One-Step Synthesis of Zirconium Sulfide Nanoparticles on Flexible Carbon Cloth for Supercapacitor Application
Abstract
1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Synthesis of Zirconium Sulfide (ZrxSy) Nanoparticles
2.3. Material Characterization
2.4. Electrochemical Characterizations
3. Results and Discussions
3.1. The Morphology of the ZrxSy/CC
3.2. Electrochemical Performance of ZrxSy/CC Electrode
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Shi, Y.; Sun, L.; Zhang, Y.; Si, H.; Sun, C.; Gu, J.; Gong, Y.; Li, X.; Zhang, Y. SnS2 nanodots decorated on RGO sheets with enhanced pseudocapacitive performance for asymmetric supercapacitors. J. Alloys Compd. 2021, 853, 156903. [Google Scholar] [CrossRef]
- Xu, Y.; Zhou, Y.; Guo, J.; Zhang, S.; Lu, Y. Preparation of SnS2/g-C3N4 composite as the electrode material for Supercapacitor. J. Alloys Compd. 2019, 806, 343–349. [Google Scholar] [CrossRef]
- Conway, B.E.; Birss, V.; Wojtowicz, J. The role and utilization of pseudocapacitance for energy storage by supercapacitors. J. Power Sources 1997, 66, 1–14. [Google Scholar] [CrossRef]
- Mishra, R.K.; Baek, G.W.; Kim, K.; Kwon, H.-I.; Jin, S.H. One-step solvothermal synthesis of carnation flower-like SnS2 as superior electrodes for supercapacitor applications. Appl. Surf. Sci. 2017, 425, 923–931. [Google Scholar] [CrossRef]
- Gao, Q.; Ding, B.; Ertugrul, N.; Li, Y. Impacts of mechanical energy storage on power generation in wave energy converters for future integration with offshore wind turbine. Ocean Eng. 2022, 261, 112136. [Google Scholar] [CrossRef]
- Majidi, M.; Rodriguez-Garcia, L.; Mosier, T.M.; Parvania, M. Coordinated operation of pumped-storage hydropower with power and water distribution systems. Int. J. Electr. Power Energy Syst. 2022, 142, 108297. [Google Scholar] [CrossRef]
- Liu, L.; Zuo, S.; Wang, S. Engineering a highly conductive honeycomb network on carbon cloth-supported bimetallic sulfide nanorod arrays for flexible solid-state asymmetric supercapacitors with superior performance. Chem. Eng. J. 2024, 502, 158052. [Google Scholar] [CrossRef]
- Jiang, Y.; Liu, J. Definitions of pseudocapacitive materials: A brief review. Energy Environ. Mater. 2019, 2, 30–37. [Google Scholar] [CrossRef]
- Iro, Z.S.; Subramani, C.; Dash, S. A brief review on electrode materials for supercapacitor. Int. J. Electrochem. Sci. 2016, 11, 10628–10643. [Google Scholar] [CrossRef]
- Halder, A.; Aman, M.; Jha, S.K. Enhancing supercapacitor performance with binder-free cobalt sulfide pseudo-capacitive electrodes: A path to sustainable energy storage. J. Electroanal. Chem. 2024, 972, 118631. [Google Scholar] [CrossRef]
- Alam, S.; Khan, M.I.; Fiaz, F.; Iqbal, M.Z.; Alam, F.; Ahmad, Z.; Hegazy, H.H. Advancements in asymmetric supercapacitors: Material selection, mechanisms, and breakthroughs with metallic oxides, sulfides, and phosphates. J. Energy Storage 2023, 72, 108208. [Google Scholar]
- Chen, Q.; Cai, D.; Zhan, H. Construction of reduced graphene oxide nanofibers and cobalt sulfide nanocomposite for pseudocapacitors with enhanced performance. J. Alloys Compd. 2017, 706, 126–132. [Google Scholar]
- Tang, P.; Tan, W.; Deng, G.; Zhang, Y.; Xu, S.; Wang, Q.; Li, G.; Zhu, J.; Dou, Q.; Yan, X. Understanding pseudocapacitance mechanisms by synchrotron X-ray analytical techniques. Energy Environ. Mater. 2023, 6, e12619. [Google Scholar] [CrossRef]
- González, A.; Goikolea, E.; Barrena, J.A.; Mysyk, R. Review on supercapacitors: Technologies and materials. Renew. Sustain. Energy Rev. 2016, 58, 1189–1206. [Google Scholar]
- Shariq, M.; Alhashmialameer, D.; Adawi, H.; Alrahili, M.R.; Almashnowi, M.Y.; Alzahrani, A.; Sharma, M.; Ali, S.K.; Slimani, Y. Advancements in transition metal sulfide supercapacitors: A focused review on high-performance energy storage. J. Ind. Eng. Chem. 2024, 144, 269–291. [Google Scholar]
- Bhojane, P. Recent advances and fundamentals of Pseudocapacitors: Materials, mechanism, and its understanding. J. Energy Storage 2022, 45, 103654. [Google Scholar]
- Phor, L.; Kumar, A.; Chahal, S. Electrode materials for supercapacitors: A comprehensive review of advancements and performance. J. Energy Storage 2024, 84, 110698. [Google Scholar]
- Raghavendra, K.; Alamara, K.; Al-Haik, M.Y.; Gopi, C.V.M.; Alzahmi, S.; Haik, Y.; Nutakki, T.U.K.; Obaidat, I.M.; Rao, K.M. Emphasis on the transition metal sulfides and their polymer composites as potential electrodes for supercapacitor applications. J. Energy Storage 2024, 103, 114312. [Google Scholar]
- Lin, L.; Lei, W.; Zhang, S.; Liu, Y.; Wallace, G.G.; Chen, J. Two-dimensional transition metal dichalcogenides in supercapacitors and secondary batteries. Energy Storage Mater. 2019, 19, 408–423. [Google Scholar] [CrossRef]
- Kour, P.; Kour, S.; Sharma, A.; Yadav, K. Electrochemical advancements in molybdenum disulfide via different transition metal (Cr, Mn, Fe, Co) doping for hybrid supercapacitors. J. Alloys Compd. 2024, 981, 173740. [Google Scholar]
- Sajjad, M.; Amin, M.; Javed, M.S.; Imran, M.; Hu, W.; Mao, Z.; Lu, W. Recent trends in transition metal diselenides (XSe2: X = Ni, Mn, Co) and their composites for high energy faradic supercapacitors. J. Energy Storage 2021, 43, 103176. [Google Scholar]
- Sheikh, Z.A.; Katkar, P.K.; Kim, H.; Rehman, S.; Khan, K.; Chavan, V.D.; Jose, R.; Khan, M.F.; Kim, D.-K. Transition metal chalcogenides, MXene, and their hybrids: An emerging electrochemical capacitor electrodes. J. Energy Storage 2023, 71, 107997. [Google Scholar]
- Kamila, S.; Kandasamy, M.; Chakraborty, B.; Jena, B.K. Recent development on engineered TMDs for charge storage performance: Experimental and theoretical investigations. J. Energy Storage 2024, 89, 111614. [Google Scholar]
- Liu, L.; Li, H.; Jiang, S.; Zhao, Q.; Jiang, T. Design of high-performance transition metal sulfide electrode materials and its application in supercapacitors. J. Power Sources 2024, 606, 234560. [Google Scholar]
- Ali, Z.; Iqbal, M.Z.; Hegazy, H. Recent advancements in redox-active transition metal sulfides as battery-grade electrode materials for hybrid supercapacitors. J. Energy Storage 2023, 73, 108857. [Google Scholar]
- Zhang, C.; He, J.; Wang, G.; Hong, X.; Zhao, C. Recent advances in heteroatom doped transition metal sulfides for high-performance supercapacitors. J. Energy Storage 2024, 104, 114562. [Google Scholar]
- Iqbal, M.Z.; Aziz, U.; Amjad, N.; Aftab, S.; Wabaidur, S.M. Porous activated carbon and highly redox active transition metal sulfide by employing multi-synthesis approaches for battery-supercapacitor applications. Diam. Relat. Mater. 2023, 136, 110019. [Google Scholar]
- Gao, Y.; Zhao, L. Review on recent advances in nanostructured transition-metal-sulfide-based electrode materials for cathode materials of asymmetric supercapacitors. Chem. Eng. J. 2022, 430, 132745. [Google Scholar]
- Shao, Q.; Liu, X.; Dong, J.; Liang, L.; Zhang, Q.; Li, P.; Yang, S.; Zang, X.; Cao, N. Vulcanization Conditions of Bimetallic Sulfides Under Different Sulfur Sources for Supercapacitors: A Review. J. Electron. Mater. 2023, 52, 1769–1784. [Google Scholar] [CrossRef]
- He, Q.; Wu, X. Ni3S2@NiMo-LDH Composite for Flexible Hybrid Capacitors. Batteries 2024, 10, 230. [Google Scholar] [CrossRef]
- Mohan, M.; Shetti, N.P.; Aminabhavi, T.M. Phase dependent performance of MoS2 for supercapacitor applications. J. Energy Storage 2023, 58, 106321. [Google Scholar] [CrossRef]
- Nabi, G.; Ali, W.; Tanveer, M.; Iqbal, T.; Rizwan, M.; Hussain, S. Robust synergistic effect of TiS2/MoS2 hierarchal micro-flowers composite realizing enhanced electrochemical performance. J. Energy Storage 2023, 58, 106316. [Google Scholar] [CrossRef]
- Wang, H.; Tian, L.; Zhao, X.; Ali, M.; Feng, H.; Han, S.; Xing, Z.; Kumar, S.; Ding, J. Synthesis of MoS2/CoS composite electrode and its application for supercapacitors. J. Alloys Compd. 2023, 960, 170835. [Google Scholar]
- Liu, X.; Ma, X.; Liu, G.; Zhang, X.; Tang, X.; Li, C.; Zang, X.; Cao, N.; Shao, Q. Polyaniline spaced MoS2 nanosheets with increased interlayer distances for constructing high-rate dual-ion batteries. J. Mater. Sci. Technol. 2024, 182, 220–230. [Google Scholar] [CrossRef]
- Duangchuen, T.; Karaphun, A.; Wannasen, L.; Kotutha, I.; Swatsitang, E. Effect of SnS2 concentrations on electrochemical properties of SnS2/RGO nanocomposites synthesized by a one-pot hydrothermal method. Appl. Surf. Sci. 2019, 487, 634–646. [Google Scholar]
- Venkateshalu, S.; Kumar, P.G.; Kollu, P.; Jeong, S.K.; Grace, A.N. Solvothermal synthesis and electrochemical properties of phase pure pyrite FeS2 for supercapacitor applications. Electrochim. Acta 2018, 290, 378–389. [Google Scholar] [CrossRef]
- Wang, Y.; Zhang, M.; Ma, T.; Pan, D.; Li, Y.; Xie, J.; Shao, S. A high-performance flexible supercapacitor electrode material based on nano-flowers-like FeS2/NSG hybrid nanocomposites. Mater. Lett. 2018, 218, 10–13. [Google Scholar]
- Durga, I.K.; Rao, S.S.; Kalla, R.M.N.; Ahn, J.-W.; Kim, H.-J. Facile synthesis of FeS2/PVP composite as high-performance electrodes for supercapacitors. J. Energy Storage 2020, 28, 101216. [Google Scholar] [CrossRef]
- Niknam, E.; Naffakh-Moosavy, H.; Moosavifard, S.E.; Afshar, M.G. Amorphous V-doped Co3S4 yolk-shell hollow spheres derived from metal-organic framework for high-performance asymmetric supercapacitors. J. Alloys Compd. 2022, 895, 162720. [Google Scholar]
- Mahieddine, A.; Adnane-Amara, L.; Tebaa, T.; Saba, C. Core-shell structured hierarchical Ni nanowires and NiS/Co3S4 microflowers arrays as a high-performance supercapacitor electrode. J. Energy Storage 2023, 57, 106173. [Google Scholar] [CrossRef]
- Wu, W.; Liu, T.; Diwu, J.; Li, C.; Zhu, J. Metal-organic framework–derived NiCo2S4@Co3S4 yolk-shell nanocages/Ti3C2Tx MXene for high-performance asymmetric supercapacitors. J. Alloys Compd. 2023, 954, 170213. [Google Scholar] [CrossRef]
- Wang, H.; Liang, M.; Duan, D.; Shi, W.; Song, Y.; Sun, Z. Rose-like Ni3S4 as battery-type electrode for hybrid supercapacitor with excellent charge storage performance. Chem. Eng. J. 2018, 350, 523–533. [Google Scholar] [CrossRef]
- Das, A.; Maitra, A.; Mondal, A.; De, A.; Maity, P.; Khatua, B.B. Hydrothermal synthesis of Cu2S/NiS/Ni3S4 as high performance supercapacitor application. J. Energy Storage 2024, 92, 112293. [Google Scholar] [CrossRef]
- Liu, C.; Zhang, X.; Cheng, Y.; Hao, X.; Yang, P. NiS/Ni3S4 decorated double-layered hollow carbon spheres for efficient electrochemical hydrogen evolution reaction and supercapacitor. Electrochim. Acta 2024, 477, 143751. [Google Scholar] [CrossRef]
- Yu, X.Y.; Lou, X.W. Mixed metal sulfides for electrochemical energy storage and conversion. Adv. Energy Mater. 2018, 8, 1701592. [Google Scholar] [CrossRef]
- Rui, X.; Tan, H.; Yan, Q. Nanostructured metal sulfides for energy storage. Nanoscale 2014, 6, 9889–9924. [Google Scholar] [CrossRef]
- Barik, R.; Ingole, P.P. Challenges and prospects of metal sulfide materials for supercapacitors. Curr. Opin. Electrochem. 2020, 21, 327–334. [Google Scholar] [CrossRef]
- Li, X.; Elshahawy, A.M.; Guan, C.; Wang, J. Metal phosphides and phosphates-based electrodes for electrochemical supercapacitors. Small 2017, 13, 1701530. [Google Scholar] [CrossRef]
- Jin, W.; Maduraiveeran, G. Recent advances of porous transition metal-based nanomaterials for electrochemical energy conversion and storage applications. Mater. Today Energy 2019, 13, 64–84. [Google Scholar] [CrossRef]
- Habib, M.; Ullah, S.; Khan, F.; Rafiq, M.I.; Balobaid, A.S.; Alshahrani, T.; Muhammad, Z. Supercapacitor electrodes based on single crystal layered ZrX2 (X = S, Se) using chemical vapor transport method. Mater. Sci. Eng. B 2023, 298, 116904. [Google Scholar] [CrossRef]
- Mariappan, V.K.; Krishnamoorthy, K.; Pazhamalai, P.; Sahoo, S.; Kesavan, D.; Kim, S.-J. Two dimensional famatinite sheets decorated on reduced graphene oxide: A novel electrode for high performance supercapacitors. J. Power Sources 2019, 433, 126648. [Google Scholar]
- Xing, J.-C.; Zhu, Y.-L.; Zhou, Q.-W.; Zheng, X.-D.; Jiao, Q.-J. Fabrication and shape evolution of CoS2 octahedrons for application in supercapacitors. Electrochim. Acta 2014, 136, 550–556. [Google Scholar]
- Zeng, X.; Yang, B.; Li, X.; Yu, R. Three-dimensional hollow CoS2 nanoframes fabricated by anion replacement and their enhanced pseudocapacitive performances. Electrochim. Acta 2017, 240, 341–349. [Google Scholar]
- Pujari, R.B.; Lokhande, V.C.; Patil, U.M.; Lee, D.W.; Lokhande, C.D. Controlled sulfurization of MnCO3 microcubes architectured MnS2 nanoparticles with 1.7 fold capacitance increment for high energy density supercapacitor. Electrochim. Acta 2019, 301, 366–376. [Google Scholar]
- Javed, M.S.; Han, X.; Hu, C.; Zhou, M.; Huang, Z.; Tang, X.; Gu, X. Tracking Pseudocapacitive Contribution to Superior Energy Storage of MnS Nanoparticles Grown on Carbon Textile. ACS Appl. Mater. Interfaces 2016, 8, 24621–24628. [Google Scholar]
- Mohan, V.V.; Rakhi, R.B. WS2/Conducting polymer nanocomposite-based flexible and binder-free electrodes for high-performance supercapacitors. Electrochim. Acta 2024, 498, 144657. [Google Scholar] [CrossRef]
- Mohan, V.; Mohan, M.; Anjana, P.; Rakhi, R. WS2 nanoflowers as efficient electrode materials for supercapacitors. Energy Technol. 2021, 10, 2100976. [Google Scholar] [CrossRef]
- Upadhyay, K.K.; Nguyen, T.; Silva, T.M.; Carmezim, M.J.; Montemor, M.F. Pseudocapacitive response of hydrothermally grown MoS2 crumpled nanosheet on carbon fiber. Mater. Chem. Phys. 2018, 216, 413–420. [Google Scholar]
- Krishnamoorthy, K.; Veerasubramani, G.K.; Radhakrishnan, S.; Kim, S.J. Supercapacitive properties of hydrothermally synthesized sphere like MoS2 nanostructures. Mater. Res. Bull. 2014, 50, 499–502. [Google Scholar]
- Hussain, I.; Mohapatra, D.; Dhakal, G.; Lamiel, C.; Sayed, M.S.; Sahoo, S.; Mohamed, S.G.; Kim, J.S.; Lee, Y.R.; Shim, J.-J. Uniform growth of ZnS nanoflakes for high-performance supercapacitor applications. J. Energy Storage 2021, 36, 102408. [Google Scholar]
- Chauhan, H.; Singh, M.K.; Kumar, P.; Hashmi, S.A.; Deka, S. Development of SnS2/RGO nanosheet composite for cost-effective aqueous hybrid supercapacitors. Nanotechnology 2017, 28, 025401. [Google Scholar] [PubMed]
- Lonkar, S.P.; Pillai, V.V.; Patole, S.P.; Alhassan, S.M. Scalable In Situ Synthesis of 2 D Type Graphene Wrapped SnS2 Nanohybrids for Enhanced Supercapacitor and Electrocatalytic Applications. ACS Appl. Energy Mater. 2020, 3, 4995–5005. [Google Scholar]
- Peng, L.; Ji, X.; Wan, H.; Ruan, Y.; Xu, K.; Chen, C.; Miao, L.; Jiang, J. Nickel sulfide nanoparticles synthesized by microwave-assisted method as promising supercapacitor electrodes: An experimental and computational study. Electrochim. Acta 2015, 182, 361–367. [Google Scholar]
- Seemab, M.; Nabi, G. Structural transformations and enhanced electrochemical performance of Co doped NiS2 nanosheets for supercapacitor applications. Ceram. Int. 2024, 50, 27856–27866. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, Y.-X.; Tsai, D.-S.; Huang, C.-J.; Chen, Z.-Y.; Lee, C.-P. One-Step Synthesis of Zirconium Sulfide Nanoparticles on Flexible Carbon Cloth for Supercapacitor Application. Batteries 2025, 11, 138. https://doi.org/10.3390/batteries11040138
Wang Y-X, Tsai D-S, Huang C-J, Chen Z-Y, Lee C-P. One-Step Synthesis of Zirconium Sulfide Nanoparticles on Flexible Carbon Cloth for Supercapacitor Application. Batteries. 2025; 11(4):138. https://doi.org/10.3390/batteries11040138
Chicago/Turabian StyleWang, Yu-Xuan, Dung-Sheng Tsai, Chu-Jung Huang, Zi-Yu Chen, and Chuan-Pei Lee. 2025. "One-Step Synthesis of Zirconium Sulfide Nanoparticles on Flexible Carbon Cloth for Supercapacitor Application" Batteries 11, no. 4: 138. https://doi.org/10.3390/batteries11040138
APA StyleWang, Y.-X., Tsai, D.-S., Huang, C.-J., Chen, Z.-Y., & Lee, C.-P. (2025). One-Step Synthesis of Zirconium Sulfide Nanoparticles on Flexible Carbon Cloth for Supercapacitor Application. Batteries, 11(4), 138. https://doi.org/10.3390/batteries11040138