Up-Conversion Luminescence and Magnetic Properties of Multifunctional Er3+/Yb3+-Doped SiO2-GdF3/LiGdF4 Glass Ceramics
Abstract
:1. Introduction
2. Materials and Methods
2.1. Samples Preparation
2.2. Samples Characterization
3. Results and Discussion
3.1. Thermal Analysis
3.2. Structural Analysis
3.3. Morphologycal Analysis
3.4. Up-Conversion Luminescence Properties
3.5. Magnetic Properties
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- De Pablos-Martin, A.; Duran, A.; Pascual, M.J. Nanocrystallisation in oxyfluoride systems: Mechanisms of crystallization and photonic properties. Int. Mater. Rev. 2012, 57, 165–186. [Google Scholar] [CrossRef]
- Gorni, G.; Velázquez, J.J.; Mosa, J.; Balda, R.; Fernández, J.; Durán, A.; Castro, Y. Transparent Glass-Ceramics Produced by Sol-Gel: A Suitable Alternative for Photonic Materials. Materials 2018, 11, 212. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Secu, M.; Secu, C.; Bartha, C. Optical Properties of Transparent Rare-Earth Doped Sol-Gel Derived Nano-Glass Ceramics. Materials 2021, 14, 6871. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Zhao, D.; Zhang, F. Multifunctional Upconversion-Magnetic Hybrid Nanostructured Materials: Synthesis and Bioapplications. Theranostics 2013, 3, 292–305. [Google Scholar] [CrossRef] [PubMed]
- Guan, H.; Sheng, Y.; Xu, C.; Dai, Y.; Xie, X.; Zou, H. Energy transfer and tunable multicolor emission and paramagnetic properties of GdF3:Dy3+,Tb3+,Eu3+ phosphors. Phys. Chem. Chem. Phys. 2016, 18, 19807–19819. [Google Scholar] [CrossRef] [PubMed]
- Wang, W.Z.; Li, J.K.; Liu, Z.M. Controlling the morphology and size of (Gd0.98-xTb0.02Eux)2O3 phosphors presenting tunable emission: Formation process and luminescent properties. J. Mater. Sci. 2018, 53, 12265–12283. [Google Scholar] [CrossRef]
- Wegh, R.T.; Donker, H.; Oskam, K.D.; Meijerink, A. Visible quantum Eu3+ cutting in doped gadolinium fluorides via downconversion. J. Lumin. 1999, 82, 93–104. [Google Scholar] [CrossRef]
- Wegh, R.T.; Donker, H.; Oskam, K.D.; Meijerink, A. Visible quantum cutting in LiGdF4:Eu3+ through downconversion. Science 1999, 283, 663–666. [Google Scholar] [CrossRef]
- Wong, H.T.; Chan, H.L.W.; Hao, J.H. Magnetic and luminescent properties of multifunctional GdF3:Eu3+ nanoparticles. Appl. Phys. Lett. 2009, 95, 022512. [Google Scholar] [CrossRef] [Green Version]
- Yang, L.W.; Zhang, Y.Y.; Li, J.J.; Li, Y.; Zhong, J.X.; Chu, P.K. Magnetic and upconverted luminescent properties of multifunctional lanthanide doped cubic KGdF4 nanocrystals. Nanoscale 2010, 2, 2805–2810. [Google Scholar] [CrossRef]
- Chen, D.Q.; Yu, Y.L.; Huang, F.; Yang, A.P.; Wang, Y.S. Lanthanide activator doped NaYb1-xGdxF4 nanocrystals with tunable down-, up-conversion luminescence and paramagnetic properties. J. Mater. Chem. 2011, 21, 6186–6192. [Google Scholar] [CrossRef]
- Secu, C.E.; Bartha, C.; Matei, E.; Negrila, C.; Crisan, A.; Secu, M. Gd3+ co-doping influence on the morphological, up-conversion luminescence and magnetic properties of LiYF4:Yb3+/Er3+ nanocrystals. J. Phys. Chem. Solids 2019, 130, 236–241. [Google Scholar] [CrossRef]
- Pawlik, N.; Szpikowska-Sroka, B.; Sołtys, M.; Pisarski, W.A. Optical properties of silica sol-gel materials singly- and doubly doped with Eu3+and Gd3+ ions. J. Rare Earths 2016, 34, 786–795. [Google Scholar] [CrossRef]
- Szpikowska-Sroka, B.; Pawlik, N.; Goryczka, T.; Pisarski, W.A. Influence of silicate sol-gel host matrices and catalyst agents on luminescence properties of Eu3+/Gd3+ under different excitation wavelengths. RSC Adv. 2015, 5, 98773–98782. [Google Scholar] [CrossRef]
- Pawlik, N.; Szpikowska-Sroka, B.; Pietrasik, E.; Goryczka, T.; Pisarski, W.A. Photoluminescence and energy transfer in transparent glass-ceramics based on GdF3:RE3+ (RE = Tb, Eu) nanocrystals. J. Rare Earths 2019, 37, 1137–1144. [Google Scholar] [CrossRef]
- Fujihara, S.; Koji, S.; Kimura, T. Structure and Optical Properties of (Gd,Eu)F3-Nanocrystallized Sol-Gel Silica Films. J. Mater. Chem. 2004, 14, 1331–1335. [Google Scholar] [CrossRef]
- Velázquez, J.J.; Mosa, J.; Gorni, G.; Balda, R.; Fernández, J.; Pascual, L.; Durán, A.; Castro, Y. Transparent SiO2-GdF3 sol–gel nano-glass ceramics for optical applications. J. Sol-Gel Sci. Technol. 2019, 89, 322–332. [Google Scholar] [CrossRef]
- Fujihara, S.; Mochizuki, C.; Kimura, T. Formation of LaF3 microcrystals in sol-gel silica. J. Non-Cryst. Solids 1999, 244, 267. [Google Scholar] [CrossRef]
- Secu, M.; Secu, C.E. Up-conversion luminescence of Er3+/Yb3+ co-doped LiYF4 nanocrystals in sol–gel derived oxyfluoride glass-ceramic. J. Non-Cryst. Solids 2015, 426, 78–82. [Google Scholar] [CrossRef]
- Krause, W.; Nolze, G. PowderCell a program for the representation and manipulation of crystal structures and calculation of the resulting X-ray patterns. J. Appl. Cryst. 1996, 29, 301–303. [Google Scholar] [CrossRef]
- Zaharescu, M.; Predoana, L.; Pandele, J. Relevance of thermal analysis for sol–gel-derived nanomaterials. J. Sol-Gel Sci. Technol. 2018, 86, 7–23. [Google Scholar] [CrossRef]
- Rüssel, C. Thermal decomposition of metal trifluoracetates. J. Non-Cryst. Solids 1993, 152, 161–166. [Google Scholar] [CrossRef]
- PDF-ICDD. Powder Diffraction File; PDF-4+ 2018 Software 4.18.0.2; International Centre for Diffraction Data: Newtown Square, PA, USA, 2011. [Google Scholar]
- Schweizer, S.; Hobbs, L.W.; Secu, M.; Spaeth, J.-M.; Edgar, A.; Williams, G.V.M. Photostimulated luminescence in Eu-doped fluorochlorozirconate glass ceramics. Appl. Phys. Lett. 2003, 83, 449. [Google Scholar] [CrossRef]
- Wang, F.; Han, Y.; Lim, C.S.; Lu, Y.; Wang, J.; Xu, J.; Chen, H.; Zhang, C.; Hong, M.; Liu, X. Simultaneous phase and size control of upconversion nanocrystals through lanthanide doping. Nature 2010, 463, 1061–1065. [Google Scholar] [CrossRef] [PubMed]
- Nie, L.; Shen, Y.; Zhang, X.; Wang, X.; Liu, B.; Wang, Y.; Pan, Y.; Xie, X.; Huang, L.; Huang, W. Selective Synthesis of LaF3 and NaLaF4 Nanocrystals via Lanthanide Ion Doping. J. Mater. Chem. C 2017, 5, 9188–9193. [Google Scholar] [CrossRef]
- Shannon, R.D. Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Cryst. Sect. A 1976, 32, 751–767. [Google Scholar] [CrossRef]
- Chuai, X.; Liu, Z.; Liu, Y.; He, C.; Qin, W. Enhanced Near-Infrared Upconversion Luminescence of GdF3:Yb3+, Tm3+ by Li+. J. Nanosci. Nanotechnol. 2014, 14, 3687–3689. [Google Scholar] [CrossRef]
- Szpikowska-Sroka, B.; Zur, L.; Czoik, R.; Goryczka, T.; Swinarew, A.S.; Zadło, M.; Pisarski, W.A. Long-lived emission from Eu3+-doped PbF2 nanocrystals distributed into sol–gel silica glass. J. Sol-Gel Sci. Technol. 2013, 68, 278–283. [Google Scholar] [CrossRef] [Green Version]
- Na, H.; Jeong, J.S.; Chang, H.J.; Kim, H.Y.; Woo, K.; Lim, K.; Mkhoyan, K.A.; Jang, H.S. Facile synthesis of intense green light emitting LiGdF4:Yb,Er-based upconversion bipyramidal nanocrystals and their polymer composite. Nanoscale 2014, 6, 7461. [Google Scholar] [CrossRef] [Green Version]
- Luo, W.; Wang, Y.; Cheng, Y.; Bao, F.; Zhou, L. Crystallization and structural evolution of SiO2-YF3 xerogel. Mater. Sci. Eng. B 2006, 127, 218–223. [Google Scholar] [CrossRef]
- Secu, C.E.; Bartha, C.; Polosan, S.; Secu, M. Thermally activated conversion of a silicate gel to an oxyfluoride glass ceramic: Optical study using Eu3+ probe ion. J. Lumin. 2014, 146, 539–543. [Google Scholar] [CrossRef]
- Haase, M.; Schäfer, H. Upconverting Nanoparticles. Angew. Chem. 2011, 50, 5808–5829. [Google Scholar] [CrossRef] [PubMed]
- Zhao, J.; Zheng, X.; Schartner, E.P.; Ionescu, P.; Zhang, R.; Nguyen, T.L.; Jin, D.; Ebendorff-Heidepriem, H. Upconversion Nanocrystal-Doped Glass: A New Paradigm for Photonic Materials. Adv. Optical Mater. 2016, 4, 1507–1517. [Google Scholar] [CrossRef] [Green Version]
- Li, X.; Zhang, F.; Zhao, D. Lab on upconversion nanoparticles: Optical properties and applications engineering via designed nanostructure. Chem. Soc. Rev. 2015, 44, 1346. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.C.; Prokleška, J.; Xu, W.J.; Liu, J.L.; Liu, J.; Zhang, W.X.; Jia, J.H.; Sechovský, V.; Tong, M. A brilliant cryogenic magnetic coolant: Magnetic and magnetocaloric study of ferromagnetically coupled GdF3. J. Mater. Chem. C 2015, 3, 12206–12211. [Google Scholar] [CrossRef]
- Grzyb, T.; Mrówczyńska, L.; Szczeszak, A.; Śniadecki, Z.; Runowski, M.; Idzikowski, B.; Lis, S. Synthesis, characterization, and cytotoxicity in human erythrocytes of multifunctional, magnetic, and luminescent nanocrystalline rare earth fluorides. J. Nanopart. Res. 2015, 17, 399. [Google Scholar] [CrossRef] [Green Version]
- Pauthenet, R. Spontaneous Magnetization of Some Garnet Ferrites and the Aluminum Substituted Garnet Ferrites. J. Appl. Phys. 1959, 30, 2905. [Google Scholar] [CrossRef]
- Chen, Z.; Liu, Z.; Liu, Y.; Zheng, K.; Qin, W. Controllable synthesis, upconversion luminescence, and paramagnetic properties of NaGdF4:Yb3+,Er3+ microrods. J. Fluorine Chem. 2012, 144, 157–164. [Google Scholar] [CrossRef]
Glass-Ceramic Sample/ Lattice Parameters | a (Å) | GdF3 b (Å) | c (Å) | Cell Volume (Å)3 | a (Å) | LiGdF4c (Å) | Cell Volume (Å)3 |
---|---|---|---|---|---|---|---|
GdF3 (JCPDS 012-0788) | 6.571 | 6.984 | 4.393 | 201.6 | |||
0Li | 6.476 | 6.973 | 4.402 | 198.8 | |||
1Li | 6.471 | 6.915 | 4.407 | 197.2 | |||
2Li | 6.471 | 6.905 | 4.395 | 196.4 | 5.171 | 10.878 | 290.8 |
4Li | 5.174 | 10.878 | 289.0 | ||||
LiGdF4 (JCPDS 060-0476) | 5.219 | 10.971 | 298.8 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Secu, C.; Bartha, C.; Radu, C.; Secu, M. Up-Conversion Luminescence and Magnetic Properties of Multifunctional Er3+/Yb3+-Doped SiO2-GdF3/LiGdF4 Glass Ceramics. Magnetochemistry 2023, 9, 11. https://doi.org/10.3390/magnetochemistry9010011
Secu C, Bartha C, Radu C, Secu M. Up-Conversion Luminescence and Magnetic Properties of Multifunctional Er3+/Yb3+-Doped SiO2-GdF3/LiGdF4 Glass Ceramics. Magnetochemistry. 2023; 9(1):11. https://doi.org/10.3390/magnetochemistry9010011
Chicago/Turabian StyleSecu, Corina, Cristina Bartha, Cristian Radu, and Mihail Secu. 2023. "Up-Conversion Luminescence and Magnetic Properties of Multifunctional Er3+/Yb3+-Doped SiO2-GdF3/LiGdF4 Glass Ceramics" Magnetochemistry 9, no. 1: 11. https://doi.org/10.3390/magnetochemistry9010011
APA StyleSecu, C., Bartha, C., Radu, C., & Secu, M. (2023). Up-Conversion Luminescence and Magnetic Properties of Multifunctional Er3+/Yb3+-Doped SiO2-GdF3/LiGdF4 Glass Ceramics. Magnetochemistry, 9(1), 11. https://doi.org/10.3390/magnetochemistry9010011