Review of the Research Status of Cost-Effective Zinc–Iron Redox Flow Batteries
Abstract
:1. Introduction
2. Characteristics of ZIRFB
2.1. The Basic Principle of ZIRFB
2.2. Wide pH Range
2.2.1. Alkaline ZIRFB
2.2.2. Acidic ZIRFB
2.2.3. Neutral ZIRFB
2.3. Zinc Dendrites
2.4. Fe(III) Hydrolysis
3. Research Status of Several Key Problems in ZIRFBs
3.1. Zinc Dendrite Prevention
3.1.1. The 3D Electrode
3.1.2. Improving Membrane/Separator
3.1.3. Adding Additives to the Electrolyte
3.1.4. Flow Field Regulation
3.2. Fe(III) Hydrolysis Suppression
3.3. Electrolyte Optimization
3.3.1. Concentration and Additives
3.3.2. Zinc–Bromide Complexation
3.3.3. pH
3.3.4. Mix System
4. Conclusions and Outlook
- (i)
- The zinc dendrites are still the core challenges of ZIRFBs, especially in alkaline ZIRFBs, since they may lead to the short-circuit and reduction in the battery lifetime. The advanced materials (electrolytes, electrodes, and membranes) and interface reactions are still expected to change the growth mode of zinc dendrites from the root. The volume or space of the anode often faces to the zinc dendrites directly. Therefore, considering how to use the available space or volume to achieve the homogeneous and thicker Zn deposition layer on the surface of the electrode can be vital for the prevention of zinc dendrites. In addition, it is necessary to further clarify the electrochemical behaviors deposited on the various electrodes in multiple electrolytes to supply technical support for the realization of a dense and homogeneous zinc layer. This is also alleviated through the optimization of battery structure and other key materials.
- (ii)
- The membrane material is one of the effective means to improve the performance of ZIRFB. The design and manufacture of high-performance membranes are the top priority. The perfluorinated CEM is, presently, the most widely adopted membrane in the RFB system (suitable for acidic RFBs). However, ZIRFB systems are usually in alkaline and neutral mediums, since zinc metal is unstable in acidic solutions. While anion exchange membranes will degrade in an alkaline medium, dense membranes demonstrate a relatively high surface resistance in the neutral medium as well. Porous membranes are considered to be one of the best choices at present. Furthermore, the generation and accumulation of zinc dendrites may pierce the membrane and lead to a short circuit. Therefore, the research and development of membrane materials with good mechanical properties, especially puncture-resistant and self-recovery capabilities, is a top priority. Innovative polymers, through molecular design, are still essential to make membranes with high performance for ZIRFB applications.
- (iii)
- The optimization of the supporting electrolyte and complexing agent is still the key to solving the problem of ferric iron hydrolysis. In this process, the influence of electrolyte source cannot be ignored. The supply of raw materials mainly comes from iron ore and copper ore. It should be noted that iron and copper may be associated with some special minerals, therefore, this kind of mineral is an ideal source of raw material supply for ZIRFB. Furthermore, in situ characterization techniques need to be used to investigate the evolution of catalysts and electrode reaction kinetics during electrocatalytic redox processes. The acid ZIRFB system may be a way to solve iron hydrolysis, but the current density of the acid system is very low, which is difficult to adapt to the application scenario of large-scale energy storage and the future development needs of RFB.
- (iv)
- Electrolyte optimization is combined with simulation and battery structure. It is important to play the role of simulation in the theoretical prediction of the characteristics and performance of more ZIRFBs, which would boost the compatibility between the component and battery. Designing/developing physical models that are in line with reality have a guiding role in the design and operation of reliable battery systems. It is notable that the optimization also needs to take the cell design and battery operation into consideration to ensure device reliability. Meanwhile, the research process about ZIRFBs should pay attention to environmental protection and the comprehensive cost.
- (v)
- Cost-effective ZIRFBs still realize cost reductions by focusing primarily on the ion exchange membrane. The price of non-fluorinated separators will undoubtedly be significantly lower than that of perfluorosulfonic acid membranes; in addition, the puncture-resistant separator reduces the possibility of short circuits and avoids frequent separator replacement by increasing the durability of the separator, which will also help the cost reduction in the ZIRFB system.
Abbreviations
RFBs | redox flow batteries |
ZIRFBs | zinc–iron redox flow batteries |
ZBRFB | zinc-based RFB |
VRFB | vanadium RFB |
R.T. | room temperature |
OCV | open-circuit voltage |
OCP | open-circuit potential |
CEM | cationic exchange membrane |
IEM | ion exchange membrane |
n-IEMs | non-ionic membranes |
PES | poly (ether sulfone) |
PEG | polyethene glycol |
SPEEK-K | sulfonated polyether ether ketone |
PBI | polybenzimidazole |
BMImCl | 1-butyl-3-methylimidazolium chloride |
CF | carbon felts |
Z-P/S | zinc plating/stripping |
CV | cyclic voltammogram |
EE | energy efficiency |
CE | current efficiency |
VE | voltage efficiency |
HER | hydrogen evolution reaction |
SOC | state of charge |
MC | microporous carbon |
THEED | N, N, N′ N′-Tetra(2- hydroxyethyl) ethylenediamine |
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Pagliaro, M. Renewable Energy Systems: Enhanced Resilience, Lower Costs. Energy Technol. 2019, 7, 1900791. [Google Scholar] [CrossRef]
- Ahmadi, M.H.; Ghazvini, M.; Alhuyi Nazari, M.; Ahmadi, M.A.; Pourfayaz, F.; Lorenzini, G.; Ming, T. Renewable energy harvesting with the application of nanotechnology: A review. Int. J. Energy Res. 2019, 43, 1387–1410. [Google Scholar] [CrossRef]
- Pagliaro, M.; Meneguzzo, F. Distributed Generation from Renewable Energy Sources: Ending Energy Poverty across the World. Energy Technol. 2020, 8, 2000126. [Google Scholar] [CrossRef]
- Fernandez-Marchante, C.M.; Millán, M.; Medina-Santos, J.I.; Lobato, J. Environmental and Preliminary Cost Assessments of Redox Flow Batteries for Renewable Energy Storage. Energy Technol. 2020, 8, 1900914. [Google Scholar] [CrossRef]
- Zhang, C.; Wei, Y.-L.; Cao, P.-F.; Lin, M.-C. Energy storage system: Current studies on batteries and power condition system. Renew. Sustain. Energy Rev. 2018, 82, 3091–3106. [Google Scholar] [CrossRef]
- Sun, C.; Negro, E.; Vezzù, K.; Pagot, G.; Cavinato, G.; Nale, A.; Herve Bang, Y.; Di Noto, V. Hybrid inorganic-organic proton-conducting membranes based on SPEEK doped with WO3 nanoparticles for application in vanadium redox flow batteries. Electrochim. Acta 2019, 309, 311–325. [Google Scholar] [CrossRef]
- Pal, D.; Chakraborty, S.; Chattopadhyay, S. Recent Progress in Al-, K-, and Zn-Ion Batteries: Experimental and Theoretical Viewpoints. Energy Technol. 2021, 9, 2100382. [Google Scholar] [CrossRef]
- Hu, Y.; Sun, D.; Luo, B.; Wang, L. Recent Progress and Future Trends of Aluminum Batteries. Energy Technol. 2019, 7, 86–106. [Google Scholar] [CrossRef] [Green Version]
- Zhang, H.; Sun, C. Cost-effective iron-based aqueous redox flow batteries for large-scale energy storage application: A review. J. Power Sources 2021, 493, 229445. [Google Scholar] [CrossRef]
- Horowitz, Y.; Schmidt, C.; Yoon, D.-H.; Riegger, L.M.; Katzenmeier, L.; Bosch, G.M.; Noked, M.; Ein-Eli, Y.; Janek, J.; Zeier, W.G.; et al. Between Liquid and All Solid: A Prospect on Electrolyte Future in Lithium-Ion Batteries for Electric Vehicles. Energy Technol. 2020, 8, 2000580. [Google Scholar] [CrossRef]
- Zhang, H.; Lu, W.; Li, X. Progress and Perspectives of Flow Battery Technologies. Electrochem. Energy Rev. 2019, 2, 492–506. [Google Scholar] [CrossRef]
- Ye, J.; Xia, L.; Wu, C.; Ding, M.; Jia, C.; Wang, Q. Redox targeting-based flow batteries. J. Phys. D Appl. Phys. 2019, 52, 443001. [Google Scholar] [CrossRef]
- Sun, C.; Zhang, H. Review of the Development of First-Generation Redox Flow Batteries: Iron-Chromium System. ChemSusChem 2021, 15, e202101798. [Google Scholar] [CrossRef] [PubMed]
- Esan, O.C.; Shi, X.; Pan, Z.; Huo, X.; An, L.; Zhao, T.S. Modeling and Simulation of Flow Batteries. Adv. Energy Mater. 2020, 10, 2000758. [Google Scholar] [CrossRef]
- Kim, K.J.; Park, M.-S.S.; Kim, Y.-J.J.; Kim, J.H.; Dou, S.X.; Skyllas-Kazacos, M. A technology review of electrodes and reaction mechanisms in vanadium redox flow batteries. J. Mater. Chem. A 2015, 3, 16913–16933. [Google Scholar] [CrossRef]
- Arenas, L.F.; Loh, A.; Trudgeon, D.P.; Li, X.; de León, C.P.; Walsh, F.C. The characteristics and performance of hybrid redox flow batteries with zinc negative electrodes for energy storage. Renew. Sustain. Energy Rev. 2018, 90, 992–1016. [Google Scholar] [CrossRef] [Green Version]
- Xu, Z.; Fan, Q.; Li, Y.; Wang, J.; Lund, P.D. Review of zinc dendrite formation in zinc bromine redox flow battery. Renew. Sustain. Energy Rev. 2020, 127, 109838. [Google Scholar] [CrossRef]
- Khor, A.; Leung, P.; Mohamed, M.R.; Flox, C.; Xu, Q.; An, L.; Wills, R.G.A.; Morante, J.R.; Shah, A.A. Review of zinc-based hybrid flow batteries: From fundamentals to applications. Mater. Today Energy 2018, 8, 80–108. [Google Scholar] [CrossRef]
- Li, Z.; Weng, G.; Zou, Q.; Cong, G.; Lu, Y.-C. A high-energy and low-cost polysulfide/iodide redox flow battery. Nano Energy 2016, 30, 283–292. [Google Scholar] [CrossRef]
- Qin, Y.; Li, X.; Liu, W. High-performance aqueous polysulfide-iodide flow battery realized by an efficient bifunctional catalyst based on copper sulfide. Mater. Today Energy 2021, 21, 100746. [Google Scholar] [CrossRef]
- Huskinson, B.; Marshak, M.; Suh, C.; Er, S.; Gerhardt, M.; Galvin, C.J.; Chen, X.; Aspuru-Guzik, A.; Gordon, R.G.; Aziz, M.J. A metal-free organic–inorganic aqueous flow battery. Nature 2014, 505, 195–198. [Google Scholar] [CrossRef] [PubMed]
- Chen, Q.; Gerhardt, M.R.; Hartle, L.; Aziz, M.J. A Quinone-Bromide Flow Battery with 1 W/cm2 Power Density. J. Electrochem. Soc. 2015, 163, A5010–A5013. [Google Scholar] [CrossRef] [Green Version]
- Ulaganathan, M.; Aravindan, V.; Yan, Q.; Madhavi, S.; Skyllas-Kazacos, M.; Lim, T.M. Recent Advancements in All-Vanadium Redox Flow Batteries. Adv. Mater. Interfaces 2016, 3, 1500309. [Google Scholar] [CrossRef]
- Jiang, B.; Wu, L.; Yu, L.; Qiu, X.; Xi, J. A comparative study of Nafion series membranes for vanadium redox flow batteries. J. Membr. Sci. 2016, 510, 18–26. [Google Scholar] [CrossRef]
- Jiang, H.; Shyy, W.; Wu, M.; Zhang, R.; Zhao, T. A bi-porous graphite felt electrode with enhanced surface area and catalytic activity for vanadium redox flow batteries. Appl. Energy 2019, 233–234, 105–113. [Google Scholar] [CrossRef]
- Lu, W.; Yuan, Z.; Zhao, Y.; Li, X.; Zhang, H.; Vankelecom, I.F.J. High-performance porous uncharged membranes for vanadium flow battery applications created by tuning cohesive and swelling forces. Energy Environ. Sci. 2016, 9, 2319–2325. [Google Scholar] [CrossRef]
- Song, Y.; Li, X.; Yan, C.; Tang, A. Uncovering ionic conductivity impact towards high power vanadium flow battery design and operation. J. Power Sources 2020, 480, 229141. [Google Scholar] [CrossRef]
- Song, Y.; Li, X.; Xiong, J.; Yang, L.; Pan, G.; Yan, C.; Tang, A. Electrolyte transfer mechanism and optimization strategy for vanadium flow batteries adopting a Nafion membrane. J. Power Sources 2020, 449, 227503. [Google Scholar] [CrossRef]
- Li, T.; Xing, F.; Liu, T.; Sun, J.; Shi, D.; Zhang, H.; Li, X. Cost, performance prediction and optimization of a vanadium flow battery by machine-learning. Energy Environ. Sci. 2020, 13, 4353–4361. [Google Scholar] [CrossRef]
- Lv, Y.; Li, Y.; Han, C.; Chen, J.; He, Z.; Zhu, J.; Dai, L.; Meng, W.; Wang, L. Application of porous biomass carbon materials in vanadium redox flow battery. J. Colloid Interface Sci. 2020, 566, 434–443. [Google Scholar] [CrossRef]
- Sun, C.; Vezzù, K.; Pagot, G.; Nale, A.; Bang, Y.H.; Pace, G.; Negro, E.; Gambaro, C.; Meda, L.; Zawodzinski, T.A.; et al. Elucidation of the interplay between vanadium species and charge-discharge processes in VRFBs by Raman spectroscopy. Electrochim. Acta 2019, 318, 913–921. [Google Scholar] [CrossRef]
- Zeng, Y.; Zhao, T.; An, L.; Zhou, X.; Wei, L. A comparative study of all-vanadium and iron-chromium redox flow batteries for large-scale energy storage. J. Power Sources 2015, 300, 438–443. [Google Scholar] [CrossRef]
- Ye, J.; Yuan, D.; Ding, M.; Long, Y.; Long, T.; Sun, L.; Jia, C. A cost-effective nafion/lignin composite membrane with low vanadium ion permeation for high performance vanadium redox flow battery. J. Power Sources 2021, 482, 229023. [Google Scholar] [CrossRef]
- Jiang, Y.; Liu, Z.; Lv, Y.; Tang, A.; Dai, L.; Wang, L.; He, Z. Perovskite enables high performance vanadium redox flow battery. Chem. Eng. J. 2022, 443, 136341. [Google Scholar] [CrossRef]
- Yang, J.; Yan, H.; Hao, H.; Song, Y.; Li, Y.; Liu, Q.; Tang, A. Synergetic Modulation on Solvation Structure and Electrode Interface Enables a Highly Reversible Zinc Anode for Zinc–Iron Flow Batteries. ACS Energy Lett. 2022, 7, 2331–2339. [Google Scholar] [CrossRef]
- Yuan, Z.; Yin, Y.; Xie, C.; Zhang, H.; Yao, Y.; Li, X. Advanced Materials for Zinc-Based Flow Battery: Development and Challenge. Adv. Mater. 2019, 31, 1902025. [Google Scholar] [CrossRef]
- McBreen, J. Rechargeable zinc batteries. J. Electroanal. Chem. Interfacial Electrochem. 1984, 168, 415–432. [Google Scholar] [CrossRef]
- Yang, S.; Xue, X.; Dai, C.; Liu, X.; Yin, Q.; Lian, J.; Zhao, Y.; Bu, Y.; Li, G. Zinc-iron bimetallic-nitrogen doped porous carbon microspheres as efficient oxygen reduction electrocatalyst for zinc-air batteries. Appl. Surf. Sci. 2021, 546, 148934. [Google Scholar] [CrossRef]
- Sun, W.; Wang, F.; Zhang, B.; Zhang, M.; Küpers, V.; Ji, X.; Theile, C.; Bieker, P.; Xu, K.; Wang, C.; et al. Winter, A rechargeable zinc-air battery based on zinc peroxide chemistry. Science 2021, 371, 46–51. [Google Scholar] [CrossRef]
- Han, J.; Bao, H.; Wang, J.-Q.; Zheng, L.; Sun, S.; Wang, Z.L.; Sun, C. 3D N-doped ordered mesoporous carbon supported single-atom Fe-N-C catalysts with superior performance for oxygen reduction reaction and zinc-air battery. Appl. Catal. B: Environ. 2021, 280, 119411. [Google Scholar] [CrossRef]
- Logeshwaran, N.; Ramakrishnan, S.; Chandrasekaran, S.S.; Vinothkannan, M.; Kim, A.R.; Sengodan, S.; Velusamy, D.B.; Varadhan, P.; He, J.-H.; Yoo, D.J. An efficient and durable trifunctional electrocatalyst for zinc–air batteries driven overall water splitting. Appl. Catal. B: Environ. 2021, 297, 120405. [Google Scholar] [CrossRef]
- Cui, T.; Wang, Y.-P.; Ye, T.; Wu, J.; Chen, Z.; Li, J.; Lei, Y.; Wang, D.; Li, Y. Engineering Dual Single-Atom Sites on 2D Ultrathin N-doped Carbon Nanosheets Attaining Ultra-Low-Temperature Zinc-Air Battery. Angew. Chem. Int. Ed. 2022, 61, e202115219. [Google Scholar] [CrossRef]
- Amini, K.; Pritzker, M.D. A two-dimensional transient model for a zinc-cerium redox flow battery validated by extensive experimental data. J. Power Sources 2021, 506, 230237. [Google Scholar] [CrossRef]
- Xie, C.; Duan, Y.; Xu, W.; Zhang, H.; Li, X. A Low-Cost Neutral Zinc–Iron Flow Battery with High Energy Density for Stationary Energy Storage. Angew. Chem. Int. Ed. 2017, 56, 14953–14957. [Google Scholar] [CrossRef] [PubMed]
- Zhou, X.; Zhao, T.; An, L.; Zeng, Y.; Wei, L. Critical transport issues for improving the performance of aqueous redox flow batteries. J. Power Sources 2017, 339, 1–12. [Google Scholar] [CrossRef]
- Zhi, L.; Yuan, Z.; Li, X. Recent development and prospect of membranes for alkaline zinc-iron flow battery. Adv. Membr. 2022, 2, 100029. [Google Scholar] [CrossRef]
- Wang, G.; Zou, H.; Zhu, X.; Ding, M.; Jia, C. Recent progress in zinc-based redox flow batteries: A review. J. Phys. D Appl. Phys. 2021, 55, 163001. [Google Scholar] [CrossRef]
- Yi, J.; Liang, P.; Liu, X.; Wu, K.; Liu, Y.; Wang, Y.; Xia, Y.; Zhang, J. Challenges, mitigation strategies and perspectives in development of zinc-electrode materials and fabrication for rechargeable zinc–air batteries. Energy Environ. Sci. 2018, 11, 3075–3095. [Google Scholar] [CrossRef] [Green Version]
- Wu, K.; Huang, J.; Yi, J.; Liu, X.; Liu, Y.; Wang, Y.; Zhang, J.; Xia, Y. Recent Advances in Polymer Electrolytes for Zinc Ion Batteries: Mechanisms, Properties, and Perspectives. Adv. Energy Mater. 2020, 10, 1903977. [Google Scholar] [CrossRef]
- Cui, J.; Guo, Z.; Yi, J.; Liu, X.; Wu, K.; Liang, P.; Li, Q.; Liu, Y.; Wang, Y.; Xia, Y.; et al. Organic Cathode Materials for Rechargeable Zinc Batteries: Mechanisms, Challenges, and Perspectives. ChemSusChem 2020, 13, 2160–2185. [Google Scholar] [CrossRef]
- Yuan, Z.; Duan, Y.; Liu, T.; Zhang, H.; Li, X. Toward a Low-Cost Alkaline Zinc-Iron Flow Battery with a Polybenzimidazole Custom Membrane for Stationary Energy Storage. iScience 2018, 3, 40–49. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yuan, Z.; Liu, X.; Xu, W.; Duan, Y.; Zhang, H.; Li, X. Negatively charged nanoporous membrane for a dendrite-free alkaline zinc-based flow battery with long cycle life. Nat. Commun. 2018, 9, 3731. [Google Scholar] [CrossRef] [Green Version]
- Xie, Z.; Su, Q.; Shi, A.; Yang, B.; Liu, B.; Chen, J.; Zhou, X.; Cai, D.; Yang, L. High performance of zinc-ferrum redox flow battery with Ac−/HAc buffer solution. J. Energy Chem. 2016, 25, 495–499. [Google Scholar] [CrossRef]
- Selverston, S.; Savinell, R.F.; Wainright, J.S. Zinc-Iron Flow Batteries with Common Electrolyte. J. Electrochem. Soc. 2017, 164, A1069–A1075. [Google Scholar] [CrossRef]
- Gong, K.; Ma, X.; Conforti, K.M.; Kuttler, K.J.; Grunewald, J.B.; Yeager, K.L.; Bazant, M.Z.; Gu, S.; Yan, Y. A zinc–iron redox-flow battery under $100 per kW h of system capital cost. Energy Environ. Sci. 2015, 8, 2941–2945. [Google Scholar] [CrossRef] [Green Version]
- Yang, M.; Xu, Z.; Xiang, W.; Xu, H.; Ding, M.; Li, L.; Tang, A.; Gao, R.; Zhou, G.; Jia, C. High performance and long cycle life neutral zinc-iron flow batteries enabled by zinc-bromide complexation. Energy Storage Mater. 2022, 44, 433–440. [Google Scholar] [CrossRef]
- Zhou, X.L.; Zeng, Y.K.; Zhu, X.B.; Wei, L.; Zhao, T.S. A high-performance dual-scale porous electrode for vanadium redox flow batteries. J. Power Sources 2016, 325, 329–336. [Google Scholar] [CrossRef]
- Jiang, H.; Sun, J.; Wei, L.; Wu, M.; Shyy, W.; Zhao, T. A high power density and long cycle life vanadium redox flow battery. Energy Storage Mater. 2020, 24, 529–540. [Google Scholar] [CrossRef]
- Zeng, Y.; Zhao, T.; Zhou, X.; Zeng, L.; Wei, L. The effects of design parameters on the charge-discharge performance of iron-chromium redox flow batteries. Appl. Energy 2016, 182, 204–209. [Google Scholar] [CrossRef]
- Waters, S.E.; Robb, B.H.; Marshak, M.P. Effect of Chelation on Iron–Chromium Redox Flow Batteries. ACS Energy Lett. 2020, 5, 1758–1762. [Google Scholar] [CrossRef]
- Wang, W.; Kim, S.; Chen, B.; Nie, Z.; Zhang, J.; Xia, G.-G.; Li, L.; Yang, Z. A new redox flow battery using Fe/V redox couples in chloride supporting electrolyte. Energy Environ. Sci. 2011, 4, 4068–4073. [Google Scholar] [CrossRef]
- Souentie, S.; Amr, I.; Alsuhaibani, A.; Almazroei, E.; Hammad, A.D. Temperature, charging current and state of charge effects on iron-vanadium flow batteries operation. Appl. Energy 2017, 206, 568–576. [Google Scholar] [CrossRef]
- Gong, K.; Xu, F.; Grunewald, J.B.; Ma, X.; Zhao, Y.; Gu, S.; Yan, Y. All-Soluble All-Iron Aqueous Redox-Flow Battery. ACS Energy Lett. 2016, 1, 89–93. [Google Scholar] [CrossRef]
- Lin, K.; Chen, Q.; Gerhardt, M.R.; Tong, L.; Kim, S.B.; Eisenach, L.; Valle, A.W.; Hardee, D.; Gordon, R.G.; Aziz, M.J.; et al. Marshak, Alkaline quinone flow battery. Science 2015, 349, 1529–1532. [Google Scholar] [CrossRef] [Green Version]
- Kwabi, D.G.; Lin, K.; Ji, Y.; Kerr, E.F.; Goulet, M.-A.; De Porcellinis, D.; Tabor, D.P.; Pollack, D.A.; Aspuru-Guzik, A.; Gordon, R.G.; et al. Alkaline Quinone Flow Battery with Long Lifetime at pH 12. Joule 2018, 2, 1894–1906. [Google Scholar] [CrossRef]
- Janoschka, T.; Martin, N.; Martin, U.; Friebe, C.; Morgenstern, S.; Hiller, H.; Hager, M.D.; Schubert, U.S. An aqueous, polymer-based redox-flow battery using non-corrosive, safe, and low-cost materials. Nature 2015, 527, 78–81. [Google Scholar] [CrossRef]
- Yang, M.; Han, W.; Selman, J.R. A Cycling Performance Model for the Zinc/Ferricyanide Battery. Chin. J. Chem. Eng. 1989, 4, 93–114. [Google Scholar]
- Wu, M.C.; Zhao, T.S.; Wei, L.; Jiang, H.R.; Zhang, R.H. Improved electrolyte for zinc-bromine flow batteries. J. Power Sources 2018, 384, 232–239. [Google Scholar] [CrossRef]
- Mousavi, M.; Jiang, G.; Zhang, J.; Kashkooli, A.G.; Dou, H.; Silva, C.J.; Cano, Z.P.; Niu, Y.; Yu, A.; Chen, Z. Decoupled low-cost ammonium-based electrolyte design for highly stable zinc–iodine redox flow batteries. Energy Storage Mater. 2020, 32, 465–476. [Google Scholar] [CrossRef]
- Leung, P.; Ponce-De-León, C.; Low, C.; Walsh, F. Zinc deposition and dissolution in methanesulfonic acid onto a carbon composite electrode as the negative electrode reactions in a hybrid redox flow battery. Electrochim. Acta 2011, 56, 6536–6546. [Google Scholar] [CrossRef]
- Cheng, Y.; Zhang, H.; Lai, Q.; Li, X.; Shi, D.; Zhang, L. A high power density single flow zinc–nickel battery with three-dimensional porous negative electrode. J. Power Sources 2013, 241, 196–202. [Google Scholar] [CrossRef]
- Parker, J.F.; Chervin, C.N.; Nelson, E.S.; Rolison, D.R.; Long, J.W. Wiring zinc in three dimensions re-writes battery performance—Dendrite-free cycling. Energy Environ. Sci. 2014, 7, 1117–1124. [Google Scholar] [CrossRef]
- Adams, G.B. Electrically Rechargeable Battery. US-4180623-A U.S. Patent 25 December 1979. [Google Scholar]
- Li, L.; Kim, S.; Wang, W.; Vijayakumar, M.; Nie, Z.; Chen, B.; Zhang, J.; Xia, G.; Hu, J.; Graff, G.; et al. A Stable Vanadium Redox-Flow Battery with High Energy Density for Large-Scale Energy Storage. Adv. Energy Mater. 2011, 1, 394–400. [Google Scholar] [CrossRef]
- Sun, C.; Negro, E.; Nale, A.; Pagot, G.; Vezzù, K.; Zawodzinski, T.A.; Meda, L.; Gambaro, C.; Di Noto, V. An efficient barrier toward vanadium crossover in redox flow batteries: The bilayer [Nafion/(WO3)x] hybrid inorganic-organic membrane. Electrochim. Acta 2021, 378, 138133. [Google Scholar] [CrossRef]
- Guo, L.; Guo, H.; Huang, H.; Tao, S.; Cheng, Y. Inhibition of Zinc Dendrites in Zinc-Based Flow Batteries. Front. Chem. 2020, 8, 557. [Google Scholar] [CrossRef] [PubMed]
- Yufit, V.; Tariq, F.; Eastwood, D.S.; Biton, M.; Wu, B.; Lee, P.D.; Brandon, N.P. Operando Visualization and Multi-scale Tomography Studies of Dendrite Formation and Dissolution in Zinc Batteries. Joule 2019, 3, 485–502. [Google Scholar] [CrossRef] [Green Version]
- Yao, S.; Kan, X.; Zhou, R.; Ding, X.; Xiao, M.; Cheng, J. Simulation of dendritic growth of a zinc anode in a zinc–nickel single flow battery using the phase field-lattice Boltzmann method. New J. Chem. 2021, 45, 1838–1852. [Google Scholar] [CrossRef]
- Flynn, C.M. Hydrolysis of inorganic iron(III) salts. Chem. Rev. 1984, 84, 31–41. [Google Scholar] [CrossRef]
- Byrne, R.H.; Yao, W.; Luo, Y.-R.; Wang, B. The dependence of FeIII hydrolysis on ionic strength in NaCl solutions. Mar. Chem. 2005, 97, 34–48. [Google Scholar] [CrossRef]
- Dousma, J.; De Bruyn, P. Hydrolysis-precipitation studies of iron solutions. I. Model for hydrolysis and precipitation from Fe(III) nitrate solutions. J. Colloid Interface Sci. 1976, 56, 527–539. [Google Scholar] [CrossRef]
- Kim, Y.; Yun, D.; Jeon, J. Performance improvement of aqueous zinc-iron flow batteries through organic ligand complexation of Fe(II)/Fe(III). Electrochim. Acta 2020, 354, 136691. [Google Scholar] [CrossRef]
- Liu, X.; Zhang, H.; Duan, Y.; Yuan, Z.; Li, X. Effect of Electrolyte Additives on the Water Transfer Behavior for Alkaline Zinc–Iron Flow Batteries. ACS Appl. Mater. Interfaces 2020, 12, 51573–51580. [Google Scholar] [CrossRef] [PubMed]
- Shi, Y.; Wang, Z.; Yao, Y.; Wang, W.; Lu, Y.-C. High-areal-capacity conversion type iron-based hybrid redox flow batteries. Energy Environ. Sci. 2021, 14, 6329–6337. [Google Scholar] [CrossRef]
- Wang, L.-P.; Li, N.-W.; Wang, T.-S.; Yin, Y.-X.; Guo, Y.-G.; Wang, C.-R. Conductive graphite fiber as a stable host for zinc metal anodes. Electrochim. Acta 2017, 244, 172–177. [Google Scholar] [CrossRef]
- Zeng, Y.; Zhang, X.; Qin, R.; Liu, X.; Fang, P.; Zheng, D.; Tong, Y.; Lu, X. Dendrite-Free Zinc Deposition Induced by Multifunctional CNT Frameworks for Stable Flexible Zn-Ion Batteries. Adv. Mater. 2019, 31, 1903675. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Zhang, H.; Lai, Q.; Li, X.; Cheng, Y. Development of carbon coated membrane for zinc/bromine flow battery with high power density. J. Power Sources 2013, 227, 41–47. [Google Scholar] [CrossRef]
- Chen, Z.; Yu, W.; Liu, Y.; Zeng, Y.; He, Q.; Tan, P.; Ni, M. Mathematical modeling and numerical analysis of alkaline zinc-iron flow batteries for energy storage applications. Chem. Eng. J. 2021, 405, 126684. [Google Scholar] [CrossRef]
- Beck, V.A.; Wong, J.J.; Jekel, C.F.; Tortorelli, D.A.; Baker, S.E.; Duoss, E.B.; Worsley, M.A. Computational design of microarchitected porous electrodes for redox flow batteries. J. Power Sources 2021, 512, 230453. [Google Scholar] [CrossRef]
- Sun, C.-Y.; Zhang, H. Investigation of Nafion series membranes on the performance of iron-chromium redox flow battery. Int. J. Energy Res. 2019, 43, 8739–8752. [Google Scholar] [CrossRef]
- Nawn, G.; Pace, G.; Lavina, S.; Vezzù, K.; Negro, E.; Bertasi, F.; Polizzi, S.; Di Noto, V. Interplay between Composition, Structure, and Properties of New H3PO4-Doped PBI4N–HfO2 Nanocomposite Membranes for High-Temperature Proton Exchange Membrane Fuel Cells. Macromolecules 2015, 48, 15–27. [Google Scholar] [CrossRef]
- Jeena, C.B.; Elsa, P.J.; Moly, P.P.; Ambily, K.J.; Joy, V.T. A dendrite free Zn-Fe hybrid redox flow battery for renewable energy storage. Energy Storage 2022, 4, e275. [Google Scholar] [CrossRef]
- Mu, D.; Yu, L.; Liu, L.; Xi, J. Rice Paper Reinforced Sulfonated Poly(ether ether ketone) as Low-Cost Membrane for Vanadium Flow Batteries. ACS Sustain. Chem. Eng. 2017, 5, 2437–2444. [Google Scholar] [CrossRef]
- Zhang, Y.; Wang, H.; Qian, P.; Zhou, Y.; Shi, J.; Shi, H. Sulfonated poly(ether ether ketone)/amine-functionalized graphene oxide hybrid membrane with various chain lengths for vanadium redox flow battery: A comparative study. J. Membr. Sci. 2020, 610, 118232. [Google Scholar] [CrossRef]
- Chang, S.; Ye, J.; Zhou, W.; Wu, C.; Ding, M.; Long, Y.; Cheng, Y.; Jia, C. A low-cost SPEEK-K type membrane for neutral aqueous zinc-iron redox flow battery. Surf. Coat. Technol. 2019, 358, 190–194. [Google Scholar] [CrossRef]
- Chen, D.; Kang, C.; Duan, W.; Yuan, Z.; Li, X. A non-ionic membrane with high performance for alkaline zinc-iron flow battery. J. Membr. Sci. 2021, 618, 118585. [Google Scholar] [CrossRef]
- Higashi, S.; Lee, S.W.; Lee, J.S.; Takechi, K.; Cui, Y. Avoiding short circuits from zinc metal dendrites in anode by backside-plating configuration. Nat. Commun. 2016, 7, 11801. [Google Scholar] [CrossRef] [Green Version]
- Kim, H.-I.; Shin, H.-C. SnO additive for dendritic growth suppression of electrolytic zinc. J. Alloy. Compd. 2015, 645, 7–10. [Google Scholar] [CrossRef]
- Zhang, Y.; Henkensmeier, D.; Kim, S.; Hempelmann, R.; Chen, R. Enhanced reaction kinetics of an aqueous Zn–Fe hybrid flow battery by optimizing the supporting electrolytes. J. Energy Storage 2019, 25, 100883. [Google Scholar] [CrossRef]
- Mitha, A.; Yazdi, A.Z.; Ahmed, M.; Chen, P. Surface Adsorption of Polyethylene Glycol to Suppress Dendrite Formation on Zinc Anodes in Rechargeable Aqueous Batteries. ChemElectroChem 2018, 5, 2409–2418. [Google Scholar] [CrossRef]
- Wang, K.; Pei, P.; Ma, Z.; Xu, H.; Li, P.; Wang, X. Morphology control of zinc regeneration for zinc–air fuel cell and battery. J. Power Sources 2014, 271, 65–75. [Google Scholar] [CrossRef]
- ShakeriHosseinabad, F.; Daemi, S.R.; Momodu, D.; Brett, D.J.L.; Shearing, P.R.; Roberts, E.P.L. Influence of Flow Field Design on Zinc Deposition and Performance in a Zinc-Iodide Flow Battery. ACS Appl. Mater. Interfaces 2021, 13, 41563–41572. [Google Scholar] [CrossRef] [PubMed]
- Yuan, Z.; Li, X. Ion conducting membranes for aqueous flow battery systems. Chemical Communications 2018, 54, 7570–7588. [Google Scholar] [CrossRef] [PubMed]
- Brown, P.L.; Ekberg, C. First Transition Series Metals. Hydrolys. Met. Ions 2016, 499–716. [Google Scholar]
- Huang, Q.; Wang, Q. Next-Generation, High-Energy-Density Redox Flow Batteries. ChemPlusChem 2015, 80, 312–322. [Google Scholar] [CrossRef]
- Hawthorne, K.L.; Wainright, J.S.; Savinell, R.F. Studies of Iron-Ligand Complexes for an All-Iron Flow Battery Application. J. Electrochem. Soc. 2014, 161, A1662–A1671. [Google Scholar] [CrossRef]
- Yuan, Y.F.; Tu, J.P.; Wu, H.M.; Wang, S.F.; Zhang, W.K.; Huang, H. Effects of stannous ions on the electrochemical performance of the alkaline zinc electrode. J. Appl. Electrochem. 2007, 37, 249–253. [Google Scholar] [CrossRef]
- Zhou, X.; Lin, L.; Lv, Y.; Zhang, X.; Wu, Q. A Sn-Fe flow battery with excellent rate and cycle performance. J. Power Sources 2018, 404, 89–95. [Google Scholar] [CrossRef]
- Zhang, C.; Guo, L.; Deng, C.; Huang, H.; Cheng, Y. Semi-solid reactive interfaces based on ZnO@C core-shell materials for zinc-iron flow batteries. Chem. Eng. Sci. 2022, 250, 117402. [Google Scholar] [CrossRef]
- Chu, F.; Guo, L.; Wang, S.; Cheng, Y. Semi-solid zinc slurry with abundant electron-ion transfer interfaces for aqueous zinc-based flow batteries. J. Power Sources 2022, 535, 231442. [Google Scholar] [CrossRef]
- Zhi, L.; Li, T.; Liu, X.; Yuan, Z.; Li, X. Functional complexed zincate ions enable dendrite-free long cycle alkaline zinc-based flow batteries. Nano Energy 2022, 102, 107697. [Google Scholar] [CrossRef]
- Wang, G.; Zou, H.; Xu, Z.; Tang, A.; Zhong, F.; Zhu, X.; Qin, C.; Ding, M.; You, W.; Jia, C. Unlocking the solubility limit of ferrocyanide for high energy density redox flow batteries. Mater. Today Energy 2022, 28, 101061. [Google Scholar] [CrossRef]
RFB | Characteristic | Energy Density/Wh L−1 | EE/% | Life Cycle | Ref. |
---|---|---|---|---|---|
VRFBs | Both active materials used in catholytes and anolytes are vanadium species, and they exhibit good durability and reversibility, suitable for long-term energy storage. | 15–25 | 82.7 (120 mA/cm2) | 1000 | [33] |
76.3 (300 mA/cm2) | 500 | [34] | |||
ZBRFBs | There are a wide range of catholyte/anolyte sources, and the advantages of low-cost zinc species are significant. The operating environment can be classified as acidic, neutral and alkaline, thus, having a wide pH range. | >50 | 87.6 (200 mA/cm2) | 500 | [35] |
Types of RFB Systems | Potential/V | Operating Current Density/mA cm−2 | Operating Temperature/°C | Peak Power Density/mW cm−2 | Refs. |
---|---|---|---|---|---|
Alkaline zinc/iron | 1.74 | 35–160 | R.T. | 1056 | [51,52] |
Acidic zinc/iron | 1.53 | 25–150 | 25 | 37.8 | [53,54,55] |
Neutral zinc/iron | 1.43 | 20–80 | R.T. | 273 | [44,56] |
All-vanadium | 1.26 | 10–500 | 25–30 | 2780 | [29,57,58] |
Iron–chromium | 1.18 | 40–480 | 55–65 | 216 | [59,60] |
Iron–vanadium | 1.02 | 50 | R.T. | ≈50 | [61,62] |
All-iron | 1.34 | 40 | R.T. | 160 | [63] |
Polysulfide/iodide | 1.05 | 5–37 | R.T. | 84.6 | [19,20] |
Quinone/bromide | 0.89 | 200–500 | 20–45 | 1000 | [21,22] |
Quinone/iron | 1.20 | 100 | R.T. | 240 | [64,65] |
Polymer-based | 1.10 | 20–28 | 25 | - | [66] |
Zinc-Based RFB | Characteristics | Ref. | |
---|---|---|---|
Zn–Fe (Alkaline) | Ecell (in theory)/V | 1.74 | |
Advantage | • High OCV; • Long-term cycling; • Cost-effective porous separator/membrane high current density. | ||
Disadvantage | • Zinc dendrites; • High separator/membrane resistance; • Low solubility of ferrocyanide. | ||
Catholytes | Fe(CN)64−↔Fe(CN)63− + e− E (vs. Hg/HgO) = +0.33 V | ||
Anolytes | Zn(OH)42− + 2e−↔Zn + 4OH− E (vs. Hg/HgO) = −1.41 V | ||
Electrode | Carbon felts | [52] | |
Membrane | A nanoporous poly (ether sulfone)/sulfonated poly (ether ether ketone) (PES/SPEEK) membrane | ||
Performance | EE ≈ 91.92% (40 mA cm−2, 240 cycles) | ||
Zn–Fe (Acidic) | Ecell (in theory)/V | 1.53 | |
Advantage | • High solubility of iron ions; • Fast kinetics of Fe2+/Fe3+. | ||
Disadvantage | • Zinc dendrites; • Hydrogen evolution. | ||
Catholytes | Fe2+↔Fe3+ + e− E (vs. SHE) = +0.77 V | ||
Anolytes | Zn2+ + 2e−↔Zn E (vs. SHE) = −0.76 V | ||
Electrode | Graphite plate | [54] | |
Membrane | Daramic 175 | ||
Performance | EE ≈ 68% (25 mA cm−2, 127 cycles) | ||
Zn–Fe (Neutral) | Ecell (in theory)/V | 1.43 | |
Advantage | • Low cost. | ||
Disadvantage | • Zinc dendrites. • Fen+ hydrolysis. | ||
Catholytes | Fe(Glycine)22+↔Fe(Glycine)23+ + e− E (vs. Ag/AgCl) = +0.55 V | ||
Anolytes | Zn2+ + 2e−↔Zn E (vs. Ag/AgCl) = −0.88 V | ||
Electrode | Carbon felts | [35] | |
Membrane | A perfluorinated sulfonic acid membrane | ||
Performance | EE ≈ 87.6% (200 mA cm−2, 500 cycles) | ||
Zn–Br2 (Neutral) | Ecell (in theory)/V | 1.84 | |
Advantage | • Low cost; • High-energy density. | ||
Disadvantage | • Zinc dendrites; • Environmental risk; • Slow reaction kinetics. | ||
Catholytes | ZnBr2 | ||
Anolytes | ZnBr2 | ||
Electrode | Graphite felts | [68] | |
Membrane | Nafion 212 | ||
Performance | EE ≈ 75% (40 mA cm−2, 50 cycles) | ||
Zn–I2 (Neutral) | Ecell (in theory)/V | 1.37 | |
Advantage | • High-energy density. | ||
Disadvantage | • Zinc dendrites; • The instability of the catholyte. | ||
Catholytes | ZnI2/NH4I | ||
Anolytes | ZnCl2 | ||
Electrode | Graphite felts | [69] | |
Membrane | Nafion 115 | ||
Performance | EE ≈ 80% (10 mA cm−2, 2500 cycles) | ||
Zn–Ce (Acidic) | Ecell (in theory)/V | 2.4 | |
Advantage | • High OCV; • High-energy density. | ||
Disadvantage | • Zinc dendrites; • Low solubility of Ce3+/Ce4+ species. | ||
Catholytes | Ce(CH3SO3)3 | ||
Anolytes | Zn(CH3SO3)2 | ||
Electrode | Carbon polyvinyl-ester composite | [70] | |
Membrane | Nafion 117 | ||
Performance | EE ≈ 73% (50 mA cm−2) | ||
Zn–Ni (Alkaline) | Ecell (in theory)/V | 1.71 | |
Advantage | • High-energy density; • Low cost. | ||
Disadvantage | • Poor kinetics; • Low-energy density; • Oxygen evolution. | ||
Catholytes | Ni(OH)2 | ||
Anolytes | ZnO | ||
Electrode | Nickel-based | [71] | |
Membrane | - | ||
Performance | EE ≈ 80.1% (80 mA cm−2, 200 cycles) | ||
Zn–Air (Alkaline) | Ecell (in theory)/V | >1.6 | |
Advantage | • The extensive global reserves of Zn; • Non-flammable electrolytes. | ||
Disadvantage | • Zn dissolution/precipitation; • Slow reaction kinetics. | ||
Catholytes | - | ||
Anolytes | K2[Zn(OH)4] | ||
Electrode | 3D-wired Zn electrodes | [72] | |
Membrane | An aqueous-compatible separator | ||
Performance | Specific capacity ≈ 694 ± 20 mAh·gZn−1 (24 mA cm−2) |
Active Agent | DFe3+ (×10−6)/cm2 s−1 | DFe2+ (×10−6)/cm2 s−1 |
---|---|---|
BMImCl | 6.39 | 5.53 |
Glycine | 2.90 | 4.08 |
Malic acid | 1.90 | 4.20 |
Malonic acid | 3.80 | 3.20 |
Xylitol | 0.27 | 3.20 |
Batter. | Potential Approaches | Advantages | Disadvantages | Current Density/mA cm−2 | Cycles | EE/% | Peak Power Density/mW cm−2 | Refs. |
---|---|---|---|---|---|---|---|---|
Alkaline ZIRFB | Carbon felt electrode, PBI membrane | Zinc dendrite prevention, low cost | PBI membrane has lower conductivity than Nafion | 80–160 | >150 | 82.78 (160 mA cm−2) | ≈250 | [51] |
Carbon felt electrode, PES/SPEEK membrane | Zinc dendrite prevention | The long-term durability of the SPEEK-based membrane requires further verification | 80–160 | 90 | 78.76 (160 mA cm−2) | 1050 (1040 mA cm−2) | [92] | |
Semi-solid anodes:graphite felt and ZnO@MC slurry | Zinc dendrite prevention | Limited current density range | 5–15 | 460 | 74.8 (10 mA cm−2) | - | [109] | |
zinc slurry anodes | Zinc dendrite prevention | Limited current density range | 10–40 | 65 | 78 (40 mA cm−2) | - | [110] | |
Carbon felt electrode, SPEEK-K membrane | Low cost | The long-term durability of the SPEEK-based membrane requires further verification | 10–60 | 30 | 78 (40 mA cm−2) | - | [95] | |
SPEEK-PES-PEG membrane | Cost-effective | The long-term durability of the SPEEK-based membrane requires further verification | 80–180 | 120 | 84.44 (80 mA cm−2) | 987 (920 mA cm−2) | [96] | |
Electrolyte additive: Na2SO4, PBI membrane | Suppress water migration | Aggravates HER with the increased alkalinity of the electrolyte | 80 | 120 | 88 (80 mA cm−2) | - | [83] | |
A THEED additive | Zinc dendrite prevention, suppresses water migration | The additives are corrosive and irritants | 80 | 160 | 85 (80 mA cm−2) | - | [111] | |
K4Fe(CN)6 in NaOH solution, Nafion-Na+ membrane | Improves solubility | Although the combination of cyanide ion and iron in the molecule is firm, potassium ferrocyanide still has certain toxicity | 50–500 | 7600 | 88.1 (100 mA cm−2) | 656.81 (100 mA cm−2) | [112] | |
Neutral ZIRFB | Electrolyte additive:nicotinamide | Cost-effective, non-toxic | Limited current density range | 10–50 | 400 | 70 (50 mA cm−2) | 185 (300 mA cm−2) | [35] |
Electrolyte additive: glycine, PBI membrane | Low cost, alleviates hydrolysis | PBI membrane has lower conductivity than Nafion | 20–80 | 100 | 86.66 (40 mA cm−2) | - | [44] | |
Supporting electrolyte: KBr, additive in the anolyte: ZnBr2 | Improves the Zn/Zn2+ redox reversibility, low chemical cost | Complex composition and not environmentally friendly due to the usage of bromide | 10–120 | 2000 | 86.7 (30 mA cm−2) | 273 (376 mA cm−2) | [44,56] | |
Acid ZIRFB | Fe(II)-pyridine complex solution | Suppression of ferrihydrite formation | Limited current density range | 20 | 100 | 76.82 (20 mA cm−2) | - | [82] |
HAc/NaAc in the negative electrolyte | HER-suppressed, zinc dendrite prevention | Membrane with high selectivity, efficiency decay of full-life cell performance (200 cycles) | 30 | 50 | 71.1 (30 mA cm−2) | 37.8 (30 mA cm−2) | [53] | |
Hybird ZIRFB | Mixed ZnCl2-FeCl2 electrolytes in mildly acidic chloride | Crossover-tolerant and microporous separators | A pressure imbalance leading a gradual transfer of fluid from positive to negative | 25 | 127 | 68 (25 mA cm−2) | - | [54] |
Fe species in BMImCl/H2O (8 m) with HCl (1 M) as catholyte, Zn species inCaCl2/H2O (3.5 m) with NH4Cl (0.5 M) as anolyte | Enhances the redox activities | Limited current density range | 10, 20 | 150 | 80 (20 mA cm−2) | - | [99] | |
A double-membrane design | Low system capital cost, high OCV, facile kinetics | Complex system design and long-term durability requires further verification | 50–150 | 20 | 75.9 (20 mA cm−2) | 676 (660 mA cm−2) | [55] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, H.; Sun, C.; Ge, M. Review of the Research Status of Cost-Effective Zinc–Iron Redox Flow Batteries. Batteries 2022, 8, 202. https://doi.org/10.3390/batteries8110202
Zhang H, Sun C, Ge M. Review of the Research Status of Cost-Effective Zinc–Iron Redox Flow Batteries. Batteries. 2022; 8(11):202. https://doi.org/10.3390/batteries8110202
Chicago/Turabian StyleZhang, Huan, Chuanyu Sun, and Mingming Ge. 2022. "Review of the Research Status of Cost-Effective Zinc–Iron Redox Flow Batteries" Batteries 8, no. 11: 202. https://doi.org/10.3390/batteries8110202
APA StyleZhang, H., Sun, C., & Ge, M. (2022). Review of the Research Status of Cost-Effective Zinc–Iron Redox Flow Batteries. Batteries, 8(11), 202. https://doi.org/10.3390/batteries8110202