Terbium (III) Oxide (Tb2O3) Transparent Ceramics by Two-Step Sintering from Precipitated Powder
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Methods
2.3. Characterization
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Freiser, M. A survey of magnetooptic effects. IEEE Trans. Magn. 1968, 4, 152–161. [Google Scholar] [CrossRef]
- Pershan, P.S. Magneto-optical effects. J. Appl. Phys. 1967, 38, 1482–1490. [Google Scholar] [CrossRef]
- Castera, J.; Hepner, G. Isolator in integrated optics using Faraday and Cotton-Mouton effects. Appl. Opt. 1977, 16, 2031–2033. [Google Scholar] [CrossRef] [PubMed]
- Kumari, S.; Chakraborty, S. Study of different magneto-optic materials for current sensing applications. J. Sens. Sens. Syst. 2018, 7, 421–431. [Google Scholar] [CrossRef] [Green Version]
- Dai, J.W.; Li, J. Promising magneto-optical ceramics for high power Faraday isolators. Scr. Mater. 2018, 155, 78–84. [Google Scholar] [CrossRef]
- Carothers, K.J.; Norwood, R.A.; Pyun, J. High Verdet constant materials for magneto-optical Faraday rotation: A review. Chem. Mater. 2022, 34, 2531–2544. [Google Scholar] [CrossRef]
- Aplet, L.J.; Carson, J.W. A Faraday effect optical isolator. Appl. Opt. 1964, 3, 544–545. [Google Scholar] [CrossRef]
- Stadler, B.J.H.; Mizumoto, T. Integrated magneto-optical materials and isolators: A review. IEEE Photonics J. 2014, 6, 1–15. [Google Scholar] [CrossRef]
- Borrelli, N.F. Faraday rotation in glasses. J. Chem. Phys. 1964, 41, 3289–3293. [Google Scholar] [CrossRef]
- Berger, S.B.; Rubinstein, C.B.; Kurkjian, C.R.; Treptow, A.W. Faraday rotation of rare-earth (III) phosphate glasses. Phys. Rev. 1964, 133, A723–A727. [Google Scholar] [CrossRef]
- Dillon, J.F. Origin and uses of the Faraday rotation in magnetic crystals. J. Appl. Phys. 1968, 39, 922–929. [Google Scholar] [CrossRef]
- Xue, Y.L.; Zhu, F.; Wang, J.; Sun, S.Y.; Hu, L.L.; Tang, D.Y. Fabrication and comprehensive structural and spectroscopic properties of Er:Y2O3 transparent ceramics. J. Rare Earth, 2021; in press. [Google Scholar] [CrossRef]
- Yang, C.L.; Huang, J.Q.; Huang, Q.F.; Deng, Z.H.; Wang, Y.Y.; Li, X.Y.; Zhou, Z.H.; Chen, J.; Liu, Z.G.; Guo, W. Optical, thermal, and mechanical properties of (Y1−xScx)2O3 transparent ceramics. J. Adv. Ceram. 2022, 11, 901–911. [Google Scholar] [CrossRef]
- Li, J.; Dai, J.W.; Pan, Y.B. Research progress on magneto-optical transparent ceramics. J. Inorg. Mater. 2018, 33, 1–8. [Google Scholar] [CrossRef]
- Kagan, M.A.; Khazanov, E.A. Thermally induced birefringence in Faraday devices made from terbium gallium garnet-polycrystalline ceramics. Appl. Opt. 2004, 43, 6030–6039. [Google Scholar] [CrossRef]
- Yasuhara, R.; Tokita, S.; Kawanaka, J.; Kawashima, T.; Kan, H.; Yagi, H.; Nozawa, H.; Yanagitani, T.; Fujimoto, Y.; Yoshida, H.; et al. Cryogenic temperature characteristics of Verdet constant on terbium gallium garnet ceramics. Opt. Express 2007, 15, 11255–11261. [Google Scholar] [CrossRef]
- Yoshida, H.; Tsubakimoto, K.; Fujimoto, Y.; Mikami, K.; Fujita, H.; Miyanaga, N.; Nozawa, H.; Yagi, H.; Yanagitani, T.; Nagata, Y.; et al. Optical properties and Faraday effect of ceramic terbium gallium garnet for a room temperature Faraday rotator. Opt. Express 2011, 19, 15181–15187. [Google Scholar] [CrossRef]
- Feng, Y.; Lin, H.; Chen, C.; Yi, X.Z.; Tang, Y.R.; Zhang, S.; Yu, T.; Chen, W.; Zhou, S.M. Fabrication of transparent Tb3Ga5O12 ceramic. Chin. Opt. Lett. 2015, 13, 31602–31605. [Google Scholar] [CrossRef]
- Ikesue, A.; Aung, Y.L. Magneto-optic transparent ceramics. In Processing of Ceramics: Breakthrough in Optical Ceramics; Ikesue, A., Ed.; John Wiley & Sons: Hoboken, NJ, USA, 2021; pp. 143–185. [Google Scholar] [CrossRef]
- Li, X.Y.; Snetkov, I.L.; Yakovlev, A.; Liu, Q.; Liu, X.; Liu, Z.Y.; Chen, P.H.; Zhu, D.Y.; Wu, L.X.; Yang, Z.X.; et al. Fabrication and performance evaluation of novel transparent ceramics RE:Tb3Ga5O12 (RE = Pr, Tm, Dy) toward magneto-optical application. J. Adv. Ceram. 2021, 10, 271–278. [Google Scholar] [CrossRef]
- Lin, H.; Zhou, S.M.; Teng, H. Synthesis of Tb3Al5O12 (TAG) transparent ceramics for potential magneto-optical applications. Opt. Mater. 2011, 33, 1833–1836. [Google Scholar] [CrossRef]
- Chen, C.; Zhou, S.M.; Lin, H.; Yi, Q. Fabrication and performance optimization of the magneto-optical (Tb1−xRx)3Al5O12(R = Y, Ce) transparent ceramics. Appl. Phys. Lett. 2012, 101, 131908. [Google Scholar] [CrossRef]
- Furuse, H.; Yasuhara, R.; Hiraga, K.; Zhou, S.M. High Verdet constant of Ti-doped terbium aluminum garnet (TAG) ceramics. Opt. Mater. Express 2016, 6, 191–196. [Google Scholar] [CrossRef]
- Aung, Y.L.; Ikesue, A. Development of optical grade (TbxY1−x )3 Al5 O12 ceramics as Faraday rotator material. J. Am. Ceram. Soc. 2017, 100, 4081–4087. [Google Scholar] [CrossRef]
- Dai, J.W.; Pan, Y.B.; Xie, T.F.; Kou, H.M.; Li, J. Highly transparent Tb3Al5O12 magneto-optical ceramics sintered from co-precipitated powders with sintering aids. Opt. Mater. 2018, 78, 370–374. [Google Scholar] [CrossRef]
- Li, X.Y.; Liu, Q.; Liu, X.; Zhu, D.Y.; Hu, D.J.; Tian, F.; Wu, L.X.; Yang, Z.X.; Xie, T.F.; Chen, H.H.; et al. Sintering parameter optimization of Tb3Al5O12 magneto-optical ceramics by vacuum sintering and HIP post-treatment. J. Am. Ceram. Soc. 2021, 104, 2116–2124. [Google Scholar] [CrossRef]
- Chen, J.; Tang, Y.; Chen, C.; Hao, D.M.; Yi, X.Z.; Ao, G.; Tian, Y.N.; Zhou, S.M. Roles of zirconia-doping in the sintering process of high quality Tb3Al5O12 magneto-optic ceramics. Scr. Mater. 2020, 176, 83–87. [Google Scholar] [CrossRef]
- Snetkov, I.L.; Permin, D.A.; Balabanov, S.S.; Palashov, O.V. Wavelength dependence of Verdet constant of Tb3+:Y2O3 ceramics. Appl. Phys. Lett. 2016, 108, 161905. [Google Scholar] [CrossRef]
- Ikesue, A.; Aung, Y.L.; Makikawa, S.; Yahagi, A. Polycrystalline (TbXY1−X)2O3 Faraday rotator. Opt. Lett. 2017, 42, 4399–4401. [Google Scholar] [CrossRef]
- Ikesue, A.; Aung, Y.L.; Makikawa, S.; Yahagi, A. Total performance of magneto-optical ceramics with a bixbyite structure. Materials 2019, 12, 421. [Google Scholar] [CrossRef] [Green Version]
- Balabanov, S.S.; Permin, D.A.; Rostokina, E.Y.; Palashov, O.V.; Snetkov, I.L. Characterizations of REE:Tb2O3 magneto-optical ceramics. Phys. Status Solidi B 2020, 257, 1900474. [Google Scholar] [CrossRef]
- Zhang, J.Y.; Chen, H.T.; Wang, J.P.; Wang, D.W.; Han, D.; Zhang, J.; Wang, S.W. Preparation of (Tb1−xLux)2O3 transparent ceramics by solid solution for magneto-optical application. J. Eur. Ceram. Soc. 2020, 41, 2818–2825. [Google Scholar] [CrossRef]
- Furuse, H.; Yasuhara, R. Magneto-optical characteristics of holmium oxide (Ho2O3) ceramics. Opt. Mater. Express 2017, 7, 827–833. [Google Scholar] [CrossRef]
- Vojna, D.; Yasuhara, R.; Furuse, H.; Slezak, O.; Hutchinson, S.; Lucianetti, A.; Mocek, T.; Cech, M. Faraday effect measurements of holmium oxide (Ho2O3) ceramics-based magneto-optical materials. High Power Laser Sci. Eng. 2018, 6, E2. [Google Scholar] [CrossRef] [Green Version]
- Lu, B.; Cheng, H.M.; Xu, X.X.; Chen, H.B. Preparation and characterization of transparent magneto-optical Ho2O3 ceramics. J. Am. Ceram. Soc. 2019, 102, 118–122. [Google Scholar] [CrossRef] [Green Version]
- Balabanov, S.; Filofeev, S.; Ivanov, M.; Kaigorodov, A.; Kuznetsov, D.; Hu, D.J.; Li, J.; Palashov, O.; Permin, D.; Rostokina, E.; et al. Fabrication and characterizations of holmium oxide based magneto-optical ceramics. Opt. Mater. 2020, 101, 109741. [Google Scholar] [CrossRef]
- Hu, D.J.; Li, X.Y.; Snetkov, I.; Yakovlev, A.; Balabanov, S.; Ivanov, M.; Liu, X.; Liu, Z.Y.; Tian, F.; Xie, T.F.; et al. Fabrication, microstructure and optical characterizations of holmium oxide (Ho2O3) transparent ceramics. J. Eur. Ceram. Soc. 2020, 41, 759–767. [Google Scholar] [CrossRef]
- Morales, J.R.; Amos, N.; Khizroev, S.; Garay, J.E. Magneto-optical Faraday effect in nanocrystalline oxides. J. Appl. Phys. 2011, 109, 093110. [Google Scholar] [CrossRef]
- Snetkov, I.L.; Yakovlev, A.I.; Permin, D.A.; Balabanov, S.S.; Palashov, O.V. Magneto-optical Faraday effect in dysprosium oxide (Dy2O3) based ceramics obtained by vacuum sintering. Opt. Lett. 2018, 43, 4041–4044. [Google Scholar] [CrossRef]
- Aung, Y.L.; Ikesue, A.; Yasuhara, R.; Iwamoto, Y. Magneto-optical Dy2O3 ceramics with optical grade. Opt. Lett. 2020, 45, 4615–4617. [Google Scholar] [CrossRef]
- Zhou, D.; Li, X.H.; Wang, T.; Xu, J.Y.; Wang, Z.Y.; Shi, Y.; Permin, D.; Balabanov, S.S. Fabrication and magneto-optical property of (Dy0.7Y0.25La0.05)2O3 transparent ceramics by PLSH technology. Magnetochemistry 2020, 6, 70. [Google Scholar] [CrossRef]
- Balabanov, S.; Filofeev, S.; Kaygorodov, A.; Khrustov, V.; Kuznetsov, D.; Novikova, A.; Permin, D.; Popov, P.; Ivanov, M. Hot pressing of Ho2O3 and Dy2O3 based magneto-optical ceramics. Opt. Mater. X 2022, 13, 100125. [Google Scholar] [CrossRef]
- Veber, P.; Velázquez, M.; Gadret, G.; Rytz, D.; Peltz, M.; Decourt, R. Flux growth at 1230 °C of cubic Tb2O3 single crystals and characterization of their optical and magnetic properties. CrystEngComm 2014, 17, 492–497. [Google Scholar] [CrossRef]
- Yang, M.Q.; Zhou, D.; Xu, J.Y.; Tian, T.; Jia, R.P.; Wang, Z.Y. Fabrication and magneto-optical property of yttria stabilized Tb2O3 transparent ceramics. J. Eur. Ceram. Soc. 2019, 39, 5005–5009. [Google Scholar] [CrossRef]
- Zhang, J.Y.; Chen, H.T.; Wang, J.P.; Wang, D.W.; Han, D.; Zhang, J.; Wang, S.W. Phase transformation process of Tb2O3 at elevated temperature. Scr. Mater. 2019, 171, 108–111. [Google Scholar] [CrossRef]
- Balabanov, S.S.; Permin, D.A.; Rostokina, E.Y.; Egorov, S.V.; Sorokin, A.A.; Kuznetsov, D.D. Synthesis and structural characterization of ultrafine terbium oxide powders. Ceram. Int. 2017, 43, 16569–16574. [Google Scholar] [CrossRef]
- Yakovlev, A.; Balabanov, S.; Permin, D.; Ivanov, M.; Snetkov, I. Faraday rotation in erbium oxide based ceramics. Opt. Mater. 2020, 101, 109750. [Google Scholar] [CrossRef]
- Sun, Z.G.; Chen, Z.Y.; Wang, M.Y.; Lu, B. Production and optical properties of Ce3+-activated and Lu3+-stabilized transparent gadolinium aluminate garnet ceramics. J. Am. Ceram. Soc. 2019, 103, 809–818. [Google Scholar] [CrossRef]
- Hu, D.J.; Liu, X.; Liu, Z.Y.; Li, X.Y.; Tian, F.; Zhu, D.Y.; Yang, Z.X.; Wu, L.X.; Li, J. Fabrication of Dy2O3 transparent ceramics by vacuum sintering using precipitated powders. Magnetochemistry 2020, 7, 6. [Google Scholar] [CrossRef]
- Runde, W.; Meinrath, G.; Kim, J.I. A study of solid-liquid phase equilibria of trivalent lanthanide and actinide ions in carbonate systems. Radiochim. Acta 1992, 58/59, 93–100. [Google Scholar] [CrossRef]
- Happy; Tok, A.I.; Su, L.T.; Boey, F.Y.C.; Ng, S.H. Homogeneous precipitation of Dy2O3 nanoparticles—Effects of synthesis parameters. J. Nanosci. Nanotechnol. 2007, 7, 907–915. [Google Scholar] [CrossRef] [Green Version]
- Salavati-Niasari, M.; Javidi, J.; Davar, F.; Fazl, A.A. Sonochemical synthesis of Dy2(CO3)3 nanoparticles and their conversion to Dy2O3 and Dy(OH)3: Effects of synthesis parameters. J. Alloys Compd. 2010, 503, 500–506. [Google Scholar] [CrossRef]
- Caro, P.; Sawyer, J.; Evning, L. The infrared spectra of rare earth carbonates. Spectrochim. Acta A Mol. Spectrosc. 1972, 28, 1167–1173. [Google Scholar] [CrossRef]
- Zhang, J.; Von Dreele, R.; Eyring, L. The structures of Tb7O12 and Tb11O20. J. Solid State Chem. 1993, 104, 21–32. [Google Scholar] [CrossRef]
- Balabanov, S.S.; Permin, D.A.; Rostokina, E.Y.; Egorov, S.V.; Sorokin, A.A. Sinterability of nanopowders of terbia solid solutions with scandia, yttria, and lutetia. J. Adv. Ceram. 2018, 7, 362–369. [Google Scholar] [CrossRef] [Green Version]
- Monshi, A.; Foroughi, M.R.; Monshi, M.R. Modified scherrer equation to estimate more accurately nano-crystallite size using XRD. World J. Nano Sci. Eng. 2012, 2, 154–160. [Google Scholar] [CrossRef] [Green Version]
- Mollaee, M.; Zhu, X.; Jenkins, S.; Zong, J.; Temyanko, E.; Norwood, R.; Chavez-Pirson, A.; Li, M.; Zelmon, D.; Peyghambarian, N. Magneto-optical properties of highly Dy3+ doped multicomponent glasses. Opt. Express 2020, 28, 11789–11796. [Google Scholar] [CrossRef]
- Snetkov, I.L.; Yasuhara, R.; Starobor, A.V.; Mironov, E.A.; Palashov, O.V. Thermo-optical and magneto-optical characteristics of terbium scandium aluminum garnet crystals. IEEE J. Quantum Electron. 2015, 51, 1–7. [Google Scholar] [CrossRef]
Wavelength (nm) | V(Tb2O3) in Absolute Value (Rad∙T−1∙m−1) | V(TGG) in Absolute Value (Rad∙T−1∙m−1) | V(Tb2O3)/V(TGG) |
---|---|---|---|
405 | 1620.8 | 453.2 | 3.6 |
532 | 672.4 | 196.5 | 3.4 |
633 | 427.3 | 136.2 | 3.1 |
658 | 369.3 | 122.1 | 3.0 |
808 | 235.0 | 74.8 | 3.1 |
980 | 150.1 | 48.7 | 3.1 |
1064 | 123.7 | 36.7 | 3.4 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hu, D.; Li, X.; Zhang, L.; Snetkov, I.; Chen, P.; Dai, Z.; Balabanov, S.; Palashov, O.; Li, J. Terbium (III) Oxide (Tb2O3) Transparent Ceramics by Two-Step Sintering from Precipitated Powder. Magnetochemistry 2022, 8, 73. https://doi.org/10.3390/magnetochemistry8070073
Hu D, Li X, Zhang L, Snetkov I, Chen P, Dai Z, Balabanov S, Palashov O, Li J. Terbium (III) Oxide (Tb2O3) Transparent Ceramics by Two-Step Sintering from Precipitated Powder. Magnetochemistry. 2022; 8(7):73. https://doi.org/10.3390/magnetochemistry8070073
Chicago/Turabian StyleHu, Dianjun, Xiaoying Li, Lixuan Zhang, Ilya Snetkov, Penghui Chen, Zhengfa Dai, Stanislav Balabanov, Oleg Palashov, and Jiang Li. 2022. "Terbium (III) Oxide (Tb2O3) Transparent Ceramics by Two-Step Sintering from Precipitated Powder" Magnetochemistry 8, no. 7: 73. https://doi.org/10.3390/magnetochemistry8070073
APA StyleHu, D., Li, X., Zhang, L., Snetkov, I., Chen, P., Dai, Z., Balabanov, S., Palashov, O., & Li, J. (2022). Terbium (III) Oxide (Tb2O3) Transparent Ceramics by Two-Step Sintering from Precipitated Powder. Magnetochemistry, 8(7), 73. https://doi.org/10.3390/magnetochemistry8070073