Magnetic Inversion and Regional Tectonics of the Dabie Orogen
Abstract
:1. Introduction
2. Methodology and Synthetic Model Analysis
2.1. Inversion Method
2.2. Model Design
2.3. Analysis of the Inversion Results
3. Lithospheric Magnetic Field
3.1. Tectonic Setting
3.2. Characteristics of the Lithospheric Vertical Component Magnetic Anomaly Field
4. Discussion Regarding the Validity of the Magnetic Sources’ Depth
5. 3D magnetization Inversion Results and Discussion
6. Tectonic Processes Related to the Formations of the Magnetic Sources
7. Conclusions
- (1)
- The inversion of vertical magnetic component anomalies has the best effect and anti-noise ability.
- (2)
- The Tongbai–Shangcheng–Mozitan–Xiaotian fault zone was supposed to be the location where SCC and NCC collided and sutured at the crust–mantle boundary or the upper mantle.
- (3)
- The magnetic sources inside the orogen were multi-staged and multi-sourced. Their formation was determined to be mainly related to the mantle upwelling caused by the Early Cretaceous lithospheric delamination, as well as the partial melting of the mafic–ultramafic lower crust that had not participated in the delamination. The Mesozoic and Jurassic–Cretaceous deep melt activities also restricted the magnetic sources near the MXF and those in the western Dabie, respectively.
- (4)
- We found intimate relations between the magnetic sources of the SCC and the mineralization activities in this area.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ames, L.; Tilton, G.R.; Zhou Gaozhi, Z.G. Timing of collision of the sino-korean and yangtse cratons; U-pb zircon dating of coesite-bearing eclogites. Geology 1993, 21, 339–342. [Google Scholar] [CrossRef]
- Hacker, B.R.; Ratschbacher, L.; Liou, J.G. Subduction, collision and exhumation in the ultrahigh-pressure qinling-dabie orogen. Geol. Soc. Lond. Spec. Publ. 2004, 226, 157–175. [Google Scholar] [CrossRef] [Green Version]
- Okay, A.I.; Xu, S.T.; Sengör, A.M.C. Coesite from the dabie shan eclogites, central china. Eur. J. Mineral. 1989, 1, 595–598. [Google Scholar] [CrossRef]
- Wang, X.M.; Liou, J.G.; Mao, H.K. Coesite-bearing eclogite from the dabie mountains in central china. Geology 1989, 17, 1085–1088. [Google Scholar] [CrossRef]
- Shutong, X.; Wen, S.; Yican, L.; Laili, J.; Shouyuan, J.; Okay, A.I.; Sengor, A.M.C. Diamond from the dabie shan metamorphic rocks and its implication for tectonic setting. Science 1992, 256, 80–82. [Google Scholar] [CrossRef]
- Hacker, B.R.; Ratschbacher, L.; Webb, L.; Ireland, T.; Walker, D.; Shuwen, D. U/pb zircon ages constrain the architecture of the ultrahigh-pressure qinling-dabie orogen, china. Earth Planet. Sci. Lett. 1998, 161, 215–230. [Google Scholar] [CrossRef]
- Zheng, Y.; Fu, B.; Gong, B.; Li, L. Stable isotope geochemistry of ultrahigh pressure metamorphic rocks from the dabie-sulu orogen in china: Implications for geodynamics and fluid regime. Earth-Sci. Rev. 2003, 62, 105–161. [Google Scholar] [CrossRef]
- Bryant, D.L.; Ayers, J.C.; Gao Shan, G.S.; Miller, C.F.; Zhang Hongfei, Z.H. Geochemical, age, and isotopic constraints on the location of the sino-korean/yangtze suture and evolution of the northern dabie complex, east central china. Geol. Soc. Am. Bull. 2004, 116, 698–717. [Google Scholar] [CrossRef]
- Zheng, Y.F. A perspective view on ultrahigh-pressure metamorphism and continental collision in the dabie-sulu orogenic belt. Chin. Sci. Bull. 2008, 53, 3081–3104. [Google Scholar] [CrossRef] [Green Version]
- Wu, Y.; Zheng, Y. Tectonic evolution of a composite collision orogen: An overview on the qinling–tongbai–hong’an–dabie–sulu orogenic belt in central china. Gondwana Res. 2013, 23, 1402–1428. [Google Scholar] [CrossRef]
- Wang, C.; Zeng, R.; Mooney, W.D.; Hacker, B.R. A crustal model of the ultrahigh-pressure dabie shan orogenic belt, china, derived from deep seismic refraction profiling. J. Geophys. Res. Solid Earth 2000, 105, 10857–10869. [Google Scholar] [CrossRef] [Green Version]
- Yuan, X.C.; Klemperer, S.L.; Teng, W.B.; Liu, L.X.; Chetwin, E. Crustal structure and exhumation of the dabie shan ultrahigh-pressure orogen, eastern china, from seismic reflection profiling. Geology 2003, 31, 435–438. [Google Scholar]
- Dong, S.; Gao, R.; Cong, B.; Zhao, Z.; Liu, X.; Li, S.; Li, Q.; Huang, D. Crustal structure of the southern dabie ultrahigh-pressure orogen and yangtze foreland from deep seismic reflection profiling. Terr. Nova 2004, 16, 319–324. [Google Scholar] [CrossRef]
- Bai, Z.; Zhang, Z.; Wang, Y. Crustal structure across the dabie–sulu orogenic belt revealed by seismic velocity profiles. J. Geophys. Eng. 2007, 4, 436–442. [Google Scholar] [CrossRef]
- Luo, Y.; Xu, Y.; Yang, Y. Crustal structure beneath the dabie orogenic belt from ambient noise tomography. Earth Planet. Sci. Lett. 2012, 313–314, 12–22. [Google Scholar] [CrossRef]
- Xu, Y.X.; Zhang, S.; Griffin, W.L.; Yang, Y.J.; Yang, B.; Luo, Y.H.; Zhu, L.P.; Afonso, J.C.; Lei, B.H. How did the dabie orogen collapse? Insights from 3-d magnetotelluric imaging of profile data. J. Geophys. Res. Solid Earth 2016, 121, 5169–5185. [Google Scholar] [CrossRef] [Green Version]
- Yang, Y.; Li, Y. Crustal structure of the dabie orogenic belt (eastern china) inferred from gravity and magnetic data. Tectonophysics 2018, 723, 190–200. [Google Scholar] [CrossRef]
- Li, C.; Wang, J.; Zhou, Z.; Geng, J.; Chen, B.; Yang, F.; Wu, J.; Yu, P.; Zhang, X.; Zhang, S. 3d geophysical characterization of the sulu-dabie orogen and its environs. Phys. Earth Planet. Inter. 2012, 192–193, 35–53. [Google Scholar] [CrossRef]
- Chu, F.; Wang, F.; Wang, L.; Haobo, P.; Xiao, W. Analysis of relationship of lithosphere geomagnetic field and tectonic in eastern-dabie area (in chinese with english abstract). J. Geod. Geodyn. 2019, 39, 231–236. [Google Scholar]
- Duermeijer, C.E.; Nyst, M.; Meijer, P.T.; Langereis, C.G.; Spakman, W. Neogene evolution of the aegean arc: Paleomagnetic and geodetic evidence for a rapid and young rotation phase. Earth Planet. Sci. Lett. 2000, 176, 509–525. [Google Scholar] [CrossRef]
- van Hinsbergen, D.J.J.; Dekkers, M.J.; Bozkurt, E.; Koopman, M. Exhumation with a twist: Paleomagnetic constraints on the evolution of the menderes metamorphic core complex, western turkey. Tectonics 2010, 29, TC3009. [Google Scholar] [CrossRef] [Green Version]
- Kaymakcı, N.; Langereis, C.; Özkaptan, M.; Özacar, A.A.; Gülyüz, E.; Uzel, B.; Sözbilir, H. Paleomagnetic evidence for upper plate response to a step fault, sw anatolia. Earth Planet. Sci. Lett. 2018, 498, 101–115. [Google Scholar] [CrossRef]
- Lazos, I.; Sboras, S.; Chousianitis, K.; Kondopoulou, D.; Pikridas, C.; Bitharis, S.; Pavlides, S. Temporal evolution of crustal rotation in the aegean region based on primary geodetically-derived results and palaeomagnetism. Acta Geod. Geophys. 2022, 57, 317–334. [Google Scholar] [CrossRef]
- Gao, G.; Kang, G.; Li, G.; Bai, C. Crustal magnetic anomaly in the ordos region and its tectonic implications. J. Asian Earth Sci. 2015, 109, 63–73. [Google Scholar] [CrossRef]
- Gao, G.; Kang, G.; Bai, C.; Li, G. Distribution of the crustal magnetic anomaly and geological structure in xinjiang, china. J. Asian Earth Sci. 2013, 77, 12–20. [Google Scholar] [CrossRef]
- Nair, N.; Anand, S.P.; Rajaram, M.; Rao, P.R. A relook into the crustal architecture of laxmi ridge, northeastern arabian sea from geopotential data. J. Earth Syst. Sci. 2015, 124, 613–630. [Google Scholar] [CrossRef] [Green Version]
- Li, C.; Wang, J. Variations in moho and curie depths and heat flow in eastern and southeastern asia. Mar. Geophys. Res. 2016, 37, 1–20. [Google Scholar] [CrossRef]
- Idárraga-García, J.; Vargas, C.A. Depth to the bottom of magnetic layer in south america and its relationship to curie isotherm, moho depth and seismicity behavior. Geod. Geodyn. 2018, 9, 93–107. [Google Scholar] [CrossRef]
- Xu, Y.F.; An, Z.C.; Huang, B.C.; Golovkov, V.P.; Rotanova, N.M.; Kharitonov, A.L. Distribution of apparent magnetization for asia. Sci. China Ser. D Earth Sci. 2000, 43, 654–660. [Google Scholar] [CrossRef]
- Arkani Hamed, J.; Strangway, D.W. Lateral variations of apparent magnetic susceptibility of lithosphere deduced from magsat data. J. Geophys. Res. Solid Earth 1985, 90, 2655–2664. [Google Scholar] [CrossRef]
- Lelièvre, P.G.; Oldenburg, D.W. A 3d total magnetization inversion applicable when significant, complicated remanence is present. Geophysics 2009, 74, L21–L30. [Google Scholar] [CrossRef]
- Du, J.; Chen, C.; Liang, Q.; Wang, H.; Li, Y.; Lane, R. 3-d inversion of regional magnetic data in spherical coordinates and its preliminary application in australia. Aseg Ext. Abstr. 2013, 2013, 11–14. [Google Scholar] [CrossRef] [Green Version]
- Liu, S.; Hu, X.; Zhang, H.; Geng, M.; Zuo, B. 3d magnetization vector inversion of magnetic data: Improving and comparing methods. Pure Appl. Geophys. 2017, 174, 4421–4444. [Google Scholar] [CrossRef]
- Liu, S.; Hu, X.; Zuo, B.; Zhang, H.; Geng, M.; Ou, Y.; Yang, T.; Vatankhah, S. Susceptibility and remanent magnetization inversion of magnetic data with a priori information of the köenigsberger ratio. Geophys. J. Int. 2020, 221, 1090–1109. [Google Scholar] [CrossRef]
- Wang, M.Y.; Di, Q.Y.; Xu, K.; Wang, R. Magnetization vector inversion equations and forword and inversed 2-d model study (in chinese with english abstract). Chin. J. Geophys. 2004, 47, 528–534. [Google Scholar] [CrossRef]
- Li, Y.; Shearer, S.E.; Haney, M.M.; Dannemiller, N. Comprehensive approaches to 3d inversion of magnetic data affected by remanent magnetization. Geophysics 2010, 75, L1–L11. [Google Scholar] [CrossRef]
- Liu, S.; Hu, X.; Xi, Y.; Liu, T.; Xu, S. 2d sequential inversion of total magnitude and total magnetic anomaly data affected by remanent magnetization. Geophysics 2015, 80, K1–K12. [Google Scholar] [CrossRef]
- Counil, J.; Cohen, Y.; Achache, J. The global continent-ocean magnetization contrast. Earth Planet. Sci. Lett. 1991, 103, 354–364. [Google Scholar] [CrossRef]
- Maus, S.; Haak, V.; Potsdam, G. Is the long wavelength crustal magnetic field dominated by induced or by remanent magnetisation? J. Indian Geophys. Union 2002, 6, 1–5. [Google Scholar]
- Lesur, V.; Gubbins, D. Using geomagnetic secular variation to separate remanent and induced sources of the crustal magnetic field. Geophys. J. Int. 2000, 142, 889–897. [Google Scholar] [CrossRef] [Green Version]
- Hulot, G.; Olsen, N.; Thébault, E.; Hemant, K. Crustal concealing of small-scale core-field secular variation. Geophys. J. Int. 2009, 177, 361–366. [Google Scholar] [CrossRef] [Green Version]
- Hemant, K.; Maus, S. Why no anomaly is visible over most of the continent–ocean boundary in the global crustal magnetic field. Phys. Earth Planet. Inter. 2005, 149, 321–333. [Google Scholar]
- Hemant, K.; Mitchell, A. Magnetic field modelling and interpretation of the Himalayan-tibetan plateau and adjoining north indian plains. Tectonophysics 2009, 478, 87–99. [Google Scholar] [CrossRef]
- Constable, S.C.; Parker, R.L.; Constable, C.G. Occam’s inversion; A practical algorithm for generating smooth models from electromagnetic sounding data. Geophysics 1987, 52, 289–300. [Google Scholar] [CrossRef]
- Pilkington, M. 3-d magnetic imaging using conjugate gradients. Geophysics 1997, 62, 1132–1142. [Google Scholar] [CrossRef]
- Wang, H.; Li, Y.; Chen, C. 3d joint inversion of magnetic amplitude and gravity gradiometry data in spherical coordinates. In Proceedings of the SEG New Orleans Annual Meeting, New Orleans, LA, USA, 5–9 August 2015; SEG Technical Program Expanded Abstracts, pp. 1553–1557. [Google Scholar]
- Yin, A.; Nie, S.Y. An indentation model for the north and south china collision and the development of the tan-lu and honam fault system. Tectonics 1993, 12, 801–813. [Google Scholar] [CrossRef]
- Li, S.; Xiao, Y.; Liou, D.; Chen, Y.; Ge, N.; Zhang, Z.; Sun, S.; Cong, B.; Zhang, R.; Hart, S.R.; et al. Collision of the north china and yangtse blocks and formation of coesite-bearing eclogites: Timing and processes. Chem. Geol. 1993, 109, 89–111. [Google Scholar] [CrossRef]
- Hacker, B.R.; Ratschbacher, L.; Webb, L.; Dong Shuwen, D.S. What brought them up? Exhumation of the dabie shan ultrahigh-pressure rocks. Geology 1995, 23, 743–746. [Google Scholar]
- Chopin, C. Ultrahigh-pressure metamorphism: Tracing continental crust into the mantle. Earth Planet. Sci. Lett. 2003, 212, 1–14. [Google Scholar] [CrossRef]
- Li, Y.; Liu, Y.C.; Yang, Y.; Deng, L.P. New u-pb geochronological constraints on formation and evolution of the susong complex zone in the dabie orogen. Acta Geol. Sin. 2017, 91, 1915–1918. [Google Scholar] [CrossRef]
- Wang, Q.C.; Cong, B.L. Tectonic framework of the ultrahigh-pressure metamorphic zone from the dabie mountains. Sci. Geol. Sin. 1998, 14, 481–492. [Google Scholar]
- Zheng, Y.F.; Zhou, J.B.; Wu, Y.B.; Xie, Z. Low-grade metamorphic rocks in the dabie-sulu orogenic belt: A passive-margin accretionary wedge deformed during continent subduction. Int. Geol. Rev. 2005, 47, 851–871. [Google Scholar] [CrossRef]
- Zhang, H.; Gao, S.; Zhong, Z.; Zhang, B.; Zhang, L.; Hu, S. Geochemical and sr-nd-pb isotopic compositions of cretaceous granitoids: Constraints on tectonic framework and crustal structure of the dabieshan ultrahigh-pressure metamorphic belt, china. Chem. Geol. 2002, 186, 281–299. [Google Scholar] [CrossRef]
- Zhao, Z.F.; Zheng, Y.F. Remelting of subducted continental lithosphere: Petrogenesis of mesozoic magmatic rocks in the dabie-sulu orogenic belt. Sci. China Ser. D Earth Sci. 2009, 52, 1295–1318. [Google Scholar] [CrossRef]
- Deng, X.; Wu, K.; Yang, K. Emplacement and deformation of shigujian syntectonic granite in central part of the dabie orogen: Implications for tectonic regime transformation. Sci. China Earth Sci. 2013, 56, 980–992. [Google Scholar] [CrossRef]
- Zhang, L.; Lu, G.; Zhu, Z.; Cao, S. An improved 3d magnetization inversion based on smoothness constraints in spherical coordinates. Magnetochemistry 2022, 8, 157. [Google Scholar] [CrossRef]
- Frost, B.R.; Shive, P.N. Magnetic mineralogy of the lower continental crust. J. Geophys. Res. 1986, 91, 6513. [Google Scholar] [CrossRef]
- Wang, J.; Deng, S. Emplacement age for the mafic-ultramafic plutons in the northern dabie mts. (Hubei): Zircon u-pb, sm-nd and40ar/39ar dating. Sci. China Ser. D Earth Sci. 2002, 45, 1–12. [Google Scholar] [CrossRef]
- Zhang, B.R.; Zhang, H.F.; Gao, S. Rock-constitution of various structural layers of the present crust in the dabie orogenic belt, central china (in chinese with english abstract). Bull. Mineral. Petrol. Geochem. 2004, 23, 185–193. [Google Scholar]
- Xiong, S.; Yang, H.; Ding, Y.; Li, Z.; Li, W. Distribution of igneous rocks in china revealed by aeromagnetic data. J. Asian Earth Sci. 2016, 129, 231–242. [Google Scholar] [CrossRef] [Green Version]
- Ubangoh, R.U.; Pacca, I.G.; Nyobe, J.B.; Hell, J.; Ateba, B. Petromagnetic characteristics of cameroon line volcanic rocks. J. Volcanol. Geotherm. Res. 2005, 142, 225–241. [Google Scholar] [CrossRef]
- Haggerty, S.E.; Toft, P.B. Native iron in the continental lower crust: Petrological and geophysical implications. Science 1985, 229, 647–649. [Google Scholar] [CrossRef] [PubMed]
- Wu, K.; Yuan, H.L.; Nan, L.; Zhang, L. The behavior of fluid mobile elements during serpentinization and dehydration of serpentinites in subduction zones. Acta Petrol. Sin. 2020, 36, 141–153. [Google Scholar]
- Blakely, R.J.; Brocher, T.M.; Wells, R.E. Subduction-zone magnetic anomalies and implications for hydrated forearc mantle. Geology 2005, 33, 445–448. [Google Scholar] [CrossRef] [Green Version]
- Purucker, M.E.; Clark, D.A. Mapping and Interpretation of the Lithospheric Magnetic Field; Springer: Dordrecht, The Netherlands, 2010; pp. 311–337. [Google Scholar]
- Ferré, E.C.; Friedman, S.A.; Martín-Hernández, F.; Feinberg, J.M.; Till, J.L.; Ionov, D.A.; Conder, J.A. Eight good reasons why the uppermost mantle could be magnetic. Tectonophysics 2014, 624–625, 3–14. [Google Scholar] [CrossRef] [Green Version]
- Ferré, E.C.; Martín-Hernández, F.; Purucker, M.; Clark, D.A. Thematic issue: Crustal and mantle sources of magnetic anomalies. Tectonophysics 2014, 624–625, 1–2. [Google Scholar] [CrossRef]
- Lv, Q.T.; Shi, D.N.; Tang, J.T.; Wu, M.A.; Chang, Y.F. Probing on deep structure of middle and lower reaches of the yangtze metallogenic belt and typical ore concentration area: A review of annual progress of sinoprobe-03 (in chinese with english abstract). Acta Geosci. Sin. 2011, 32, 257–268. [Google Scholar]
- Ma, C.Q.; Yang, K.G.; Ming, H.L.; Lin, G.C. The timing of tectonic transition from compression to extension in dabieshan: Evidence from mesozoic granites. Sci. China Ser. D Earth Sci. 2004, 47, 453–462. [Google Scholar]
- Wang, Q.; Wyman, D.A.; Xu, J.; Jian, P.; Zhao, Z.; Li, C.; Xu, W.; Ma, J.; He, B. Early cretaceous adakitic granites in the northern dabie complex, central china: Implications for partial melting and delamination of thickened lower crust. Geochim. Cosmochim. Acta 2007, 71, 2609–2636. [Google Scholar] [CrossRef]
- Hacker, B.R.; Ratschbacher, L.; Webb, L.; Mcwilliams, M.O.; Ireland, T.; Calvert, A.; Dong, S.; Wenk, H.; Chateigner, D. Exhumation of ultrahigh-pressure continental crust in east central china: Late triassic-early jurassic tectonic unroofing. J. Geophys. Res. Solid Earth 2000, 105, 13339–13364. [Google Scholar] [CrossRef] [Green Version]
- Faure, M.; Lin, W.; Schärer, U.; Shu, L.; Sun, Y.; Arnaud, N. Continental subduction and exhumation of uhp rocks. Structural and geochronological insights from the dabieshan (east china). Lithos 2003, 70, 213–241. [Google Scholar] [CrossRef]
- Wang, G.C.; Yang, W.R. Uplift evolution during mesozoic-cenozoic of the dabie orogenic belt: Evidence from the tectono-chronology (in chinese with english abstract). Earth Sci.-J. China Univ. Geosci. 1998, 23, 461–467. [Google Scholar]
- You, Z.D.; Suo, S.T.; Zhong, Z.Q.; Zhang, Z.M.; Wei, B. The extensional tectonics and retrometamorphic processes subsequent to the high-pressure and ultrahigh-pressure metamorphic events in Dabieshan, China. Cont. Dyn. 1998, 3, 63–71. [Google Scholar]
- Li, S.G.; Li, Q.L.; Hou, Z.H.; Yang, W.; Wang, Y. Cooling history and exhumation mechanism of the ultrahigh-pressure metamorphic rocks in the dabie mountains, central China (in chinese with english abstract). Acta Petrol. Sin. 2005, 21, 1117–1124. [Google Scholar]
- Xu, C.H.; Zhou, Z.Y.; Ma, C.Q.; Reiners, P.W. Geochronological constraints on the post-collisional (150-75 ma) thermal extension in the dabieshan orogen, central china. Gondwana Res. 2001, 4, 829–831. [Google Scholar] [CrossRef]
- Li, S.G.; He, Y.S.; Wang, S.J. Process and mechanism of mountain-root removal of the dabie orogen--constraints from geochronology and geochemistry of post-collisional igneous rocks. Chin. Sci. Bull. 2013, 58, 4411–4417. [Google Scholar] [CrossRef] [Green Version]
- Zhou, H.; Su, H.; Ma, C. Formation-age, tectonic setting and ascertainment of a-type granite on the lingshan pluton in dabie orogenic belt (in chinese with english abstract). J. Xinyang Norm. Univ. (Nat. Sci. Ed.) 2009, 22, 222–226. [Google Scholar]
- Wang, C.; Zhao, Z.; Jiao, R.; Wang, X.; Xu, C. Late-orogenic granitoids (174~161 ma) in the dabie orogenic belt (in chinese with english abstract). Geol. Miner. Resour. South China 2010, 26, 8–15. [Google Scholar]
- Li, S.G.; Chen, Y.Z.; Jagouty, E. Geochemical and geochonological constraints on the tectonic outline of the dabie mountains, central china: A continent-microcontinent-continent collision model. Cont. Dyn. 1998, 3, 14–31. [Google Scholar]
- Liu, Y.; Li, S.; Xu, S.; Jahn, B.; Zheng, Y.; Zhang, Z.; Jiang, L.; Chen, G.; Wu, W. Geochemistry and geochronology of eclogites from the northern dabie mountains, central china. J. Asian Earth Sci. 2005, 25, 431–443. [Google Scholar] [CrossRef]
- Liu, F.T.; Xu, P.F.; Liu, J.S.; Yin, Z.X.; Qin, J.Y.; Zhang, X.K.; Zhang, C.K.; Zhao, J.R. The crustal velocity structure of the continental deep subduction belt: Study on the eastern dabie orogen by wide-angle reflection/refraction (in chinese with english abstract). Chin. J. Geophys. 2003, 46, 367–372. [Google Scholar] [CrossRef]
- Zheng, Y.F.; Wu, Y.B.; Zhao, Z.F.; Zhang, S.B.; Xu, P.; Wu, F.Y. Metamorphic effect on zircon lu-hf and u-pb isotope systems in ultrahigh-pressure eclogite-facies metagranite and metabasite. Earth Planet. Sci. Lett. 2005, 240, 378–400. [Google Scholar] [CrossRef]
- Wu, Y.; Zheng, Y.; Tang, J.; Gong, B.; Zhao, Z.; Liu, X. Zircon u-pb dating of water-rock interaction during neoproterozoic rift magmatism in south china. Chem. Geol. 2007, 246, 65–86. [Google Scholar] [CrossRef]
- Xu, S.H.; Zhong, J.H.; Liu, Z.Q. Activity characteristics and controlling factors of the faults in the hefei basin (in chinese with english abstract). Geotecton. Etm Etallogenia 2007, 31, 31–36. [Google Scholar]
- Xu, J.F.; Shinjo, R.; Defant, M.J.; Qiang, W.; Rapp, R.P. Origin of mesozoic adakitic intrusive rocks in the ningzhen area of east china: Partial melting of delaminated lower continental crust? Geology 2002, 30, 1111–1114. [Google Scholar] [CrossRef]
- Huw Davies, J.; von Blanckenburg, F. Slab breakoff: A model of lithosphere detachment and its test in the magmatism and deformation of collisional orogens. Earth Planet. Sci. Lett. 1995, 129, 85–102. [Google Scholar] [CrossRef]
Model ID | Longitude | Latitude | Depth | TM | Inclination | Declination |
---|---|---|---|---|---|---|
A | 114.4–115.0 | 31.1–31.7 | 25–40 | 0.6 | 45 | 60 |
B | 116.2–116.8 | 30.5–31.1 | 30–50 | 0.5 | 50 | 55 |
C | 114.2–115.4 | 29.5–30.1 | 30–55 | 0.4 | 55 | 50 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, L.; Lu, G.; Zhu, Z.; Cao, S.; Mao, Y.; Chen, X.; Wang, L. Magnetic Inversion and Regional Tectonics of the Dabie Orogen. Magnetochemistry 2023, 9, 82. https://doi.org/10.3390/magnetochemistry9030082
Zhang L, Lu G, Zhu Z, Cao S, Mao Y, Chen X, Wang L. Magnetic Inversion and Regional Tectonics of the Dabie Orogen. Magnetochemistry. 2023; 9(3):82. https://doi.org/10.3390/magnetochemistry9030082
Chicago/Turabian StyleZhang, Liang, Guangyin Lu, Ziqiang Zhu, Shujin Cao, Yajing Mao, Xinyue Chen, and Lichang Wang. 2023. "Magnetic Inversion and Regional Tectonics of the Dabie Orogen" Magnetochemistry 9, no. 3: 82. https://doi.org/10.3390/magnetochemistry9030082
APA StyleZhang, L., Lu, G., Zhu, Z., Cao, S., Mao, Y., Chen, X., & Wang, L. (2023). Magnetic Inversion and Regional Tectonics of the Dabie Orogen. Magnetochemistry, 9(3), 82. https://doi.org/10.3390/magnetochemistry9030082