Numerical Analysis of Novel Air-Based Li-Ion Battery Thermal Management
Abstract
:1. Introduction
2. Numerical Computation Methodology
2.1. Computational Domain and Boundary Conditions
2.2. CFD Model
2.3. Validation of CFD Model
3. Results and Discussion
3.1. Computational Domain and Boundary Conditions
3.2. Performance Analysis Improved Schemes
4. Performance under TR Condition
5. Conclusions
- (1)
- Under the different schemes, the Tmax and ∆Tmax of the battery pack decrease with the increase in the inlet velocity, and the Tmax and ∆Tmax of the battery pack increase with the increase in the discharge rates at a fixed inlet velocity.
- (2)
- The performance of an ACS BTMS can be improved by introducing a hollow prismatic turbulence structure. Its performance can be further enhanced by filling PCM in the hollow prismatic spoiler structure and adding fins.
- (3)
- The optimization scheme D can effectively prevent the TR propagation between batteries.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Luna, T.F.; Uriona-Maldonado, M.; Silva, M.E.; Vaz, C.R. The influence of e-carsharing schemes on electric vehicle adoption and carbon emissions: An emerging economy study. Transp. Res. Part D Transp. 2020, 79, 102226. [Google Scholar] [CrossRef]
- Liu, H.; Wei, Z.; He, W.; Zhao, J. Thermal issues about Li-ion batteries and recent progress in battery thermal management systems: A review. Energy Convers. Manag. 2017, 150, 304–330. [Google Scholar] [CrossRef]
- Takami, N.; Inagaki, H.; Tatebayashi, Y.; Saruwatari, H.; Honda, K.; Egusa, S. High-power and long-life lithium-ion batteries using lithium titanium oxide anode for automotive and stationary power applications. J. Power Sources 2013, 244, 469–475. [Google Scholar] [CrossRef]
- Wilke, S.; Schweitzer, B.; Khateeb, S.; Al-Hallaj, S. Preventing TR propagation in lithium ion battery packs using a phase change composite material: An experimental study. J. Power Sources 2017, 340, 51–59. [Google Scholar] [CrossRef]
- Lu, L.; Han, X.; Li, J.; Hua, J.; Ouyang, M. A review on the key issues for lithium-ion battery management in electric vehicles. J. Power Sources 2013, 226, 272–288. [Google Scholar] [CrossRef]
- Fan, L.; Khodadadi, J.M.; Pesaran, A.A. A parametric study on thermal management of an air-cooled lithium-ion battery module for plug-in hybrid electric vehicles. J. Power Sources 2013, 238, 301–312. [Google Scholar] [CrossRef]
- Panchal, S.; Khasow, R.; Dincer, I.; Agelin-Chaab, M.; Fraser, R.; Fowler, M. Thermal design and simulation of mini-channel cold plate for water cooled large sized prismatic lithium-ion battery. Appl. Therm. Eng. 2017, 122, 80–90. [Google Scholar] [CrossRef]
- Rao, Z.; Wang, S. A review of power battery thermal energy management. Renew. Sustain. Energy Rev. 2011, 15, 4554–4571. [Google Scholar] [CrossRef]
- Putra, N.; Ariantara, B.; Pamungkas, R.A. Experimental investigation on performance of lithium-ion battery thermal management system using flat plate loop heat pipe for electric vehicle application. Appl. Therm. Eng. 2016, 99, 784–789. [Google Scholar] [CrossRef]
- Zhao, G.; Wang, X.L.; Michael, N.; Zhang, H.Y. A review of air-cooling battery thermal management systems for electric and hybrid electric vehicles. J. Power Sources 2021, 501, 230001. [Google Scholar] [CrossRef]
- Wang, Y.S.; Liu, B.; Han, P. Optimization of an air-based thermal management system for lithium-ion battery packs. J. Energy Storage 2021, 44, 103314. [Google Scholar] [CrossRef]
- Park, S.; Jung, D. Battery cell arrangement and heat transfer fluid effects on the parasitic power consumption and the cell temperature distribution in a hybrid electric vehicle. Power Sources 2013, 227, 191–198. [Google Scholar] [CrossRef]
- Kausthubharam, P.K.; Chandrasekaran, N. Numerical investigation of cooling performance of a novel air-cooled thermal management system for cylindrical Li-ion battery module. Appl. Therm. Eng. 2021, 193, 116961. [Google Scholar] [CrossRef]
- Li, X.X.; He, F.Q.; Zhang, G.Q.; Huang, Q.Q.; Zhou, D.Q. Experiment and simulation for pouch battery with silica cooling plates and copper mesh based air cooling thermal management system. Appl. Therm. Eng. 2019, 146, 866–880. [Google Scholar] [CrossRef]
- Liu, Y.; Zhang, J. Design a J-type air-based battery thermal management system through surrogate-based optimization. Appl. Energy 2019, 252, 113426. [Google Scholar] [CrossRef]
- Sheng, L.; Zhang, H.; Su, L.; Zhang, Z.D.; Zhang, H. Effect analysis on thermal profile management of a cylindrical lithium-ion battery utilizing a cellular liquid cooling jacket. Energy 2021, 220, 119725. [Google Scholar] [CrossRef]
- Hekmat, S.; Bamdezh, M.A.; Molaeimanesh, G.R. Hybrid thermal management for achieving extremely uniform temperature distribution in a lithium battery module with phase change material and liquid cooling channel. J. Energy Storage 2022, 50, 104272. [Google Scholar] [CrossRef]
- Hallaj, S.A.; Selman, J.R. A Novel Thermal Management System for Electric Vehicle Batteries Using Phase-Change Material. J. Electrochem. Soc. 2019, 147, 3231–3454. [Google Scholar] [CrossRef]
- Yan, J.; Li, K.; Chen, H.; Wang, Q.; Sun, J. Experimental study on the application of phase change material in the dynamic cycling of battery pack system. Energy Convers. Manag. 2016, 128, 12–19. [Google Scholar] [CrossRef]
- Kizilel, R.; Lateef, A.; Sabbah, R.; Farid, M.M.; Selman, J.R.; Hallaj, A.S. Passive control of temperature excursion and uniformity in high-energy Li-ion battery packs at high current and ambient temperature. J. Power Sources 2008, 183, 370–375. [Google Scholar] [CrossRef]
- Pushpitha, V.S.; Debangsu, B. Thermal management of a high temperature sodium sulphur battery stack. Int. J. Heat Mass Transf. 2021, 181, 122025. [Google Scholar]
- Zhao, C.Y.; Zhang, B.; Yuanming, Z.; Huang, S.Y.; Yan, T.T.; Liu, X.F. Hybrid Battery Thermal Management System in Electrical Vehicles: A Review. Energies 2020, 13, 6257. [Google Scholar] [CrossRef]
- Ping, P.; Peng, R.; Kong, D.; Chen, G.; Wen, J. Investigation on thermal management performance of PCM-fin structure for Li-ion battery module in high-temperature environment. Energy Convers. Manag. 2018, 176, 131–146. [Google Scholar] [CrossRef]
- Patel, J.R.; Manish, K.R. Recent developments in the passive and hybrid thermal management techniques of lithium-ion batteries. J. Power Sources 2020, 480, 228820. [Google Scholar] [CrossRef]
- Sun, Z.; Fan, R.; Yan, F.; Zhou, T.; Zheng, N.B. Thermal management of the lithium-ion battery by the composite PCM-Fin structures. Int. J. Heat Mass Transf. 2019, 145, 118739. [Google Scholar] [CrossRef]
- Jiaqiang, E.; Yi, F.; Li, W.J.; Zhang, B.; Zou, H.Y. Effect analysis on heat dissipation performance enhancement of a lithium-ion-battery pack with heat pipe for central and southern regions in China. Energy 2021, 226, 120336. [Google Scholar]
- Sabbah, R.; Kizilel, R.; Selman, J.R.; Hallaj, S.A. Active (air-cooled) vs. passive (phase change material) thermal management of high power lithium-ion packs: Limitation of temperature rise and uniformity of temperature distribution. J. Power Sources 2008, 182, 630–638. [Google Scholar] [CrossRef]
- Ling, Z.; Wang, F.; Fang, X.; Gao, X.; Zhang, Z. A hybrid thermal management system for lithium ion batteries combining phase change materials with forced-aircooling. Appl. Energy 2015, 148, 403–409. [Google Scholar] [CrossRef]
- Kizilel, R.; Sabbah, R.; Selman, J.R.; Hallaj, S.A. An alternative cooling system to enhance the safety of Li-ion battery packs. Power Sources 2009, 194, 1105–1112. [Google Scholar] [CrossRef]
- Mao-Sung, W.; Liu, K.H.; Wang, Y.Y.; Wang, C.C. Heat dissipation design for lithium-ion batteries. Power Sources 2022, 109, 160–166. [Google Scholar]
- Hémery, C.V.; Pra, F.; Robin, J.F.; Marty, P. Experimental performances of a battery thermal management system using a phase change material. Power Sources 2014, 270, 349–358. [Google Scholar] [CrossRef]
- Chen, J.W.; Kang, S.Y.; Jiaqiang, E.; Huang, Z.H.; Wei, K.X.; Zhang, B.; Zhou, H.; Deng, Y.W.; Zhang, F.; Liao, G.L. Effects of different phase change material thermal management strategies on the cooling performance of the power lithium ion batteries: A review. J. Power Sources 2019, 442, 227228. [Google Scholar] [CrossRef]
- Behi, H.; Karimi, D.; Behi, M.; Ghanbarpour, M.; Jaguemont, J.; Sokkeh, M.A.; Gandoman, F.H.; Berecibar, M.; Mierlo, J.V. A new concept of thermal management system in Li-ion battery using air cooling and heat pipe for electric vehicles. Appl. Therm. Eng. 2020 174, 115280. [CrossRef]
- Fluent Announces First International CFD Conference Dedicated to the Oil & Gas Industry; Fluent Europe Ltd.: Sheffield, UK, 2006; Available online: https://www.cfd-online.com (accessed on 18 June 2022).
- Jeon, D.H.; Baek, S.M. Thermal modeling of cylindrical lithium ion battery during discharge cycle. Energy Convers. Manag. 2011, 52, 2973–2981. [Google Scholar] [CrossRef]
- Kiˇsa, M.; Jelemenský, L. CFD dispersion modelling for emergency preparadnes. Loss Prev. Process Ind. 2009, 22, 97–104. [Google Scholar]
- Scargiali, F.; Grisafi, F.; Busciglio, A.; Brucato, A. Modeling and simulation of dense cloud dispersion in urban areas by means of computational fluid dynamics. J. Hazard. Mater. 2011, 197, 285–293. [Google Scholar] [CrossRef]
- Sini, J.F.; Anquetin, S.; Mestayer, P.G. Pollutant dispersion and thermal effects in urban street canyons. Atmos. Environ. 1996, 30, 2659–2677. [Google Scholar] [CrossRef]
- Xing, J.; Liu, Z.; Huang, P.; Feng, C.; Zhou, Y.; Zhang, D.; Wang, F. Experimental and numerical study of the dispersion of carbon dioxide plume. J. Hazard. Mater. 2013, 256–257, 40–48. [Google Scholar] [CrossRef]
- Zhang, F.; Lin, A.; Wang, P.; Liu, p. Optimization design of a parallel air-cooled battery thermal management system with spoilers. Appl. Therm. Eng. 2021, 182, 116062. [Google Scholar] [CrossRef]
- Jiaqiang, E.; Yue, M.; Chen, J.; Zhu, H.; Deng, Y.; Zhu, Y.; Zhang, F.; Wen, M.; Zhang, B.; Kang, S. Effects of the different air cooling strategies on cooling performance of a lithium-ion battery module with baffle. Appl. Therm. Eng. 2018, 144, 231–241. [Google Scholar]
- Javani, N.; Dincer, I. Heat transfer and thermal management with PCMs in a Li-ion battery cell for electric vehicles. Int. J. Heat Mass Transf. 2014, 72, 690–703. [Google Scholar] [CrossRef]
- Lamb, J.; Orendorff, C.J.; Orendorff; Steele, L.A.M.; Spangler, S.W. Failure propagation in multi-cell lithium ion batteries. J. Power Sources 2015, 283, 517–523. [Google Scholar] [CrossRef]
- Zhang, X.; Liu, C.Z.; Rao, Z.H. Experimental investigation on thermal management performance of electric vehicle power battery using composite phase change material. J. Clean. Prod. 2018, 201, 916–924. [Google Scholar] [CrossRef]
- Shen, M.; Gao, Q. Structure design and effect analysis on refrigerant cooling enhancement of battery thermal management system for electric vehicles. J. Energy Storage 2020, 32, 101940. [Google Scholar] [CrossRef]
- Yeow, K.; Ho, T. Characterizing Thermal Runaway of Lithium-ion Cells in a Battery System Using Finite Element Analysis Approach. J. Altern. Powertrains 2013, 2, 179–186. [Google Scholar] [CrossRef]
Rated Voltage (V) | 3.6 | Specific Heat Capacity (J·kg−1 K−1) | 1200 | Density (kg·m−3) | 2722 |
Length (mm) | 65 | Diameter (mm) | 18 | Anisotropic thermal conductivity (W·m−1 K−1) | kr = 0.2, kz = 37.6 |
Region | Inlet | Outlet | Bottom | Top | Side 1 and Side 2 | Interfaces between Batteries and Fluid | Initial Temperature | Ambient Temperature |
---|---|---|---|---|---|---|---|---|
Boundary conditions | velocity inlet | pressure outlet | walls | walls | impermeable symmetry | coupled walls | 300 K | 300 K |
Region | Inlet | Outlet | Bottom | Top | Side 1 and Side 2 | Interfaces between Batteries and Fluid | Initial Temperature | Ambient Temperature |
Boundary conditions | velocity inlet | pressure outlet | walls | walls | impermeable symmetry | coupled walls | 300 K | 300 K |
Specific Heat Capacity (J/kg/K) | Thermal Conductivity (W/m/K) | Density (kg/m3) | |
---|---|---|---|
Solid-phase PCM | 2150 | 0.358 | 814 |
Mushy region | 225,000 | 0.255 | 769 |
Liquid-phase PCM | 2180 | 0.152 | 724 |
Heat Generation Rate | Inlet Velocity | Outlet Velocity | Inlet Boundary Conditions | Outlet Boundary Conditions | Radiation Model |
---|---|---|---|---|---|
120 MW m−3 | 0 m/s | 0 m/s | Velocity inlet | Pressure out | S2S |
Top and bottom boundary conditions | Side1 and Side2 boundary conditions | Initial temperature | Ambient temperature | Interfaces | |
wall | Impermeable symmetry | 300 K | 300 K | Coupled walls | |
Heat Generation Rate | Inlet Velocity | Outlet Velocity | Inlet Boundary Conditions | Outlet Boundary Conditions | Radiation Model |
120 MW m−3 | 0 m/s | 0 m/s | Velocity inlet | Pressure out | S2S |
Top and bottom boundary conditions | Side1 and Side2 boundary conditions | Initial temperature | Ambient temperature | Interfaces | |
wall | Impermeable symmetry | 300 K | 300 K | Coupled walls |
The Maximum Temperature of Scheme A under TR | No. 1 | No. 2 | No. 3 | No. 3 |
956.61 K | 1046.68 K | 1047.29 K | 1051.91 K | |
The Maximum Temperature of Scheme D under TR | No. 1 | No. 2 | No. 3 | No. 3 |
694.62 K | 353.11 K | 323.57 K | 320.58 K |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, W.; Hou, S.; Shi, J.; Han, P.; Liu, B.; Wu, B.; Lin, X. Numerical Analysis of Novel Air-Based Li-Ion Battery Thermal Management. Batteries 2022, 8, 128. https://doi.org/10.3390/batteries8090128
Chen W, Hou S, Shi J, Han P, Liu B, Wu B, Lin X. Numerical Analysis of Novel Air-Based Li-Ion Battery Thermal Management. Batteries. 2022; 8(9):128. https://doi.org/10.3390/batteries8090128
Chicago/Turabian StyleChen, Wei, Shaobo Hou, Jialin Shi, Peng Han, Bin Liu, Baoping Wu, and Xiaoxiao Lin. 2022. "Numerical Analysis of Novel Air-Based Li-Ion Battery Thermal Management" Batteries 8, no. 9: 128. https://doi.org/10.3390/batteries8090128
APA StyleChen, W., Hou, S., Shi, J., Han, P., Liu, B., Wu, B., & Lin, X. (2022). Numerical Analysis of Novel Air-Based Li-Ion Battery Thermal Management. Batteries, 8(9), 128. https://doi.org/10.3390/batteries8090128