A Generalized Ising-like Model for Spin Crossover Nanoparticles
Abstract
:1. Introduction
2. The Model
3. Entropic Sampling
4. Numerical Results and Analysis
- Effect of the Interaction Parameters
- o
- The Case x = JHH/JLL = 1.0
- o
- The Case of x = JHH/JLL = 0.4
- Effects of the Variation of x = JHH/JLL
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Coronado, E. Molecular magnetism: From chemical design to spin control in molecules, materials and devices. Nat. Rev. Mater. 2020, 5, 87–104. [Google Scholar] [CrossRef]
- Gütlich, P.; Hauser, A.; Spiering, H. Thermal and optical switching of Iron(II) Complexes. Angew. Chem. 1994, 33, 2024–2054. [Google Scholar] [CrossRef]
- Sanvito, S. Molecular Spintronics. Chem. Soc. Rev. 2011, 40, 3336–3355. [Google Scholar] [CrossRef] [PubMed]
- Decurtins, S.; Gütlich, P.; Köhler, C.P.; Spiering, H.; Hauser, A. Light-induced excited spin state trapping in a transition-metal complex: The hexa-1-propyltetrazole-iron (II) tetrafluoroborate spin-crossover system. Chem. Phys. Lett. 1984, 105, 1–4. [Google Scholar] [CrossRef]
- Linares, J.; Codjovi, E.; Garcia, Y. Pressure and Temperature Spin Crossover Sensors with Optical Detection. Sensors 2012, 12, 4479–4492. [Google Scholar] [CrossRef]
- Boukheddaden, K.; Ritti, M.H.; Bouchez, G.; Sy, M.; Dîrtu, M.M.; Parlier, M.; Linares, J.; Garcia, Y. Quantitative contact pressure sensor based on spin crossover mechanism for civil security applications. J. Phys. Chem. C 2018, 122, 7597–7604. [Google Scholar] [CrossRef]
- Spiering, H. Elastic interaction in spin-crossover compounds. In Spin Crossover in Transition Metal Compounds III Topics in Current Chemistry; Springer: Berlin/Heidelberg, Germany, 2004; Volume 235, pp. 171–195. [Google Scholar] [CrossRef]
- Boukheddaden, K.; Linares, J.; Spiering, H.; Varret, F. One-dimensional Ising-like systems: An analytical investigation of the static and dynamic properties, applied to spin-crossover relaxation. Eur. Phys. J. B 2000, 15, 317–326. [Google Scholar] [CrossRef]
- Boukheddaden, K.; Linares, J.; Varret, F. Thermodynamic properties of coupled mixed-valence molecules using a cooperative PKS theory: A second-order localized-delocalized transition. Chem. Phys. 1993, 172, 239–245. [Google Scholar] [CrossRef]
- Constant-Machado, H.; Stancu, A.; Linares, J.; Varret, F. Thermal hysteresis loops in spin-crossover compounds analyzed in terms of classical Preisach model. IEEE Trans. Mag. 1998, 34, 2213–2219. [Google Scholar] [CrossRef]
- Linares, J.; Jureschi, C.M.; Boukheddaden, K. Surface effects leading to unusual size dependence of the thermal hysteresis behavior in spin-crossover nanoparticles. Magnetochemistry 2016, 2, 24. [Google Scholar] [CrossRef] [Green Version]
- Rotaru, A.; Linares, J.; Varret, F.; Codjovi, E.; Slimani, A.; Tanasa, R.; Enachescu, C.; Stancu, A.; Haasnoot, J. Pressure effect investigated with first-order reversal-curve method on the spin-transition compounds [FexZn1−x(btr)2(NCS)2] ·H2O (x = 0.6,1). Phys. Rev. B 2011, 83, 224107–224114. [Google Scholar] [CrossRef]
- Qamar, O.A.; Cong, C.; Ma, H. Solid state mononuclear divalent nickel spin crossover complexes. Dalton Trans. 2020, 49, 17106–17114. [Google Scholar] [CrossRef] [PubMed]
- Kahn, O. Molecular Magnetism; Wiley-VCH: New York, NY, USA, 1993. [Google Scholar]
- Shepherd, H.J.; Bonnet, S.; Guionneau, P.; Bedoui, S.; Garbarino, G.; Nicolazzi, W.; Bousseksou, A.; Molnar, G. Pressure-induced two-step transition with structural symmetry breaking: X-ray diffraction, magnetic, and Ramman studies. Phys. Rev. B 2011, 54, 144107–144115. [Google Scholar] [CrossRef] [Green Version]
- Krober, J.; Audière, J.P.; Claude, R.; Codjovi, E.; Kahn, O.; Hassnoot, J.; Grolière, F.; Jay, C.; Bousseksou, A.; Linares, J.; et al. Spin Transitions and Thermal Hysteresis in the Molecular-Based Materials [Fe(Htrz)2(trz)](BF4) and [Fe(Htrz)3](BF4)2.cntdot.H2O (Htrz = 1,2,4-4H-triazole; trz = 1,2,4-triazolato). Chem. Mater. 1994, 6, 1404–1412. [Google Scholar] [CrossRef]
- Varret, F.; Slimani, A.; Boukheddaden, K.; Chong, C.; Mishra, H.; Collet, E.; Haasnoot, J.; Pillet, S. The Propagation of the Thermal Spin Transition of [Fe(Btr)2(NCS)2]_H2O Single Crystals Observed by Optical Microscopy. New J. Chem. 2011, 35, 2333–2340. [Google Scholar] [CrossRef]
- Loutete-Dangui, E.D.; Codjovi, E.; Tokoro, H.; Dahoo, P.R.; Ohkoshi, S.; Boukheddaden, K. Spectroscopic ellipsometry investigations of the thermally induced first-order transition of RbMn[Fe(CN)6]. Phys. Rev. B 2008, 78, 014303–014312. [Google Scholar] [CrossRef]
- Pillet, S.; Hubsch, J.; Lecomte, C. Single crystal diffraction analysis of the thermal spin conversion in [Fe(btr)2(NCS)2](H2O): Evidence for spin-like domain formation. Eur. Phys. J. B 2004, 38, 541–552. [Google Scholar] [CrossRef]
- Roubeau, O.; Castro, M.; Burriel, R.; Haasnoot, J.G.; Reedijk, J. Calorimetric Investigation of Triazole-Bridged Fe(II) Spin-Crossover One-Dimensional Materials: Measuring the Cooperativity. J. Phys. Chem. B 2011, 115, 3003–3012. [Google Scholar] [CrossRef]
- Rotaru, A.; Dîrtu, M.M.; Enachescu, C.; Tanasa, R.; Linares, J.; Stancu, A.; Garcia, Y. Calorimetric measurements of diluted spin crossover complexes [FexM1−x(btr)2(NCS)2]·H2O with MII = Zn and Ni. Polyhedron 2009, 28, 2531–2536. [Google Scholar] [CrossRef]
- Rotaru, A.; Varret, F.; Codjovi, E.; Boukheddaden, K.; Linares, J.; Stancu, A.; Guionneau, P.; Létard, J.F. Hydrostatic pressure investigation of the spin crossover compound [Fe(PM-BIA)2(NCS)2] polymorph I using reflectance detection. J. Appl. Phys. 2009, 106, 053515–053520. [Google Scholar] [CrossRef]
- Rotaru, G.M.; Codjovi, E.; Dahoo, P.R.; Maurin, I.; Linares, J.; Rotaru, A. Monotoring-Spin-Crossover Properties by Diffussed Reflectivity. Symmetry 2021, 13, 1148. [Google Scholar] [CrossRef]
- Wajnflasz, J.; Pick, R. Transitions “low spin”—“high spin” dans les complexes de Fe2+. J. Phys. Colloques 1971, 32, 91–92. [Google Scholar] [CrossRef]
- Bousseksou, A.; Nasser, J.; Linares, J.; Boukheddaden, K.; Varret, F. Ising-like model for the two-step spin-crossover. J. Phys. I France 1992, 2, 1381–1403. [Google Scholar] [CrossRef]
- Linares, J.; Spiering, H.; Varret, F. Analytical solution of 1d ising-like systems modified by weak long-range interaction—Application to spin crossover compounds. Eur. Phys. J. B 1999, 10, 271–275. [Google Scholar] [CrossRef]
- Chiruta, D.; Jureschi, C.-M.; Linares, J.; Dahoo, P.R.; Garcia, Y.; Rotaru, A. On the origin of multi-step spin transition behaviour in 1d nanoparticles. Eur. Phys. J. B 2015, 88, 233. [Google Scholar] [CrossRef]
- Ndiaye, M.; Singh, Y.; Fourati, H.; Sy, M.; Lo, B.; Boukheddaden, K. Isomorphism between the electro-elastic modeling of the spin transition and Ising-like model with competing interactions: Elastic generation of self-organized spin states. J. App. Phys. 2021, 129, 153901–153921. [Google Scholar] [CrossRef]
- Paez-Espejo, M.; Sy, M.; Boukheddaden, K. Elastic frustration causing two-step and multistep transitions in spin crossover solids: Emergence of complex Aantiferroelastic structures. J. Am. Chem. Soc. 2016, 138, 3202–3210. [Google Scholar] [CrossRef]
- Shteto, I.; Linares, J.; Varret, F. Monte carlo entropic sampling for the study of metastable states and relaxation paths. Phys. Rev. E 1997, 56, 5128–5137. [Google Scholar] [CrossRef]
- Linares, J.; Cazelles, C.; Dahoo, P.R.; Boukheddaden, K. A first-order phase transition studied by an Ising-like model solved by entropic Sampling Monte Carlo Method. Symmetry 2021, 13, 587. [Google Scholar] [CrossRef]
- Linares, J.; Enachescu, C.; Boukheddaden, K.; Varret, F. Monte Carlo entropic sampling applied to spin crossover solids: The squareness of the thermal hysteresis loop. Polyhedron 2003, 22, 2453–2456. [Google Scholar] [CrossRef]
- Constant-Machado, H.; Linares, J.; Varret, F.; Haasnoot, J.G.; Martin, J.P.; Zarembowitch, J.; Dworkin, A.; Bousseksou, A. Dilution effects in a spin crossover system, modelled in terms of direct and indirect intermolecular interactions. J. Phys. I Fr. 1996, 6, 1203–1216. [Google Scholar] [CrossRef] [Green Version]
- Martin, J.P.; Zarembowitch, J.; Bousseksou, A.; Dworkin, A.; Haasnoot, J.G.; Varret, F. Solid State Effects on Spin Transitions: Magnetic, Calorimetric, and Moessbauer-Effect Properties of [FexCo1−x(4,4′-bis-1,2,4-triazole)2(NCS)2].cntdot.H2O Mixed-Crystal Compounds. Inorg. Chem. 1994, 33, 6325–6333. [Google Scholar] [CrossRef]
19 | 10.86 | 27.14 | 16.28 | 1.03 | 220.86 |
18 | 10.28 | 25.71 | 15.43 | 0.62 | 220.60 |
17 | 9.72 | 24.29 | 14.57 | 0.33 | 220.37 |
16 | 9.14 | 22.86 | 13.72 | 0.10 | 220.13 |
15 | 8.57 | 21.43 | 12.86 | 0 | 219.90 |
13 | 7.43 | 18.58 | 11.15 | 0 | 219.43 |
12 | 6.85 | 17.14 | 10.29 | 0 | 219.18 |
11 | 6.28 | 15.71 | 9.42 | 0 | 218.93 |
19 | 10.837 | 27.094 | 16.257 | 1.57 | 221.244 |
18 | 10.267 | 25.669 | 15.402 | 1.13 | 220.941 |
17 | 9.697 | 24.244 | 14.547 | 0.71 | 220.709 |
16 | 9.125 | 22.814 | 13.689 | 0.38 | 220.463 |
15 | 8.555 | 21.389 | 12.834 | 0.09 | 220.160 |
13 | 7.415 | 18.539 | 11.124 | 0 | 219.658 |
12 | 6.845 | 17.114 | 10.269 | 0 | 219.409 |
11 | 6.274 | 15.685 | 9?411 | 0 | 219.149 |
19 | 1.03 | 220.86 | 1.57 | 221.244 |
18 | 0.62 | 220.60 | 1.13 | 220.941 |
17 | 0.33 | 220.37 | 0.71 | 220.709 |
16 | 0.10 | 220.13 | 0.38 | 220.463 |
15 | 0 | 219.90 | 0.09 | 220.160 |
13 | 0 | 219.43 | 0 | 219.658 |
12 | 0 | 219.18 | 0 | 219.409 |
11 | 0 | 218.93 | 0 | 219.149 |
14.8 | 1.0 | 14.8 | 14.8 | 14.8 | 0.11 | 216.30 |
14.8 | 0.6 | 18.5 | 11.09 | 14.8 | 0 | 218.38 |
14.8 | 0.2 | 24.66 | 4.93 | 14.8 | 0 | 221.85 |
14.8 | 1.0 | 14.8 | 14.8 | 14.8 | 6.10 | 216.30 |
14.8 | 0.6 | 18.48 | 11.087 | 14.78 | 5.16 | 219.88 |
14.8 | 0.2 | 24.59 | 4.92 | 14.75 | 0 | 222.29 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cazelles, C.; Linares, J.; Dahoo, P.-R.; Boukheddaden, K. A Generalized Ising-like Model for Spin Crossover Nanoparticles. Magnetochemistry 2022, 8, 49. https://doi.org/10.3390/magnetochemistry8050049
Cazelles C, Linares J, Dahoo P-R, Boukheddaden K. A Generalized Ising-like Model for Spin Crossover Nanoparticles. Magnetochemistry. 2022; 8(5):49. https://doi.org/10.3390/magnetochemistry8050049
Chicago/Turabian StyleCazelles, Catherine, Jorge Linares, Pierre-Richard Dahoo, and Kamel Boukheddaden. 2022. "A Generalized Ising-like Model for Spin Crossover Nanoparticles" Magnetochemistry 8, no. 5: 49. https://doi.org/10.3390/magnetochemistry8050049
APA StyleCazelles, C., Linares, J., Dahoo, P. -R., & Boukheddaden, K. (2022). A Generalized Ising-like Model for Spin Crossover Nanoparticles. Magnetochemistry, 8(5), 49. https://doi.org/10.3390/magnetochemistry8050049