Sulfur Dioxide and Sulfolane as Additives in Organic Electrolytes to Develop Room-Temperature Sodium Batteries
Abstract
:1. Introduction
2. Results and Discussion
3. Materials and Methods
3.1. Synthesis of Organic Electrolytes
3.2. Electrochemical Measurements
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Coetzer, J. A New High Energy Density Battery System. J. Power Sources 1986, 18, 377–380. [Google Scholar] [CrossRef]
- Dustmann, C.-H. Advances in ZEBRA Batteries. J. Power Sources 2004, 127, 85–92. [Google Scholar] [CrossRef]
- Kim, B.-R.; Jeong, G.; Kim, A.; Kim, Y.; Kim, M.G.; Kim, H.; Kim, Y.-J. High Performance Na-CuCl2 Rechargeable Battery toward Room Temperature ZEBRA-Type Battery. Adv. Energy Mater. 2016, 6, 1600862. [Google Scholar] [CrossRef]
- Zheng, X.; Bommier, C.; Luo, W.; Jiang, L.; Hao, Y.; Huang, Y. Sodium Metal Anodes for Room-Temperature Sodium-Ion Batteries: Applications, Challenges and Solutions. Energy Storage Mater. 2019, 16, 6–23. [Google Scholar] [CrossRef]
- Lee, J.; Kim, J.; Kim, S.; Jo, C.; Lee, J. A Review on Recent Approaches for Designing the SEI Layer on Sodium Metal Anodes. Mater. Adv. 2020, 1, 3143–3166. [Google Scholar] [CrossRef]
- Liu, W.; Liu, P.; Mitlin, D. Review of Emerging Concepts in SEI Analysis and Artificial SEI Membranes for Lithium, Sodium, and Potassium Metal Battery Anodes. Adv. Energy Mater. 2020, 10, 2002297. [Google Scholar] [CrossRef]
- Gao, L.; Chen, J.; Chen, Q.; Kong, X. The Chemical Evolution of Solid Electrolyte Interface in Sodium Metal Batteries. Sci. Adv. 2022, 8, eabm4606. [Google Scholar] [CrossRef]
- Giffin, G.A. Ionic Liquid-Based Electrolytes for “Beyond Lithium” Battery Technologies. J. Mater. Chem. A 2016, 4, 13378–13389. [Google Scholar] [CrossRef]
- Hilder, M.; Howlett, P.; Saurel, D.; Gonzalo, E.; Basile, A.; Armand, M.; Rojo, T.; Kar, M.; MacFarlane, D.R.; Forsyth, M. The Effect of Cation Chemistry on Physicochemical Behaviour of Superconcentrated NaFSI Based Ionic Liquid Electrolytes and the Implications for Na Battery Performance. Electrochim. Acta 2018, 268, 94–100. [Google Scholar] [CrossRef]
- Monti, D.; Ponrouch, A.; Palacín, M.R.; Johansson, P. Towards Safer Sodium-Ion Batteries via Organic Solvent/Ionic Liquid Based Hybrid Electrolytes. J. Power Sources 2016, 324, 712–721. [Google Scholar] [CrossRef] [Green Version]
- Vélez, J.F.; Álvarez, L.V.; del Río, C.; Herradón, B.; Mann, E.; Morales, E. Imidazolium-Based Mono and Dicationic Ionic Liquid Sodium Polymer Gel Electrolytes. Electrochim. Acta 2017, 241, 517–525. [Google Scholar] [CrossRef]
- Brissot, C.; Rosso, M.; Chazalviel, J.-N.; Lascaud, S. Dendritic Growth Mechanisms in Lithium/Polymer Cells. J. Power Sources 1999, 81–82, 925–929. [Google Scholar] [CrossRef]
- Cao, R.; Mishra, K.; Li, X.; Qian, J.; Engelhard, M.H.; Bowden, M.E.; Han, K.S.; Mueller, K.T.; Henderson, W.A.; Zhang, J.G. Enabling Room Temperature Sodium Metal Batteries. Nano Energy 2016, 30, 825–830. [Google Scholar] [CrossRef]
- Jeong, G.; Kim, H.; Sug Lee, H.; Han, Y.K.; Hwan Park, J.; Hwan Jeon, J.; Song, J.; Lee, K.; Yim, T.; Jae Kim, K.; et al. A Room Temperature Sodium Rechargeable Battery Using an SO2 -Based Nonflammable Inorganic Liquid Catholyte. Sci. Rep. 2015, 5, 12827. [Google Scholar] [CrossRef]
- Song, J.; Jeong, G.; Lee, A.J.; Park, J.H.; Kim, H.; Kim, Y.J. Dendrite-Free Polygonal Sodium Deposition with Excellent Interfacial Stability in a NaAlCl4-2SO2 Inorganic Electrolyte. ACS Appl. Mater. Interfaces 2015, 7, 27206–27214. [Google Scholar] [CrossRef] [PubMed]
- Ruiz-Martínez, D.; Kovacs, A.; Gómez, R. Development of Novel Inorganic Electrolytes for Room Temperature Rechargeable Sodium Metal Batteries. Energy Environ. Sci. 2017, 10, 1936–1941. [Google Scholar] [CrossRef]
- Wang, Z.; Lu, K.; Xia, F.; Dahunsi, O.; Gao, S.; Li, B.; Wang, R.; Lu, D.; Qin, W.; Cheng, Y.; et al. Sodiated NaxSnSb nanoparticles embedded in N-doped graphene sponges direct uniform Na nucleation and smooth plating for high efficiency Na metal batteries. J. Mater. Chem. A 2021, 9, 6123–6130. [Google Scholar] [CrossRef]
- Genovese, M.; Louli, A.J.; Weber, R.; Sanderson, R.J.; Johnson, M.B.; Dahn, J.R. Combinatorial Methods for Improving Lithium Metal Cycling Efficiency. J. Electrochem. Soc. 2018, 165, A3000–A3013. [Google Scholar] [CrossRef]
- Chastain, J.; King, R.C. Handbook of X-ray Photoelectron Spectroscopy: Areference Book of Standard Spectra for Identification and Interpretation of XPS Data; Perkin-Elmer: Eden Prairie, MN, USA, 1992. [Google Scholar]
- Dey, A.N.; Kuo, H.C.; Piliero, P.; Kallianidis, M. Inorganic Electrolyte Li/SO2 Rechargeable System Development of a Prototype Hermetic C Cell and Evaluation of Its Performance and Safety Characteristics. J. Electrochem. Soc. 1988, 135, 2115–2120. [Google Scholar] [CrossRef]
- Dey, A.N. Inorganic Electrolyte Li/CuCl2 Rechargeable Cell. J. Electrochem. Soc. 1989, 136, 1618–1621. [Google Scholar] [CrossRef]
- Tilstam, U. Sulfolane: A Versatile Dipolar Aprotic Solvent. Org. Process Res. Dev. 2012, 16, 1273–1278. [Google Scholar] [CrossRef]
- Lewandowski, A.; Kurc, B.; Stepniak, I.; Swiderska-Mocek, A. Properties of Li-Graphite and LiFePO 4 Electrodes in LiPF 6-Sulfolane Electrolyte. Electrochim. Acta 2011, 56, 5972–5978. [Google Scholar] [CrossRef]
- Li, S.; Li, B.; Xu, X.; Shi, X.; Zhao, Y.; Mao, L.; Cui, X. Electrochemical Performances of Two Kinds of Electrolytes Based on Lithium Bis(Oxalate)Borate and Sulfolane for Advanced Lithium Ion Batteries. J. Power Sources 2012, 209, 295–300. [Google Scholar] [CrossRef]
- Hirata, K.; Morita, Y.; Kawase, T.; Sumida, Y. Electrochemical Performance of an Ethylene Carbonate-Free Electrolyte Based on Lithium Bis(Fluorosulfonyl)Imide and Sulfolane. J. Power Sources 2018, 395, 163–173. [Google Scholar] [CrossRef]
- Xing, L.; Vatamanu, J.; Borodin, O.; Smith, G.D.; Bedrov, D. Electrode/Electrolyte Interface in Sulfolane-Based Electrolytes for Li Ion Batteries: A Molecular Dynamics Simulation Study. J. Phys. Chem. C 2012, 116, 23871–23881. [Google Scholar] [CrossRef]
- Sun, X.G.; Angell, C.A. New Sulfone Electrolytes for Rechargeable Lithium Batteries. Part I. Oligoether-Containing Sulfones. Electrochem. Commun. 2005, 7, 261–266. [Google Scholar] [CrossRef]
- Xu, K.; Angell, C.A. Sulfone-Based Electrolytes for Li-Ion Batteries. J. Electrochem. Soc. 2002, 149, A920–A926. [Google Scholar] [CrossRef]
- Watanabe, Y.; Kinoshita, S.-i.; Wada, S.; Hoshino, K.; Morimoto, H.; Tobishima, S.-i. Electrochemical Properties and Lithium Ion Solvation Behavior of Sulfone-Ester Mixed Electrolytes for High-Voltage Rechargeable Lithium Cells. J. Power Sources 2008, 179, 770–779. [Google Scholar] [CrossRef]
- Cai, H.; Jing, H.; Zhang, X.; Shen, M.; Wang, Q. Improving High-Voltage Performance of Lithium-Ion Batteries with Sulfolane as an Electrolyte Additive. J. Electrochem. Soc. 2017, 164, A714–A720. [Google Scholar] [CrossRef]
- Baxter, J.P.; Grunze, M.; Kong, C.W. Interaction of SO2 with Copper and Copper Oxide Surfaces. J. Vac. Sci. Technol. A Vac. Surfaces Films. 1988, 6, 1123–1127. [Google Scholar] [CrossRef]
- Galtayries, A.; Grimblot, J.; Bonnelle, J.-P. Interaction of SO2 with Different Polycrystalline Cu, Cu2O and CuO Surfaces. Surf. Interface Anal. 1996, 24, 345–354. [Google Scholar] [CrossRef]
- Nakahashi, T.; Terada, S.; Yokoyama, T.; Hamamatsu, H.; Kitajima, Y.; Sakano, M.; Matsui, F.; Ohta, T. Adsorption of SO2 on Cu(100) Studied by X-ray Absorption Fine Structure Spectroscopy and Scanning Tunneling Microscopy. Surf. Sci. 1997, 373, 1–10. [Google Scholar] [CrossRef]
- Pangher, N.; Wilde, L.; Polcik, M.; Haase, J. Structure Determinations of SO2 and Its Decomposition Product SO Adsor Bed on Cu(100) by Use of X-ray Absorption Fine-Structure Measurements. Surf. Sci. 1997, 372, 211–222. [Google Scholar] [CrossRef]
- Monteiro, M.J.; Ando, R.A.; Siqueira, L.J.A.; Camilo, F.F.; Santos, P.S.; Ribeiro, M.C.C.; Torresi, R.M. Effect of SO2 on the Transport Properties of an Imidazolium Ionic Liquid and Its Lithium Solution. J. Phys. Chem. B 2011, 115, 9662–9670. [Google Scholar] [CrossRef] [PubMed]
- Ein-Eli, Y.; Thomas, S.R.; Koch, V.R. The Role of SO2 as an Additive to Organic Li-Ion Battery Electrolytes. J. Electrochem. Soc. 1997, 144, 1159–1165. [Google Scholar] [CrossRef]
- Abraham, K.M.; Chaudhri, S.M. The Lithium Surface Film in the Li/SO2 Cell. J. Electrochem. Soc 1986, 133, 1307–1311. [Google Scholar] [CrossRef]
- Ein-Eli, Y.; Thomas, S.R.; Koch, V.R. New Electrolyte System for Li-Ion Battery. J. Electrochem. Soc. 1996, 143, L195–L197. [Google Scholar] [CrossRef]
- Li, S.; Xu, X.; Shi, X.; Li, B.; Zhao, Y.; Zhang, H.; Li, Y.; Zhao, W.; Cui, X.; Mao, L. Composition Analysis of the Solid Electrolyte Interphase Film on Carbon Electrode of Lithium-Ion Battery Based on Lithium Difluoro(Oxalate)Borate and Sulfolane. J. Power Sources 2012, 217, 503–508. [Google Scholar] [CrossRef]
Electrolyte | Rps(Cycle 1)/kΩ | Rps(Cycle 10)/kΩ | ΔRps/kΩ | XSO2 | Rps(SO2)/kΩ |
---|---|---|---|---|---|
2 M NATf/ DOL:DME * | 0.62 | 1.28 | 0.66 | 0.02 | 2.48 |
0.05 | 10 | ||||
0.10 | 10 | ||||
2 M NaSCN/ DOL:DME | 1.1 | 1.72 | 0.62 | 0.02 | 2.0 |
0.05 | 2.27 | ||||
0.10 | 2.50 | ||||
0.20 | 7.69 | ||||
1 M NaClO4/PC | 0.34 | 0.39 | 0.05 | 0.02 | 1.05 |
0.05 | 1.05 | ||||
0.10 | 0.68 | ||||
0.20 | 0.41 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ruiz-Martínez, D.; Gómez, R. Sulfur Dioxide and Sulfolane as Additives in Organic Electrolytes to Develop Room-Temperature Sodium Batteries. Batteries 2022, 8, 127. https://doi.org/10.3390/batteries8090127
Ruiz-Martínez D, Gómez R. Sulfur Dioxide and Sulfolane as Additives in Organic Electrolytes to Develop Room-Temperature Sodium Batteries. Batteries. 2022; 8(9):127. https://doi.org/10.3390/batteries8090127
Chicago/Turabian StyleRuiz-Martínez, Débora, and Roberto Gómez. 2022. "Sulfur Dioxide and Sulfolane as Additives in Organic Electrolytes to Develop Room-Temperature Sodium Batteries" Batteries 8, no. 9: 127. https://doi.org/10.3390/batteries8090127
APA StyleRuiz-Martínez, D., & Gómez, R. (2022). Sulfur Dioxide and Sulfolane as Additives in Organic Electrolytes to Develop Room-Temperature Sodium Batteries. Batteries, 8(9), 127. https://doi.org/10.3390/batteries8090127