The Role of the Precursor on the Electrochemical Performance of N,S Co-Doped Graphene Electrodes in Aqueous Electrolytes
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. Physico-Chemical Results
3.2. Electrochemical Results
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Dai, Z.; Ren, P.G.; Jin, Y.L.; Zhang, H.; Ren, F.; Zhang, Q. Nitrogen-sulphur Co-doped graphenes modified electrospun lignin/polyacrylonitrile-based carbon nanofiber as a high-performance supercapacitor. J. Power Sources 2019, 437, 226937. [Google Scholar] [CrossRef]
- Alcaraz, L.; Adán-Más, A.; Arévalo-Cid, P.; de Fatima Montemor, M.; López, F.A. Activated Carbons From Winemaking Biowastes for Electrochemical Double-Layer Capacitors. Front. Chem. 2020, 8, 686. [Google Scholar] [CrossRef] [PubMed]
- Almeida, M.M.; Más, A.A.; Silva, T.M.; Montemor, M.F. From manganese oxide to manganese sulphide: Synthesis and its effect on electrochemical energy storage performance. Electrochim. Acta 2021, 389, 138711. [Google Scholar] [CrossRef]
- Zhang, J.; Li, Y.; Han, M.; Xia, Q.; Chen, Q.; Chen, M. Constructing ultra-thin Ni-MOF@NiS2 nanosheets arrays derived from metal organic frameworks for advanced all-solid-state asymmetric supercapacitor. Mater. Res. Bull. 2020, 137, 111186. [Google Scholar] [CrossRef]
- Chen, Y.; Sun, L.; Liu, Z.; Jiang, Y.; Zhuo, K. Synthesis of nitrogen/sulfur co-doped reduced graphene oxide aerogels for high-performance supercapacitors with ionic liquid electrolyte. Mater. Chem. Phys. 2019, 238, 121932. [Google Scholar] [CrossRef]
- Adan-Mas, A.; Alcaraz, L.; Arévalo-Cid, P.; López-Gómez, F.A.; Montemor, F. Coffee-derived activated carbon from second biowaste for supercapacitor applications. Waste Manag. 2021, 120, 280–289. [Google Scholar] [CrossRef]
- Xu, Y.; Lu, W.; Xu, G.; Chou, T.W. Structural supercapacitor composites: A review. Compos. Sci. Technol. 2021, 204, 108636. [Google Scholar] [CrossRef]
- Tang, X.; Zhang, B.; Lui, Y.H.; Hu, S. Ni-Mn bimetallic oxide nanosheets as high-performance electrode materials for asymmetric supercapacitors. J. Energy Storage 2019, 25, 100897. [Google Scholar] [CrossRef]
- Chen, X.; Chen, X.; Xu, X.; Yang, Z.; Liu, Z.; Zhang, L.; Xu, X.; Chen, Y.; Huang, S. Sulfur-doped porous reduced graphene oxide hollow nanosphere frameworks as metal-free electrocatalysts for oxygen reduction reaction and as supercapacitor electrode materials. Nanoscale 2014, 6, 13740–13747. [Google Scholar] [CrossRef]
- Li, J.; Zhang, G.; Fu, C.; Deng, L.; Sun, R.; Wong, C.P. Facile preparation of nitrogen/sulfur co-doped and hierarchical porous graphene hydrogel for high-performance electrochemical capacitor. J. Power Sources 2017, 345, 146–155. [Google Scholar] [CrossRef]
- Guo, M.; Balamurugan, J.; Li, X.; Kim, N.H.; Lee, J.H. Hierarchical 3D Cobalt-Doped Fe3O4 Nanospheres@NG Hybrid as an Advanced Anode Material for High-Performance Asymmetric Supercapacitors. Small 2017, 13, 1701275. [Google Scholar] [CrossRef]
- Zhang, J.; Zhou, J.; Wang, D.; Hou, L.; Gao, F. Nitrogen and sulfur codoped porous carbon microsphere: A high performance electrode in supercapacitor. Electrochim. Acta 2016, 191, 933–939. [Google Scholar] [CrossRef]
- Zhang, L.; Chen, H.; Lu, X.; Wang, Y.; Tan, L.; Sui, D.; Qi, W. Fabrication of N, S co-doped graphene aerogel for high-performance supercapacitors: π-conjugated planar molecules as efficient dopants and pillared agents. Appl. Surf. Sci. 2020, 529, 147022. [Google Scholar] [CrossRef]
- Zhou, Y.; Zeng, Y.; Xu, D.; Li, P.; Wang, H.-G.; Li, X.; Li, Y.; Wang, Y. Nitrogen and sulfur dual-doped graphene sheets as anode materials with superior cycling stability for lithium-ion batteries. Electrochim. Acta 2015, 184, 24–31. [Google Scholar] [CrossRef]
- Vlachova, J.; Tmejová, K.; Kopel, P.; Korabik, M.; Zitka, J.; Hynek, D.; Kynicky, J.; Adam, V.; Kizek, R. A 3D microfluidic chip for electrochemical detection of hydrolysed nucleic bases by a modified glassy carbon electrode. Sensors 2015, 15, 2438–2452. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ma, L.; Liu, J.; Lv, S.; Zhou, Q.; Shen, X.; Mo, S.; Tong, H. Scalable one-step synthesis of N,S co-doped graphene-enhanced hierarchical porous carbon foam for high-performance solid-state supercapacitors. J. Mater. Chem. A 2019, 7, 7591–7603. [Google Scholar] [CrossRef]
- Upadhyay, K.K.; Bundaleska, N.; Abrashev, M.; Teodoro, O.; Fonseca, I.; de Ferro, A.M.; Silva, R.P.; Tatarova, E.; Montemor, M. Free-standing N-Graphene as conductive matrix for Ni(OH)2 based supercapacitive electrodes. Electrochim. Acta 2020, 334, 135592. [Google Scholar] [CrossRef]
- Ferrero, G.A.; Fuertes, A.B.; Sevilla, M. N-doped microporous carbon microspheres for high volumetric performance supercapacitors. Electrochim. Acta 2015, 168, 320–329. [Google Scholar] [CrossRef] [Green Version]
- Wang, L.J.; Zgierski, M.Z. Structures of Nitrogen-Rich Sulfides: SN 5 and SN 6. J. Phys. Chem. A 2004, 108, 4679–4684. [Google Scholar] [CrossRef]
- Jiang, Z.J.; Jiang, Z.; Chen, W. The role of holes in improving the performance of nitrogen-doped holey graphene as an active electrode material for supercapacitor and oxygen reduction reaction. J. Power Sources 2014, 251, 55–65. [Google Scholar] [CrossRef]
- Gopalsamy, K.; Balamurugan, J.; Thanh, T.D.; Kim, N.H.; Lee, J.H. Fabrication of nitrogen and sulfur co-doped graphene nanoribbons with porous architecture for high-performance supercapacitors. Chem. Eng. J. 2017, 312, 180–190. [Google Scholar] [CrossRef]
- Xu, X.; Zeng, H.; Han, D.; Qiao, K.; Xing, W.; Rood, M.J.; Yan, Z. Nitrogen and Sulfur Co-Doped Graphene Nanosheets to Improve Anode Materials for Sodium-Ion Batteries. ACS Appl. Mater. Interfaces 2018, 10, 37172–37180. [Google Scholar] [CrossRef] [PubMed]
- Shaikh, J.S.; Shaikh, N.S.; Kharade, R.; Beknalkar, S.A.; Patil, J.V.; Suryawanshi, M.P.; Kanjanaboos, P.; Hong, C.K.; Kim, J.H.; Patil, P.S. Symmetric supercapacitor: Sulphurized graphene and ionic liquid. J. Colloid Interface Sci. 2018, 527, 40–48. [Google Scholar] [CrossRef] [PubMed]
- Wang, T.; Wang, L.X.; Wu, D.L.; Xia, W.; Jia, D.Z. Interaction between nitrogen and sulfur in co-doped graphene and synergetic effect in supercapacitor. Sci. Rep. 2015, 5, srep09591. [Google Scholar] [CrossRef] [Green Version]
- Wang, H.; Maiyalagan, T.; Wang, X. Review on recent progress in nitrogen-doped graphene: Synthesis, characterization, and its potential applications. ACS Catal. 2012, 2, 781–794. [Google Scholar] [CrossRef]
- Chen, Y.; Liu, Z.; Sun, L.; Lu, Z.; Zhuo, K. Nitrogen and sulfur co-doped porous graphene aerogel as an efficient electrode material for high performance supercapacitor in ionic liquid electrolyte. J. Power Sources 2018, 390, 215–223. [Google Scholar] [CrossRef]
- Fujisawa, K.; Cruz-Silva, R.; Yang, K.-S.; Kim, Y.A.; Hayashi, T.; Endo, M.; Terrones, M.; Dresselhaus, M.S. Importance of open, heteroatom-decorated edges in chemically doped-graphene for supercapacitor applications. J. Mater. Chem. A 2014, 2, 9532–9540. [Google Scholar] [CrossRef]
- Ji, H.; Hu, S.; Jiang, Z.; Shi, S.; Hou, W.; Yang, G. Directly scalable preparation of sandwiched MoS2/graphene nanocomposites via ball-milling with excellent electrochemical energy storage performance. Electrochim. Acta 2019, 299, 143–151. [Google Scholar] [CrossRef]
- SaGodse, L.; Karandikar, P.B.; Khaladkar, M.Y. Study of carbon materials and effect of its ball milling, on the capacitance of supercapacitor. Energy Procedia 2014, 54, 302–309. [Google Scholar] [CrossRef] [Green Version]
- Chen, Z.; Hou, L.; Cao, Y.; Tang, Y.; Li, Y. Gram-scale production of B, N co-doped graphene-like carbon for high-performance supercapacitor electrodes. Appl. Surf. Sci. 2018, 435, 937–944. [Google Scholar] [CrossRef]
- Mao, M.; Chen, S.; He, P.; Zhang, H.; Liu, H. Facile and economical mass production of graphene dispersions and flakes. J. Mater. Chem. A 2014, 2, 4132–4135. [Google Scholar] [CrossRef]
- Fernandes, D.M.; Mathumba, P.; Fernandes, A.J.S.; Iwuoha, E.I.; Freire, C. Towards efficient oxygen reduction reaction electrocatalysts through graphene doping. Electrochim. Acta 2019, 319, 72–81. [Google Scholar] [CrossRef]
- Rajkumar, M.; Hsu, C.T.; Wu, T.H.; Chen, M.G.; Hu, C.C. Advanced materials for aqueous supercapacitors in the asymmetric design. Prog. Nat. Sci. Mater. Int. 2015, 25, 527–544. [Google Scholar] [CrossRef] [Green Version]
- Mathumba, P.; Fernandes, D.M.; Matos, R.; Iwuoha, E.I.; Freire, C. Metal Oxide (Co3O4 and Mn3O4) Impregnation into S, N-doped Graphene for Oxygen Reduction Reaction (ORR). Materials 2020, 13, 1562. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ferrari, J.; Robertson, A.C. Interpretation of Raman spectra of disordered and amorphous carbon A. Phys. Rev. B 2000, 61, 14095–14107. [Google Scholar] [CrossRef] [Green Version]
- Fernandes, D.M.; Novais, H.C.; Bacsa, R.; Serp, P.; Bachiller-Baeza, B.; Rodríguez-Ramos, I.; Guerrero-Ruiz, A.; Freire, C. Polyoxotungstate@Carbon Nanocomposites As Oxygen Reduction Reaction (ORR) Electrocatalysts. Langmuir 2018, 34, 6376–6387. [Google Scholar] [CrossRef]
- Farivar, F.; Yap, P.L.; Karunagaran, R.U.; Losic, D. Thermogravimetric Analysis (TGA) of Graphene Materials: Effect of Particle Size of Graphene, Graphene Oxide and Graphite on Thermal Parameters. J. Carbon Res. 2021, 7, 41. [Google Scholar] [CrossRef]
- Limani, N.; Marques, I.S.; Jarrais, B.; Fernandes, A.J.S.; Freire, C.; Fernandes, D.M. Cobalt Phosphotungstate-Based Composites as Bifunctional Electrocatalysts for Oxygen Reactions. Catalysts 2022, 12, 357. [Google Scholar] [CrossRef]
- Yang, S.; Zhi, L.; Tang, K.; Feng, X.; Maier, J.; Müllen, K. Efficient synthesis of heteroatom (N or S)-doped graphene based on ultrathin graphene oxide-porous silica sheets for oxygen reduction reactions. Adv. Funct. Mater. 2012, 22, 3634–3640. [Google Scholar] [CrossRef]
- Wu, D.; Wang, T.; Wang, L.; Jia, D. Hydrothermal synthesis of nitrogen, sulfur co-doped graphene and its high performance in supercapacitor and oxygen reduction reaction. Microporous Mesoporous Mater. 2019, 290, 109556. [Google Scholar] [CrossRef]
- Haque, E.; Zavabeti, A.; Uddin, N.; Wang, Y.; Rahim, A.; Syed, N.; Xu, K.; Jannat, A.; Haque, F.; Zhang, B.Y.; et al. Deciphering the role of quaternary n in O2 reduction over controlled n-doped carbon catalysts. Chem. Mater. 2020, 32, 1384–1392. [Google Scholar] [CrossRef]
- Zu, C.; Manthiram, A. Hydroxylated graphene-sulfur nanocomposites for high-rate lithium-sulfur batteries. Adv. Energy Mater. 2013, 3, 1008–1012. [Google Scholar] [CrossRef]
- Ai, W.; Luo, Z.; Jiang, J.; Zhu, J.; Du, Z.; Fan, Z.; Xie, L.; Zhang, H.; Huang, W.; Yu, T. Nitrogen and sulfur codoped graphene: Multifunctional electrode materials for high-performance LI-ion batteries and oxygen reduction reaction. Adv. Mater. 2014, 26, 6186–6192. [Google Scholar] [CrossRef]
- Liu, Y.; Qiao, Y.; Wei, G.; Li, S.; Lu, Z.; Wang, X.; Lou, X. Sodium storage mechanism of N, S co-doped nanoporous carbon: Experimental design and theoretical evaluation. Energy Storage Mater. 2018, 11, 274–281. [Google Scholar] [CrossRef]
- Liu, Q.; Zhang, L.; Chen, H.; Jin, J.; Wang, N.; Wang, Y.; Sui, D. Sulfur and nitrogen co-doped three-dimensional graphene aerogels for high-performance supercapacitors: A head to head vertical bicyclic molecule both as pillaring agent and dopant. Appl. Surf. Sci. 2021, 565, 150453. [Google Scholar] [CrossRef]
- Yi, H.T.; Zhu, Y.Q.; Chen, X.Y.; Zhang, Z.J. Nitrogen and sulfur co-doped nanoporous carbon material derived from p-nitrobenzenamine within several minutes and the supercapacitor application. J. Alloys Compd. 2015, 649, 851–858. [Google Scholar] [CrossRef]
- Balaji, S.S.; Raj, A.G.K.; Karnan, M.; Sathish, M. Investigations on the nature of electrolyte on the electrochemical supercapacitor performance of heteroatom doped graphene. Ionics 2020, 26, 2081–2094. [Google Scholar] [CrossRef]
- Tao, B.; Zhang, N.; Ye, T.; Gao, P.; Li, H.; Xie, Y.; Liu, J.; Wang, G.; Zhang, W.; Chang, H. High-voltage aqueous symmetric supercapacitors based on 3D bicontinuous, highly wrinkled, N-doped porous graphene-like ultrathin carbon sheets. New J. Chem. 2022, 46, 3288–3296. [Google Scholar] [CrossRef]
- Xing, L.-B.; Hou, S.-F.; Zhang, J.-L.; Zhou, J.; Li, Z.; Si, W.; Zhuo, S. A facile preparation of three dimensional N, S co-doped graphene hydrogels with thiocarbohydrazide for electrode materials in supercapacitor. Mater. Lett. 2015, 147, 97–100. [Google Scholar] [CrossRef]
- Liu, J.; Zhu, Y.; Chen, X.; Yi, W. Nitrogen, sulfur and phosphorus tri-doped holey graphene oxide as a novel electrode material for application in supercapacitor. J. Alloys Compd. 2020, 815, 152328. [Google Scholar] [CrossRef]
- Besir, M.; Gürsu, H.; Gencten, M.; Sahin, Y. Preparation of different heteroatom doped graphene oxide based electrodes by electrochemical method and their supercapacitor applications. J. Energy Storage 2021, 35, 102328. [Google Scholar] [CrossRef]
- Deng, H.; Zhu, M.; Jin, T.; Cheng, C.; Zheng, J.; Qian, Y. One-step synthesis of nitrogen, sulphur-codoped graphene as electrode material for supercapacitor with excellent cycling stability. Int. J. Electrochem. Sci. 2020, 15, 16–25. [Google Scholar] [CrossRef]
- Abbas, Q.; Raza, R.; Shabbir, I.; Olabi, A.G. Heteroatom doped high porosity carbon nanomaterials as electrodes for energy storage in electrochemical capacitors: A review. J. Sci. Adv. Mater. Devices 2019, 4, 341–352. [Google Scholar] [CrossRef]
- Soysal, M. Voltammetric determination of fenitrothion based on pencil graphite electrode modified with poly(Purpald®). Chem. Pap. 2019, 73, 1785–1794. [Google Scholar] [CrossRef]
- Kesavan, T.; Aswathy, R.; Raj, I.A.; Kumar, T.P.; Ragupathy, P. Nitrogen-Doped Graphene as Electrode Material with Enhanced Energy Density for Next-Generation Supercapacitor Application. ECS J. Solid State Sci. Technol. 2015, 4, M88–M92. [Google Scholar] [CrossRef]
- Liu, Y.-Z.; Li, Y.-F.; Su, F.-Y.; Xie, L.-J.; Kong, Q.-Q.; Li, X.-M.; Gao, J.-G.; Chen, C.-M. Easy one-step synthesis of N-doped graphene for supercapacitors. Energy Storage Mater. 2016, 2, 69–75. [Google Scholar] [CrossRef]
- Jia, S.; Wei, J.; Meng, X.; Shao, Z. Facile and friendly preparation of N/S Co-doped graphene-like carbon nanosheets with hierarchical pore by molten salt for all-solid-state supercapacitor. Electrochim. Acta 2020, 331, 135338. [Google Scholar] [CrossRef]
- Adán-Más, A.; Duarte, R.G.; Silva, T.M.; Guerlou-Demourgues, L.; Montemor, M.F.G. Enhancement of the Ni-Co hydroxide response as Energy Storage Material by Electrochemically Reduced Graphene Oxide. Electrochim. Acta 2017, 240, 323–340. [Google Scholar] [CrossRef]
- Li, Z.; He, W.; Wang, X.; Wang, X.; Song, M.; Zhao, J. N/S dual-doped graphene with high defect density for enhanced supercapacitor properties. Int. J. Hydrogen Energy 2020, 45, 112–122. [Google Scholar] [CrossRef]
- Wu, C.; Cai, J.; Zhu, Y.; Zhang, K. Hybrid Reduced Graphene Oxide Nanosheet Supported Mn-Ni-Co Ternary Oxides for Aqueous Asymmetric Supercapacitors. ACS Appl. Mater. Interfaces 2017, 9, 19114–19123. [Google Scholar] [CrossRef] [PubMed]
- Shams, M.; Guiney, L.M.; Huang, L.; Ramesh, M.; Yang, X.; Hersam, M.C.; Chowdhury, I. Influence of functional groups on the degradation of graphene oxide nanomaterials. Environ. Sci. Nano 2019, 6, 2203–2214. [Google Scholar] [CrossRef]
- Sonia, Y.K.; Meher, S.K. Electrostructural Compatibility of Battery-Type Diffuse-Porous Co9S8-NiCo2S4/Defective Reduced Graphene Oxide and Flaky FeS/Nitrogen-Doped Defective Reduced Graphene Oxide for Ultra-High-Performance All-Solid-State Hybrid Pseudocapacitors. ACS Appl. Energy Mater. 2022, 5, 13672–13691. [Google Scholar] [CrossRef]
- Singh, K.P.; Bhattacharjya, D.; Razmjooei, F.; Yu, J.S. Effect of pristine graphene incorporation on charge storage mechanism of three-dimensional graphene oxide: Superior energy and power density retention. Sci. Rep. 2016, 6, 31555. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mandal, B.; Saha, S.; Das, D.; Panda, J.; Das, S.; Sarkar, R.; Tudu, B. Supercapacitor performance of nitrogen doped graphene synthesized via DMF assisted single-step solvothermal method. FlatChem 2022, 34, 100400. [Google Scholar] [CrossRef]
- Fite, M.C.; Imae, T. Capacitance enhancement of nitrogen-doped graphene oxide/magnetite with polyaniline or carbon dots under external magnetic field: Supported by theoretical estimation. J. Colloid Interface Sci. 2021, 594, 228–244. [Google Scholar] [CrossRef] [PubMed]
- Zhang, S.; Sui, L.; Dong, H.; He, W.; Dong, L.; Yu, L. High-Performance Supercapacitor of Graphene Quantum Dots with Uniform Sizes. ACS Appl. Mater. Interfaces 2018, 10, 12983–12991. [Google Scholar] [CrossRef]
- Kumar, A.; Tan, C.-S.; Kumar, N.; Singh, P.; Sharma, Y.; Leu, J.; Huang, E.-W.; Winie, T.; Wei, K.-H.; Tseng, T.Y. Pentafluoropyridine functionalized novel heteroatom-doped with hierarchical porous 3D cross-linked graphene for supercapacitor applications. RSC Adv. 2021, 11, 26892–26907. [Google Scholar] [CrossRef]
- Zhou, J.; Shen, H.; Li, Z.; Zhang, S.; Zhao, Y.; Bi, X.; Wang, Y.; Cui, H.; Zhuo, S. Porous carbon materials with dual N, S-doping and uniform ultra-microporosity for high performance supercapacitors. Electrochim. Acta 2016, 209, 557–564. [Google Scholar] [CrossRef]
- Torchała, K.; Kierzek, K.; Machnikowski, J. Capacitance behavior of KOH activated mesocarbon microbeads in different aqueous electrolytes. Electrochim. Acta 2012, 86, 260–267. [Google Scholar] [CrossRef]
- Zhou, W.; Lei, S.; Sun, S.; Ou, X.; Fu, Q.; Xu, Y.; Xiao, Y.; Cheng, B. From weed to multi-heteroatom-doped honeycomb-like porous carbon for advanced supercapacitors: A gelatinization-controlled one-step carbonization. J. Power Sources 2018, 402, 203–212. [Google Scholar] [CrossRef]
- Gopalakrishnan, A.; Badhulika, S. From onion skin waste to multi-heteroatom self-doped highly wrinkled porous carbon nanosheets for high-performance supercapacitor device. J. Energy Storage 2021, 38, 102533. [Google Scholar] [CrossRef]
Material | Precursor |
---|---|
SN6−GF | 4-amino-3-hydrazino-5-mercapto-1,2,4-triazole (C2H6N6S) |
S3N3−GF | 1,3,5-triazine-2,4,6-trithiol (C3H3N3S3) |
S3N2−GF | 2-5-dimercapto-1,3,4-thiadiazole (C2H2N2S3) |
Sample | Atomic Percentage a | Atomic Ratio | |||||||
---|---|---|---|---|---|---|---|---|---|
C 1s | O 1s | N 1s | S 2p | ||||||
S3N3−GF | 96.7 | 1.8 | 1.2 | 0.3 | 1.55 | 1.55 | 1.24 | 0.31 | 4 |
S3N2−GF | 97.4 | 1.1 | 1.3 | 0.2 | 1.54 | 1.54 | 1.33 | 0.21 | 6.5 |
SN6−GF | 93.9 | 3.2 | 2.6 | 0.3 | 3.08 | 3.08 | 2.77 | 0.31 | 8.7 |
Material | % N | ||
---|---|---|---|
398.1–398.6 eV (Pyridinic N) | 399.3–400.1 eV (Pyrrolic N) | 400.4–402.2 eV (Quaternary N) | |
S3N3−GF (25:75) | 67.3 | 25.8 | 6.9 |
S3N2−GF (25:75) | 63.6 | 23.1 | 13.3 |
SN6−GF (25:75) | 59.8 | 22.6 | 17.6 |
Material/Applied at Specific Current Density (A∙g−1) | Specific Capacitance (F∙g−1) | |||||
---|---|---|---|---|---|---|
1 | 2 | 4 | 6 | 8 | 10 | |
SN6−GF | 48.4 | 46.9 | 45.5 | 44.5 | 43.8 | 42.8 |
S3N2−GF | 41.9 | 40.9 | 39.2 | 37.8 | 36.5 | 35.3 |
S3N3−GF | 23.6 | 23.2 | 22.7 | 22.3 | 21.8 | 21.3 |
Material/Applied at Specific Current Density (A∙g−1) | Specific Capacitance (F∙g−1) | |||||
---|---|---|---|---|---|---|
1 | 2 | 4 | 6 | 8 | 10 | |
SN6−GF | 21.4 | 20.1 | 18.5 | 16.9 | 15.4 | 14.4 |
S3N2−GF | 13.8 | 12.8 | 10.9 | 9.3 | 7.1 | 4.4 |
S3N3−GF | 18.3 | 17.4 | 15.6 | 14.1 | 11.9 | 9.7 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Braga, R.; Fernandes, D.M.; Adán-Más, A.; Silva, T.M.; Montemor, M.F. The Role of the Precursor on the Electrochemical Performance of N,S Co-Doped Graphene Electrodes in Aqueous Electrolytes. Batteries 2023, 9, 168. https://doi.org/10.3390/batteries9030168
Braga R, Fernandes DM, Adán-Más A, Silva TM, Montemor MF. The Role of the Precursor on the Electrochemical Performance of N,S Co-Doped Graphene Electrodes in Aqueous Electrolytes. Batteries. 2023; 9(3):168. https://doi.org/10.3390/batteries9030168
Chicago/Turabian StyleBraga, Rodrigo, Diana M. Fernandes, Alberto Adán-Más, Teresa M. Silva, and M. F. Montemor. 2023. "The Role of the Precursor on the Electrochemical Performance of N,S Co-Doped Graphene Electrodes in Aqueous Electrolytes" Batteries 9, no. 3: 168. https://doi.org/10.3390/batteries9030168
APA StyleBraga, R., Fernandes, D. M., Adán-Más, A., Silva, T. M., & Montemor, M. F. (2023). The Role of the Precursor on the Electrochemical Performance of N,S Co-Doped Graphene Electrodes in Aqueous Electrolytes. Batteries, 9(3), 168. https://doi.org/10.3390/batteries9030168