One-Step Synthesis of Zirconium Sulfide Nanoparticles on Flexible Carbon Cloth for Supercapacitor Application
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Synthesis of Zirconium Sulfide (ZrxSy) Nanoparticles
2.3. Material Characterization
2.4. Electrochemical Characterizations
3. Results and Discussions
3.1. The Morphology of the ZrxSy/CC
3.2. Electrochemical Performance of ZrxSy/CC Electrode
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Shi, Y.; Sun, L.; Zhang, Y.; Si, H.; Sun, C.; Gu, J.; Gong, Y.; Li, X.; Zhang, Y. SnS2 nanodots decorated on RGO sheets with enhanced pseudocapacitive performance for asymmetric supercapacitors. J. Alloys Compd. 2021, 853, 156903. [Google Scholar] [CrossRef]
- Xu, Y.; Zhou, Y.; Guo, J.; Zhang, S.; Lu, Y. Preparation of SnS2/g-C3N4 composite as the electrode material for Supercapacitor. J. Alloys Compd. 2019, 806, 343–349. [Google Scholar] [CrossRef]
- Conway, B.E.; Birss, V.; Wojtowicz, J. The role and utilization of pseudocapacitance for energy storage by supercapacitors. J. Power Sources 1997, 66, 1–14. [Google Scholar] [CrossRef]
- Mishra, R.K.; Baek, G.W.; Kim, K.; Kwon, H.-I.; Jin, S.H. One-step solvothermal synthesis of carnation flower-like SnS2 as superior electrodes for supercapacitor applications. Appl. Surf. Sci. 2017, 425, 923–931. [Google Scholar] [CrossRef]
- Gao, Q.; Ding, B.; Ertugrul, N.; Li, Y. Impacts of mechanical energy storage on power generation in wave energy converters for future integration with offshore wind turbine. Ocean Eng. 2022, 261, 112136. [Google Scholar] [CrossRef]
- Majidi, M.; Rodriguez-Garcia, L.; Mosier, T.M.; Parvania, M. Coordinated operation of pumped-storage hydropower with power and water distribution systems. Int. J. Electr. Power Energy Syst. 2022, 142, 108297. [Google Scholar] [CrossRef]
- Liu, L.; Zuo, S.; Wang, S. Engineering a highly conductive honeycomb network on carbon cloth-supported bimetallic sulfide nanorod arrays for flexible solid-state asymmetric supercapacitors with superior performance. Chem. Eng. J. 2024, 502, 158052. [Google Scholar] [CrossRef]
- Jiang, Y.; Liu, J. Definitions of pseudocapacitive materials: A brief review. Energy Environ. Mater. 2019, 2, 30–37. [Google Scholar] [CrossRef]
- Iro, Z.S.; Subramani, C.; Dash, S. A brief review on electrode materials for supercapacitor. Int. J. Electrochem. Sci. 2016, 11, 10628–10643. [Google Scholar] [CrossRef]
- Halder, A.; Aman, M.; Jha, S.K. Enhancing supercapacitor performance with binder-free cobalt sulfide pseudo-capacitive electrodes: A path to sustainable energy storage. J. Electroanal. Chem. 2024, 972, 118631. [Google Scholar] [CrossRef]
- Alam, S.; Khan, M.I.; Fiaz, F.; Iqbal, M.Z.; Alam, F.; Ahmad, Z.; Hegazy, H.H. Advancements in asymmetric supercapacitors: Material selection, mechanisms, and breakthroughs with metallic oxides, sulfides, and phosphates. J. Energy Storage 2023, 72, 108208. [Google Scholar]
- Chen, Q.; Cai, D.; Zhan, H. Construction of reduced graphene oxide nanofibers and cobalt sulfide nanocomposite for pseudocapacitors with enhanced performance. J. Alloys Compd. 2017, 706, 126–132. [Google Scholar]
- Tang, P.; Tan, W.; Deng, G.; Zhang, Y.; Xu, S.; Wang, Q.; Li, G.; Zhu, J.; Dou, Q.; Yan, X. Understanding pseudocapacitance mechanisms by synchrotron X-ray analytical techniques. Energy Environ. Mater. 2023, 6, e12619. [Google Scholar] [CrossRef]
- González, A.; Goikolea, E.; Barrena, J.A.; Mysyk, R. Review on supercapacitors: Technologies and materials. Renew. Sustain. Energy Rev. 2016, 58, 1189–1206. [Google Scholar]
- Shariq, M.; Alhashmialameer, D.; Adawi, H.; Alrahili, M.R.; Almashnowi, M.Y.; Alzahrani, A.; Sharma, M.; Ali, S.K.; Slimani, Y. Advancements in transition metal sulfide supercapacitors: A focused review on high-performance energy storage. J. Ind. Eng. Chem. 2024, 144, 269–291. [Google Scholar]
- Bhojane, P. Recent advances and fundamentals of Pseudocapacitors: Materials, mechanism, and its understanding. J. Energy Storage 2022, 45, 103654. [Google Scholar]
- Phor, L.; Kumar, A.; Chahal, S. Electrode materials for supercapacitors: A comprehensive review of advancements and performance. J. Energy Storage 2024, 84, 110698. [Google Scholar]
- Raghavendra, K.; Alamara, K.; Al-Haik, M.Y.; Gopi, C.V.M.; Alzahmi, S.; Haik, Y.; Nutakki, T.U.K.; Obaidat, I.M.; Rao, K.M. Emphasis on the transition metal sulfides and their polymer composites as potential electrodes for supercapacitor applications. J. Energy Storage 2024, 103, 114312. [Google Scholar]
- Lin, L.; Lei, W.; Zhang, S.; Liu, Y.; Wallace, G.G.; Chen, J. Two-dimensional transition metal dichalcogenides in supercapacitors and secondary batteries. Energy Storage Mater. 2019, 19, 408–423. [Google Scholar] [CrossRef]
- Kour, P.; Kour, S.; Sharma, A.; Yadav, K. Electrochemical advancements in molybdenum disulfide via different transition metal (Cr, Mn, Fe, Co) doping for hybrid supercapacitors. J. Alloys Compd. 2024, 981, 173740. [Google Scholar]
- Sajjad, M.; Amin, M.; Javed, M.S.; Imran, M.; Hu, W.; Mao, Z.; Lu, W. Recent trends in transition metal diselenides (XSe2: X = Ni, Mn, Co) and their composites for high energy faradic supercapacitors. J. Energy Storage 2021, 43, 103176. [Google Scholar]
- Sheikh, Z.A.; Katkar, P.K.; Kim, H.; Rehman, S.; Khan, K.; Chavan, V.D.; Jose, R.; Khan, M.F.; Kim, D.-K. Transition metal chalcogenides, MXene, and their hybrids: An emerging electrochemical capacitor electrodes. J. Energy Storage 2023, 71, 107997. [Google Scholar]
- Kamila, S.; Kandasamy, M.; Chakraborty, B.; Jena, B.K. Recent development on engineered TMDs for charge storage performance: Experimental and theoretical investigations. J. Energy Storage 2024, 89, 111614. [Google Scholar]
- Liu, L.; Li, H.; Jiang, S.; Zhao, Q.; Jiang, T. Design of high-performance transition metal sulfide electrode materials and its application in supercapacitors. J. Power Sources 2024, 606, 234560. [Google Scholar]
- Ali, Z.; Iqbal, M.Z.; Hegazy, H. Recent advancements in redox-active transition metal sulfides as battery-grade electrode materials for hybrid supercapacitors. J. Energy Storage 2023, 73, 108857. [Google Scholar]
- Zhang, C.; He, J.; Wang, G.; Hong, X.; Zhao, C. Recent advances in heteroatom doped transition metal sulfides for high-performance supercapacitors. J. Energy Storage 2024, 104, 114562. [Google Scholar]
- Iqbal, M.Z.; Aziz, U.; Amjad, N.; Aftab, S.; Wabaidur, S.M. Porous activated carbon and highly redox active transition metal sulfide by employing multi-synthesis approaches for battery-supercapacitor applications. Diam. Relat. Mater. 2023, 136, 110019. [Google Scholar]
- Gao, Y.; Zhao, L. Review on recent advances in nanostructured transition-metal-sulfide-based electrode materials for cathode materials of asymmetric supercapacitors. Chem. Eng. J. 2022, 430, 132745. [Google Scholar]
- Shao, Q.; Liu, X.; Dong, J.; Liang, L.; Zhang, Q.; Li, P.; Yang, S.; Zang, X.; Cao, N. Vulcanization Conditions of Bimetallic Sulfides Under Different Sulfur Sources for Supercapacitors: A Review. J. Electron. Mater. 2023, 52, 1769–1784. [Google Scholar] [CrossRef]
- He, Q.; Wu, X. Ni3S2@NiMo-LDH Composite for Flexible Hybrid Capacitors. Batteries 2024, 10, 230. [Google Scholar] [CrossRef]
- Mohan, M.; Shetti, N.P.; Aminabhavi, T.M. Phase dependent performance of MoS2 for supercapacitor applications. J. Energy Storage 2023, 58, 106321. [Google Scholar] [CrossRef]
- Nabi, G.; Ali, W.; Tanveer, M.; Iqbal, T.; Rizwan, M.; Hussain, S. Robust synergistic effect of TiS2/MoS2 hierarchal micro-flowers composite realizing enhanced electrochemical performance. J. Energy Storage 2023, 58, 106316. [Google Scholar] [CrossRef]
- Wang, H.; Tian, L.; Zhao, X.; Ali, M.; Feng, H.; Han, S.; Xing, Z.; Kumar, S.; Ding, J. Synthesis of MoS2/CoS composite electrode and its application for supercapacitors. J. Alloys Compd. 2023, 960, 170835. [Google Scholar]
- Liu, X.; Ma, X.; Liu, G.; Zhang, X.; Tang, X.; Li, C.; Zang, X.; Cao, N.; Shao, Q. Polyaniline spaced MoS2 nanosheets with increased interlayer distances for constructing high-rate dual-ion batteries. J. Mater. Sci. Technol. 2024, 182, 220–230. [Google Scholar] [CrossRef]
- Duangchuen, T.; Karaphun, A.; Wannasen, L.; Kotutha, I.; Swatsitang, E. Effect of SnS2 concentrations on electrochemical properties of SnS2/RGO nanocomposites synthesized by a one-pot hydrothermal method. Appl. Surf. Sci. 2019, 487, 634–646. [Google Scholar]
- Venkateshalu, S.; Kumar, P.G.; Kollu, P.; Jeong, S.K.; Grace, A.N. Solvothermal synthesis and electrochemical properties of phase pure pyrite FeS2 for supercapacitor applications. Electrochim. Acta 2018, 290, 378–389. [Google Scholar] [CrossRef]
- Wang, Y.; Zhang, M.; Ma, T.; Pan, D.; Li, Y.; Xie, J.; Shao, S. A high-performance flexible supercapacitor electrode material based on nano-flowers-like FeS2/NSG hybrid nanocomposites. Mater. Lett. 2018, 218, 10–13. [Google Scholar]
- Durga, I.K.; Rao, S.S.; Kalla, R.M.N.; Ahn, J.-W.; Kim, H.-J. Facile synthesis of FeS2/PVP composite as high-performance electrodes for supercapacitors. J. Energy Storage 2020, 28, 101216. [Google Scholar] [CrossRef]
- Niknam, E.; Naffakh-Moosavy, H.; Moosavifard, S.E.; Afshar, M.G. Amorphous V-doped Co3S4 yolk-shell hollow spheres derived from metal-organic framework for high-performance asymmetric supercapacitors. J. Alloys Compd. 2022, 895, 162720. [Google Scholar]
- Mahieddine, A.; Adnane-Amara, L.; Tebaa, T.; Saba, C. Core-shell structured hierarchical Ni nanowires and NiS/Co3S4 microflowers arrays as a high-performance supercapacitor electrode. J. Energy Storage 2023, 57, 106173. [Google Scholar] [CrossRef]
- Wu, W.; Liu, T.; Diwu, J.; Li, C.; Zhu, J. Metal-organic framework–derived NiCo2S4@Co3S4 yolk-shell nanocages/Ti3C2Tx MXene for high-performance asymmetric supercapacitors. J. Alloys Compd. 2023, 954, 170213. [Google Scholar] [CrossRef]
- Wang, H.; Liang, M.; Duan, D.; Shi, W.; Song, Y.; Sun, Z. Rose-like Ni3S4 as battery-type electrode for hybrid supercapacitor with excellent charge storage performance. Chem. Eng. J. 2018, 350, 523–533. [Google Scholar] [CrossRef]
- Das, A.; Maitra, A.; Mondal, A.; De, A.; Maity, P.; Khatua, B.B. Hydrothermal synthesis of Cu2S/NiS/Ni3S4 as high performance supercapacitor application. J. Energy Storage 2024, 92, 112293. [Google Scholar] [CrossRef]
- Liu, C.; Zhang, X.; Cheng, Y.; Hao, X.; Yang, P. NiS/Ni3S4 decorated double-layered hollow carbon spheres for efficient electrochemical hydrogen evolution reaction and supercapacitor. Electrochim. Acta 2024, 477, 143751. [Google Scholar] [CrossRef]
- Yu, X.Y.; Lou, X.W. Mixed metal sulfides for electrochemical energy storage and conversion. Adv. Energy Mater. 2018, 8, 1701592. [Google Scholar] [CrossRef]
- Rui, X.; Tan, H.; Yan, Q. Nanostructured metal sulfides for energy storage. Nanoscale 2014, 6, 9889–9924. [Google Scholar] [CrossRef]
- Barik, R.; Ingole, P.P. Challenges and prospects of metal sulfide materials for supercapacitors. Curr. Opin. Electrochem. 2020, 21, 327–334. [Google Scholar] [CrossRef]
- Li, X.; Elshahawy, A.M.; Guan, C.; Wang, J. Metal phosphides and phosphates-based electrodes for electrochemical supercapacitors. Small 2017, 13, 1701530. [Google Scholar] [CrossRef]
- Jin, W.; Maduraiveeran, G. Recent advances of porous transition metal-based nanomaterials for electrochemical energy conversion and storage applications. Mater. Today Energy 2019, 13, 64–84. [Google Scholar] [CrossRef]
- Habib, M.; Ullah, S.; Khan, F.; Rafiq, M.I.; Balobaid, A.S.; Alshahrani, T.; Muhammad, Z. Supercapacitor electrodes based on single crystal layered ZrX2 (X = S, Se) using chemical vapor transport method. Mater. Sci. Eng. B 2023, 298, 116904. [Google Scholar] [CrossRef]
- Mariappan, V.K.; Krishnamoorthy, K.; Pazhamalai, P.; Sahoo, S.; Kesavan, D.; Kim, S.-J. Two dimensional famatinite sheets decorated on reduced graphene oxide: A novel electrode for high performance supercapacitors. J. Power Sources 2019, 433, 126648. [Google Scholar]
- Xing, J.-C.; Zhu, Y.-L.; Zhou, Q.-W.; Zheng, X.-D.; Jiao, Q.-J. Fabrication and shape evolution of CoS2 octahedrons for application in supercapacitors. Electrochim. Acta 2014, 136, 550–556. [Google Scholar]
- Zeng, X.; Yang, B.; Li, X.; Yu, R. Three-dimensional hollow CoS2 nanoframes fabricated by anion replacement and their enhanced pseudocapacitive performances. Electrochim. Acta 2017, 240, 341–349. [Google Scholar]
- Pujari, R.B.; Lokhande, V.C.; Patil, U.M.; Lee, D.W.; Lokhande, C.D. Controlled sulfurization of MnCO3 microcubes architectured MnS2 nanoparticles with 1.7 fold capacitance increment for high energy density supercapacitor. Electrochim. Acta 2019, 301, 366–376. [Google Scholar]
- Javed, M.S.; Han, X.; Hu, C.; Zhou, M.; Huang, Z.; Tang, X.; Gu, X. Tracking Pseudocapacitive Contribution to Superior Energy Storage of MnS Nanoparticles Grown on Carbon Textile. ACS Appl. Mater. Interfaces 2016, 8, 24621–24628. [Google Scholar]
- Mohan, V.V.; Rakhi, R.B. WS2/Conducting polymer nanocomposite-based flexible and binder-free electrodes for high-performance supercapacitors. Electrochim. Acta 2024, 498, 144657. [Google Scholar] [CrossRef]
- Mohan, V.; Mohan, M.; Anjana, P.; Rakhi, R. WS2 nanoflowers as efficient electrode materials for supercapacitors. Energy Technol. 2021, 10, 2100976. [Google Scholar] [CrossRef]
- Upadhyay, K.K.; Nguyen, T.; Silva, T.M.; Carmezim, M.J.; Montemor, M.F. Pseudocapacitive response of hydrothermally grown MoS2 crumpled nanosheet on carbon fiber. Mater. Chem. Phys. 2018, 216, 413–420. [Google Scholar]
- Krishnamoorthy, K.; Veerasubramani, G.K.; Radhakrishnan, S.; Kim, S.J. Supercapacitive properties of hydrothermally synthesized sphere like MoS2 nanostructures. Mater. Res. Bull. 2014, 50, 499–502. [Google Scholar]
- Hussain, I.; Mohapatra, D.; Dhakal, G.; Lamiel, C.; Sayed, M.S.; Sahoo, S.; Mohamed, S.G.; Kim, J.S.; Lee, Y.R.; Shim, J.-J. Uniform growth of ZnS nanoflakes for high-performance supercapacitor applications. J. Energy Storage 2021, 36, 102408. [Google Scholar]
- Chauhan, H.; Singh, M.K.; Kumar, P.; Hashmi, S.A.; Deka, S. Development of SnS2/RGO nanosheet composite for cost-effective aqueous hybrid supercapacitors. Nanotechnology 2017, 28, 025401. [Google Scholar] [PubMed]
- Lonkar, S.P.; Pillai, V.V.; Patole, S.P.; Alhassan, S.M. Scalable In Situ Synthesis of 2 D Type Graphene Wrapped SnS2 Nanohybrids for Enhanced Supercapacitor and Electrocatalytic Applications. ACS Appl. Energy Mater. 2020, 3, 4995–5005. [Google Scholar]
- Peng, L.; Ji, X.; Wan, H.; Ruan, Y.; Xu, K.; Chen, C.; Miao, L.; Jiang, J. Nickel sulfide nanoparticles synthesized by microwave-assisted method as promising supercapacitor electrodes: An experimental and computational study. Electrochim. Acta 2015, 182, 361–367. [Google Scholar]
- Seemab, M.; Nabi, G. Structural transformations and enhanced electrochemical performance of Co doped NiS2 nanosheets for supercapacitor applications. Ceram. Int. 2024, 50, 27856–27866. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, Y.-X.; Tsai, D.-S.; Huang, C.-J.; Chen, Z.-Y.; Lee, C.-P. One-Step Synthesis of Zirconium Sulfide Nanoparticles on Flexible Carbon Cloth for Supercapacitor Application. Batteries 2025, 11, 138. https://doi.org/10.3390/batteries11040138
Wang Y-X, Tsai D-S, Huang C-J, Chen Z-Y, Lee C-P. One-Step Synthesis of Zirconium Sulfide Nanoparticles on Flexible Carbon Cloth for Supercapacitor Application. Batteries. 2025; 11(4):138. https://doi.org/10.3390/batteries11040138
Chicago/Turabian StyleWang, Yu-Xuan, Dung-Sheng Tsai, Chu-Jung Huang, Zi-Yu Chen, and Chuan-Pei Lee. 2025. "One-Step Synthesis of Zirconium Sulfide Nanoparticles on Flexible Carbon Cloth for Supercapacitor Application" Batteries 11, no. 4: 138. https://doi.org/10.3390/batteries11040138
APA StyleWang, Y.-X., Tsai, D.-S., Huang, C.-J., Chen, Z.-Y., & Lee, C.-P. (2025). One-Step Synthesis of Zirconium Sulfide Nanoparticles on Flexible Carbon Cloth for Supercapacitor Application. Batteries, 11(4), 138. https://doi.org/10.3390/batteries11040138