure of Sonicated PA Strings
3.6. Influence of CEW Composition on PA 6 Dissolution
3.7. Influence of CEW:PA Mass Ratio
4. Conclusions and Outlook
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- McGlade, C.; Ekins, P. The geographical distribution of fossil fuels unused when limiting global warming to 2 °C. Nature 2015, 517, 187–190. [Google Scholar] [CrossRef] [PubMed]
- Masson-Delmotte, V.; Zhai, P.; Pörtner, H.O.; Roberts, D.; Skea, J.; Shukla, P.R.; Pirani, A.; Moufouma-Okia, W.; Péan, C.; Pidcock, R.; et al. Global Warming of 1.5 °C. An IPCC Special Report on the Impacts of Global Warming of 1.5 °C Above Pre-Industrial Levels and Related Global Greenhouse Gas Emission Pathways, in the Context of Strengthening the Global Response to the Threat of Climate Change, Sustainable Development, and Efforts to Eradicate Poverty; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2018; p. 616. [Google Scholar] [CrossRef]
- Geyer, R.; Jambeck, J.R.; Law, K.L. Production, use, and fate of all plastics ever made. Sci. Adv. 2017, 3, e1700782. [Google Scholar] [CrossRef] [PubMed]
- MacArthur Foundation, E. Towards the circular economy. J. Ind. Ecol. 2013, 2, 23–44. [Google Scholar]
- van den Beuken, E.; Urbanus, J.H.; Stegmann, P.; van Harmelen MSc, T.; Ligthart, T.; Bertling, D.I.J.; Kabasci, I.S.; Renner, I.M. From #plasticfree to Future-Proof Plastics. 2023. Available online: https://www.umsicht.fraunhofer.de/content/dam/umsicht/en/documents/publications/2023/White-paper-From-plasticfree-to-future-proof-plastics.pdf (accessed on 23 May 2023).
- Hopewell, J.; Dvorak, R.; Kosior, E. Plastics recycling: Challenges and opportunities. Philos. Trans. R. Soc. B Biol. Sci. 2009, 364, 2115–2126. [Google Scholar] [CrossRef] [PubMed]
- Rahimi, A.; García, J.M. Chemical recycling of waste plastics for new materials production. Nat. Rev. Chem. 2017, 1, 0046. [Google Scholar] [CrossRef]
- Zhao, Y.B.; Lv, X.D.; Ni, H.G. Solvent-based separation and recycling of waste plastics: A review. Chemosphere 2018, 209, 707–720. [Google Scholar] [CrossRef]
- Tonsi, G.; Maesani, C.; Alini, S.; Ortenzi, M.A.; Pirola, C. Nylon Recycling Processes: A Brief Overview. Chem. Eng. Trans. 2023, 100, 727–732. [Google Scholar] [CrossRef]
- Lange, J.P. Sustainable development: Efficiency and recycling in chemicals manufacturing. Green Chem. 2002, 4, 546–550. [Google Scholar] [CrossRef]
- Hirschberg, V.; Rodrigue, D. Recycling of polyamides: Processes and conditions. J. Polym. Sci. 2023, 61, 1937–1958. [Google Scholar] [CrossRef]
- Ben Amor, I.; Klinkova, O.; Baklouti, M.; Elleuch, R.; Tawfiq, I. Mechanical Recycling and Its Effects on the Physical and Mechanical Properties of Polyamides. Polymers 2023, 15, 4561. [Google Scholar] [CrossRef] [PubMed]
- Minor, A.J.; Goldhahn, R.; Rihko-Struckmann, L.; Sundmacher, K. Chemical Recycling Processes of Nylon 6 to Caprolactam: Review and Techno-Economic Assessment. Chem. Eng. J. 2023, 474, 145333. [Google Scholar] [CrossRef]
- Vollmer, I.; Jenks, M.J.; Roelands, M.C.; White, R.J.; Van Harmelen, T.; De Wild, P.; van Der Laan, G.P.; Meirer, F.; Keurentjes, J.T.; Weckhuysen, B.M. Beyond mechanical recycling: Giving new life to plastic waste. Angew. Chem. Int. Ed. 2020, 59, 15402–15423. [Google Scholar] [CrossRef] [PubMed]
- Arena, U.; Ardolino, F. Technical and environmental performances of alternative treatments for challenging plastics waste. Resour. Conserv. Recycl. 2022, 183, 106379. [Google Scholar] [CrossRef]
- Mangold, H.; von Vacano, B. The frontier of plastics recycling: Rethinking waste as a resource for high-value applications. Macromol. Chem. Phys. 2022, 223, 2100488. [Google Scholar] [CrossRef]
- Raju, K.; Yaseen, M. Influence of nonsolvents on dissolution characteristics of nylon-6. J. Appl. Polym. Sci. 1991, 43, 1533–1538. [Google Scholar] [CrossRef]
- Zagouras, N.; Koutinas, A. Processing scheme based on selective dissolution to recycle food packaging and other polymeric wastes and its economic analysis. Waste Manag. Res. 1995, 13, 325–333. [Google Scholar] [CrossRef]
- Kartalis, C.; Poulakis, J.; Tsenoglou, C.; Papaspyrides, C. Pure component recovery from polyamide 6/6 6 mixtures by selective dissolution and reprecipitation. J. Appl. Polym. Sci. 2002, 86, 1924–1930. [Google Scholar] [CrossRef]
- Busquets-Fité, M.; Fernandez, E.; Janer, G.; Vilar, G.; Vázquez-Campos, S.; Zanasca, R.; Citterio, C.; Mercante, L.; Puntes, V. Exploring release and recovery of nanomaterials from commercial polymeric nanocomposites. J. Phys. Conf. Ser. 2013, 429, 012048. [Google Scholar] [CrossRef]
- Costamagna, M.; Massaccesi, B.M.; Mazzucco, D.; Baricco, M.; Rizzi, P. Environmental assessment of the recycling process for polyamides-Polyethylene multilayer packaging films. Sustain. Mater. Technol. 2023, 35, e00562. [Google Scholar] [CrossRef]
- Papaspyrides, C.; Kartalis, C. A model study for the recovery of polymides using the dissolution/reprecipitation technique. Polym. Eng. Sci. 2000, 40, 979–984. [Google Scholar] [CrossRef]
- Önal, M.A.R.; Dewilde, S.; Degri, M.; Pickering, L.; Saje, B.; Riaño, S.; Walton, A.; Binnemans, K. Recycling of bonded NdFeB permanent magnets using ionic liquids. Green Chem. 2020, 22, 2821–2830. [Google Scholar] [CrossRef]
- Xu, Q.; Hu, H.; Zhu, R.; Sun, L.; Yu, J.; Wang, X. A non-destructive, environment-friendly method for separating and recycling polyamide 6 from waste and scrap polyamide 6 blended textiles. Text. Res. J. 2023, 93, 3327–3340. [Google Scholar] [CrossRef]
- Rietzler, B.; Bechtold, T.; Pham, T. Controlled surface modification of polyamide 6.6 fibres using CaCl2/H2O/EtOH solutions. Polymers 2018, 10, 207. [Google Scholar] [CrossRef]
- Rietzler, B.; Manian, A.P.; Rhomberg, D.; Bechtold, T.; Pham, T. Investigation of the decomplexation of polyamide/CaCl2 complex toward a green, nondestructive recovery of polyamide from textile waste. J. Appl. Polym. Sci. 2021, 138, 51170. [Google Scholar] [CrossRef]
- Manian, A.P.; Kraegeloh, F.E.; Braun, D.E.; Mahmud-Ali, A.; Bechtold, T.; Pham, T. Separation of polyamide 66 from mixtures with cellulose fibers by selective dissolution in calcium chloride-ethanol-water solvent. J. Appl. Polym. Sci. 2023, 140, e53813. [Google Scholar] [CrossRef]
- Gotor, F.J.; Criado, J.M.; Malek, J.; Koga, N. Kinetic analysis of solid-state reactions: The universality of master plots for analyzing isothermal and nonisothermal experiments. J. Phys. Chem. A 2000, 104, 10777–10782. [Google Scholar] [CrossRef]
- Wenzel, M.; Dharanipragada, N.A.; Galvita, V.V.; Poelman, H.; Marin, G.B.; Rihko-Struckmann, L.; Sundmacher, K. CO production from CO2 via reverse water–gas shift reaction performed in a chemical looping mode: Kinetics on modified iron oxide. J. CO2 Util. 2017, 17, 60–68. [Google Scholar] [CrossRef]
- Vyazovkin, S.; Wight, C. Kinetics in solids. Annu. Rev. Phys. Chem. 1997, 48, 125–149. [Google Scholar] [CrossRef]
- Khawam, A.; Flanagan, D.R. Solid-state kinetic models: Basics and mathematical fundamentals. J. Phys. Chem. B 2006, 110, 17315–17328. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Liang, M.; Guo, S.; Lin, Y. Studies on chain scission and extension of polyamide 6 melt in the presence of ultrasonic irradiation. Polym. Degrad. Stab. 2004, 86, 323–329. [Google Scholar] [CrossRef]
- Lin, H.; Isayev, A. Ultrasonic treatment of polypropylene, polyamide 6, and their blends. J. Appl. Polym. Sci. 2006, 102, 2643–2653. [Google Scholar] [CrossRef]
- Wang, Z.L.; Xu, J.L.; Wu, L.J.; Chen, X.; Yang, S.G.; Liu, H.C.; Zhou, X.J. Dissolution, hydrolysis and crystallization behavior of polyamide 6 in superheated water. Chin. J. Polym. Sci. 2015, 33, 1334–1343. [Google Scholar] [CrossRef]
- Mohod, A.V.; Gogate, P.R. Ultrasonic degradation of polymers: Effect of operating parameters and intensification using additives for carboxymethyl cellulose (CMC) and polyvinyl alcohol (PVA). Ultrason. Sonochem. 2011, 18, 727–734. [Google Scholar] [CrossRef] [PubMed]
- Gardeniers, M.; Mani, M.; de Boer, E.; Hermida-Merino, D.; Graf, R.; Rastogi, S.; Harings, J.A. Hydration, refinement, and dissolution of the crystalline phase in polyamide 6 polymorphs for ultimate thermomechanical properties. Macromolecules 2022, 55, 5080–5093. [Google Scholar] [CrossRef] [PubMed]
- Knappich, F.; Klotz, M.; Schlummer, M.; Wölling, J.; Mäurer, A. Recycling process for carbon fiber reinforced plastics with polyamide 6, polyurethane and epoxy matrix by gentle solvent treatment. Waste Manag. 2019, 85, 73–81. [Google Scholar] [CrossRef]
- Poulakis, J.; Papaspyrides, C. Dissolution/reprecipitation: A model process for PET bottle recycling. J. Appl. Polym. Sci. 2001, 81, 91–95. [Google Scholar] [CrossRef]
- Chen, W.; Yang, Y.; Lan, X.; Zhang, B.; Zhang, X.; Mu, T. Biomass-derived γ-valerolactone: Efficient dissolution and accelerated alkaline hydrolysis of polyethylene terephthalate. Green Chem. 2021, 23, 4065–4073. [Google Scholar] [CrossRef]
- Achilias, D.; Giannoulis, A.; Papageorgiou, G. Recycling of polymers from plastic packaging materials using the dissolution–reprecipitation technique. Polym. Bull. 2009, 63, 449–465. [Google Scholar] [CrossRef]
- García, M.T.; Gracia, I.; Duque, G.; De Lucas, A.; Rodríguez, J.F. Study of the solubility and stability of polystyrene wastes in a dissolution recycling process. Waste Manag. 2009, 29, 1814–1818. [Google Scholar] [CrossRef]
- Poulakis, J.; Papaspyrides, C. The dissolution/reprecipitation technique applied on high-density polyethylene: I. Model recycling experiments. Adv. Polym. Technol. J. Polym. Process. Inst. 1995, 14, 237–242. [Google Scholar] [CrossRef]
- Deshmukh, Y.S.; Graf, R.; Hansen, M.R.; Rastogi, S. Dissolution and crystallization of polyamides in superheated water and concentrated ionic solutions. Macromolecules 2013, 46, 7086–7096. [Google Scholar] [CrossRef]
- Mu, B.; Yang, Y. Complete separation of colorants from polymeric materials for cost-effective recycling of waste textiles. Chem. Eng. J. 2022, 427, 131570. [Google Scholar] [CrossRef]
- Mu, B.; Shao, Y.; Yu, X.; McBride, L.; Hidalgo, H.; Yang, Y. High-quality separation and recovery of nylon and dyes from waste carpet via non-destructive dissolution and controlled precipitation for sustainable recycling. Sep. Purif. Technol. 2024, 332, 125801. [Google Scholar] [CrossRef]
- Sun, J.; Wang, W.; Yue, Q. Review on microwave-matter interaction fundamentals and efficient microwave-associated heating strategies. Materials 2016, 9, 231. [Google Scholar] [CrossRef] [PubMed]
- Vandenburg, H.; Clifford, A.; Bartle, K.; Garden, L.; Dean, J.; Costley, C. Critical review: Analytical extraction of additives from polymers. Analyst 1997, 122, 101R–116R. [Google Scholar] [CrossRef]
- Miller-Chou, B.A.; Koenig, J.L. A review of polymer dissolution. Prog. Polym. Sci. 2003, 28, 1223–1270. [Google Scholar] [CrossRef]
- Stamatialis, D.; Sanopoulou, M.; Raptis, I. Swelling and dissolution behavior of poly (methyl methacrylate) films in methyl ethyl ketone/methyl alcohol mixtures studied by optical techniques. J. Appl. Polym. Sci. 2002, 83, 2823–2834. [Google Scholar] [CrossRef]
- Leighton, T. The Acoustic Bubble; Academic Press: London, UK; San Diego, CA, USA, 2012; pp. 341–430. [Google Scholar]
- Martínez, J.; Sales Silva, L.P. Scale-up of Extraction Processes. In Natural Product Extraction: Principles and Applications; The Royal Society of Chemistry: London, UK, 2013; pp. 363–398. [Google Scholar] [CrossRef]
CEW | H2O:EtOH Molar Ratio | ||
---|---|---|---|
A | 0.000 | 0.875 | 0.00 |
B | 0.125 | 0.750 | 0.17 |
C | 0.250 | 0.625 | 0.40 |
D | 0.375 | 0.500 | 0.75 |
E | 0.500 | 0.375 | 1.33 |
F | 0.625 | 0.250 | 2.50 |
G | 0.750 | 0.125 | 6.00 |
Name and Abbreviation | |
---|---|
1D diffusion (D1) | |
2D diffusion (D2) | |
3D diffusion (D3) | |
Reaction order (Fn) | |
Contracting cylinder (R2) | |
Contracting sphere (R3) | |
Avrami-Efoeyev (Am) | |
Power law (Pn) |
Experimental Variables | PDI | ||||
---|---|---|---|---|---|
CEW | Energy Supply | Time [h] | [104 g/mol] | [104 g/mol] | [−] |
virgin PA 6 filaments | 1.7 | 3.2 | 2.0 | ||
C | microwave | 3 | 1.4 | 3.2 | 2.4 |
C | microwave | 24 | 1.7 | 3.6 | 2.1 |
E | microwave | 3 | 1.8 | 3.6 | 2.0 |
E | microwave | 24 | 1.8 | 3.7 | 2.0 |
C | ultrasound | 3 | 1.5 | 3.4 | 2.3 |
C | ultrasound | 24 | 1.6 | 3.6 | 2.2 |
E | ultrasound | 3 | 1.3 | 3.2 | 2.5 |
E | ultrasound | 24 | 1.9 | 3.7 | 2.0 |
Polymer | Change [%] | Reference | ||
---|---|---|---|---|
PET | 92–98 | [38] | ||
PET | 91 | [39] | ||
EPS, PS, PVC, PET | 87–99 | [40] | ||
PS | 85–100 | [41] | ||
PE | 101 | [42] | ||
PA 6 | 103–104 | [22] | ||
PA 6, PA 6.6 | 101–105 | [19] | ||
PA 4.6 | 93–102 | [43] | ||
PA 6 | 14–100 | [34] | ||
PA 6 | 64–94 | [37] | ||
PA 6.6 | 98–102 | [44] | ||
PA 6 | 64–102 | [36] | ||
PA 6.6 | 100 | [45] | ||
PA 6 | 100–107 | [24] | ||
PA 6 | 78–113 | this work | ||
PA 6 | 99–117 | this work |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Goldhahn, R.; Minor, A.-J.; Rihko-Struckmann, L.; Ohl, S.-W.; Pfeiffer, P.; Ohl, C.-D.; Sundmacher, K. Recycling of Bulk Polyamide 6 by Dissolution-Precipitation in CaCl2-EtOH-H2O Mixtures. Recycling 2025, 10, 5. https://doi.org/10.3390/recycling10010005
Goldhahn R, Minor A-J, Rihko-Struckmann L, Ohl S-W, Pfeiffer P, Ohl C-D, Sundmacher K. Recycling of Bulk Polyamide 6 by Dissolution-Precipitation in CaCl2-EtOH-H2O Mixtures. Recycling. 2025; 10(1):5. https://doi.org/10.3390/recycling10010005
Chicago/Turabian StyleGoldhahn, Ruben, Ann-Joelle Minor, Liisa Rihko-Struckmann, Siew-Wan Ohl, Patricia Pfeiffer, Claus-Dieter Ohl, and Kai Sundmacher. 2025. "Recycling of Bulk Polyamide 6 by Dissolution-Precipitation in CaCl2-EtOH-H2O Mixtures" Recycling 10, no. 1: 5. https://doi.org/10.3390/recycling10010005
APA StyleGoldhahn, R., Minor, A.-J., Rihko-Struckmann, L., Ohl, S.-W., Pfeiffer, P., Ohl, C.-D., & Sundmacher, K. (2025). Recycling of Bulk Polyamide 6 by Dissolution-Precipitation in CaCl2-EtOH-H2O Mixtures. Recycling, 10(1), 5. https://doi.org/10.3390/recycling10010005