# Simulating Static and Dynamic Properties of Magnetic Molecules with Prototype Quantum Computers

^{1}

^{2}

^{3}

^{4}

^{*}

## Abstract

**:**

## 1. Introduction

## 2. Determining the Ground State of Heisenberg Chains by VQE

#### 2.1. Variational Quantum Eigensolver

#### 2.2. Heisenberg Spin Chains and Adapted Ansatz

`statevector_simulator`, i.e., by evaluating the results of quantum circuits directly, via algebraic matrix multiplication and by using the COBYLA [96] classical minimization routine. An ansatz depth $L=2$, corresponding to 12 independent classical parameters and 6 CNOT operations, allows us to obtain good results in the intermediate $B/J$ region. At low field, a more complex heuristic circuit ($L=3$, with 16 free parameters and 9 CNOTs) is required to exactly reconstruct the true ground state. This is a direct consequence of the higher degree of entanglement present in the ground state when the Heisenberg interaction is the dominant contribution. We see here that, when working with heuristic ansatzes, the only natural way to enrich the space of possible trial wavefunctions (e.g., when complex ground states must be approximated) is to increase the number of layers L. However, this strategy may not be optimal in view of scaling the problem size, particularly when the classical cost of the optimization problem associated with VQE implementations is also taken into account. On the one hand, only relatively shallow circuits may be run in practice in a near term scenario, where all quantum operations are subject to environment noise and limited fidelity (see also a discussion on noisy simulations below). On the other hand, the number of classical optimization steps, and hence of circuit executions required to estimate the variational energy ${\langle \mathcal{H}\rangle}_{\theta}$, may become quickly impractical when many classical parameters, intially set at random values, are present in the ansatz.

#### Effect of Noise

- finite relaxation (${T}_{1}$) and coherence (${T}_{2}$) times of the physical qubits, which typically lead to amplitude and phase damping effects;
- single- and 2-qubit gate errors (the latter being usually much higher), acting during the implementation of each quantum operation, due to both imperfections of the coherent qubit manipulation and additional incoherent effects (e.g., depolarizing Pauli noise);
- readout errors, associated with imperfect measurements and erroneous assignment of the outcome, which can be modeled, for example, as bit flip channels.

`qasm_simulator`[99], making use of the

`NoiseModel.from_backend`function (see Materials and Methods, Section 5). The noise parameters are derived from the calibration data of the

`ibmq_kolkata`27-qubit quantum processor, for which a quantum volume of 128 is reported. For simplicity, we construct a uniform noise model by using average parameters across the qubit register (${T}_{1}\sim 135$$\mathsf{\mu}$s, ${T}_{2}\sim 125$$\mathsf{\mu}$s, single-qubit gate error $\sim 2.5\times {10}^{-4}$, 2-qubit gate error $\sim 8\times {10}^{-3}$, readout error $\sim {10}^{-2}$). In all noisy simulations, we use the SPSA classical optimizer [100], which, due to its stochastic nature, is particularly effective in presence of fluctuations and errors affecting the evaluation of the variational energy. Moreover, we increase the stability and accuracy of all energy evaluations and observations made on the noisy quantum circuits by applying the measurement error mitigation protocol provided in the Qiskit Ignis framework [99]. This is based on a calibration matrix, which is first constructed via preparation and measurement experiments on computational basis states and later used as a filter on noisy measurement outcomes [66].

#### 2.3. Finite-Size and Parity Effects

## 3. Dynamical Correlation Functions

`ibmq_bogota`IBM Quantum processor are shown in Figure 5 (light colors), for both real and imaginary parts, compared with exact values (continuous lines). After applying the PaS correction (dark colors), the agreement with experiments on the real quantum hardware using 5 qubits is very good. Notice, in particular, how the error mitigation strategy helps to recover the correct amplitude and phase of the oscillations for ${\mathcal{C}}_{12}$ cross-correlations.

## 4. Discussion and Conclusions

## 5. Materials and Methods

#### Simulations

`statevector_simulator`backend was employed, thus solving for the exact output states and observables via linear algebraic manipulations. Noisy simulations were instead executed with the

`qasm_simulator`backend, which includes the effect of statistical sampling on the observed results, mimicking the real measurement process. In all calculations, each circuit was repeated ${n}_{shot}=8192$ times to reconstruct output averages. The hardware noise was modelled with the

`NoiseModel.from_backend`method [99], which can make use of calibration data from real IBM Quantum devices, implementing thermal relaxation and decoherence effects based on the real physical parameters (${T}_{1}$, ${T}_{2}$, frequency and temperature) found on the processor. Gate errors are associated also with local depolarizing channels, whose strength is tuned in such a way that, when combined with thermal noise and taking into account the gate durations, the effective total noise matches the hardware gate infidelities reported in the calibration data. Moreover, readout errors are included with local bit flip channels. We also notice that fidelity tests were performed, in the case of noisy simulations, by operating the

`qasm_simulator`in density matrix mode, thus extracting the simulated noise-affected quantum state (before measurement) to be compared, e.g., with ideal ground states obtained from exact diagonalization.

`statevector_simulator`backend and SPSA (Simultaneous Perturbation Stochastic Approximation algorithm) for noisy simulations. The latter (which is a stochastic gradient-free optimizer) works better in the presence of noise [106]. Executions on real quantum hardware were performed on IBM Quantum devices, made available online for remote access via quantum-computing.ibm.com. These processors are based on superconducting technology, with fixed-frequency transmon qubits, connected to superconducting resonator waveguides for control and readout via microwave pulses [59,107]. The native 2-qubit entangling CNOT operation is obtained via microwave-activated cross resonance interactions [108], mediated by dedicated waveguides connecting neighbouring qubits in linear chains or (portions of) heavy hexagonal lattices.

## Author Contributions

## Funding

## Data Availability Statement

## Acknowledgments

## Conflicts of Interest

## References

- Troiani, F.; Affronte, M.; Carretta, S.; Santini, P.; Amoretti, G. Proposal for Quantum Gates in Permanently Coupled Antiferromagnetic Spin Rings without Need of Local Fields. Phys. Rev. Lett.
**2005**, 94, 190501. [Google Scholar] [CrossRef][Green Version] - Troiani, F.; Ghirri, A.; Affronte, M.; Carretta, S.; Santini, P.; Amoretti, G.; Piligkos, S.; Timco, G.; Winpenny, R.E.P. Molecular Engineering of Antiferromagnetic Rings for Quantum Computation. Phys. Rev. Lett.
**2005**, 94, 207208. [Google Scholar] [CrossRef] [PubMed][Green Version] - Luis, F.; Repollés, A.; Martínez-Pérez, M.J.; Aguilá, D.; Roubeau, O.; Zueco, D.; Alonso, P.J.; Evangelisti, M.; Camón, J.S.; Barrios, L.A.; et al. Molecular prototypes for spin-based CNOT and SWAP quantum gates. Phys. Rev. Lett.
**2011**, 107, 117203. [Google Scholar] [CrossRef] [PubMed][Green Version] - Santini, P.; Carretta, S.; Troiani, F.; Amoretti, G. Molecular Nanomagnets as Quantum Simulators. Phys. Rev. Lett.
**2011**, 107, 230502. [Google Scholar] [CrossRef][Green Version] - Wedge, C.J.; Timco, G.A.; Spielberg, E.T.; George, R.E.; Tuna, F.; Rigby, S.; McInnes, E.J.L.; Winpenny, R.E.; Blundell, S.J.; Ardavan, A. Chemical engineering of molecular qubits. Phys. Rev. Lett.
**2012**, 108, 107204. [Google Scholar] [CrossRef] [PubMed] - Chiesa, A.; Whitehead, G.F.S.; Carretta, S.; Carthy, L.; Timco, G.A.; Teat, S.J.; Amoretti, G.; Pavarini, E.; Winpenny, R.E.P.; Santini, P. Molecular nanomagnets with switchable coupling for quantum simulation. Sci. Rep.
**2014**, 4, 7423. [Google Scholar] [CrossRef][Green Version] - Aguilà, D.; Barrios, D.; Velasco, V.; Roubeau, O.; Repollés, A.; Alonso, P.; Sesé, J.; Teat, S.; Luis, F.; Aromí, G. Heterodimetallic [LnLn’] lanthanide complexes: Toward a chemical design of two-qubit molecular spin quantum gates. J. Am. Chem. Soc.
**2014**, 136, 14215. [Google Scholar] [CrossRef][Green Version] - Ardavan, A.; Bowen, A.M.; Fernandez, A.; Fielding, A.J.; Kaminski, D.; Moro, F.; Muryn, C.A.; Wise, M.; Ruggi, A.; McInnes, E.J.L.; et al. Engineering coherent interactions in molecular nanomagnet dimers. NPJ Quantum Inf.
**2015**, 1, 15012. [Google Scholar] - Zadrozny, J.M.; Niklas, J.; Poluektov, O.G.; Freedman, D.E. Millisecond Coherence Time in a Tunable Molecular Electronic Spin Qubit. ACS Cent. Sci.
**2015**, 1, 488. [Google Scholar] - Shiddiq, M.; Komijani, D.; Duan, Y.; Gaita-Ariño, A.; Coronado, E.; Hill, S. Enhancing coherence in molecular spin qubits via atomic clock transitions. Nature
**2016**, 531, 348–351. [Google Scholar] - Ferrando-Soria, J.; Moreno-Pineda, E.; Chiesa, A.; Fernandez, A.; Magee, S.A.; Carretta, S.; Santini, P.; Vitorica-Yrezabal, I.; Tuna, F.; McInness, E.J.L.; et al. A modular design of molecular qubits to implement universal quantum gates. Nat. Commun.
**2016**, 7, 11377. [Google Scholar] [CrossRef][Green Version] - Atzori, M.; Tesi, L.; Morra, E.; Chiesa, M.; Sorace, L.; Sessoli, R. Room-Temperature Quantum Coherence and Rabi Oscillations in Vanadyl Phthalocyanine: Toward Multifunctional Molecular Spin Qubits. J. Am. Chem. Soc.
**2016**, 138, 2154–2157. [Google Scholar] [CrossRef] [PubMed] - Ding, Y.S.; Deng, Y.F.; Zheng, Y.Z. The Rise of Single-Ion Magnets as Spin Qubits. Magnetochemistry
**2016**, 2, 40. [Google Scholar] [CrossRef][Green Version] - Chiesa, A.; Santini, P.; Carretta, S. Supramolecular Complexes for Quantum Simulation. Magnetochemistry
**2016**, 2, 37. [Google Scholar] [CrossRef][Green Version] - Atzori, M.; Morra, E.; Tesi, L.; Albino, A.; Chiesa, M.; Sorace, L.; Sessoli, R. Quantum Coherence Times Enhancement in Vanadium(IV)-based Potential Molecular Qubits: The Key Role of the Vanadyl Moiety. J. Am. Chem. Soc.
**2016**, 138, 11234–11244. [Google Scholar] [CrossRef] [PubMed] - Yu, C.J.; Graham, M.J.; Zadrozny, J.M.; Niklas, J.; Krzyaniak, M.D.; Wasielewski, M.R.; Poluektov, O.G.; Freedman, D.E. Long Coherence Times in Nuclear Spin-Free Vanadyl Qubits. J. Am. Chem. Soc.
**2016**, 138, 14678–14685. [Google Scholar] [CrossRef] - Ferrando-Soria, J.; Magee, S.A.; Chiesa, A.; Carretta, S.; Santini, P.; Vitorica-Yrezabal, I.J.; Tuna, F.; Whitehead, G.F.S.; Sproules, S.; Lancaster, K.M.; et al. Swithcable interactions in molecular double qubits. Chem
**2016**, 1, 727–752. [Google Scholar] [CrossRef][Green Version] - Atzori, M.; Tesi, L.; Benci, S.; Lunghi, A.; Righini, R.; Taschin, A.; Torre, R.; Sorace, L.; Sessoli, R. Spin Dynamics and Low Energy Vibrations: Insights from Vanadyl- Based Potential Molecular Qubits. J. Am. Chem. Soc.
**2017**, 139, 4338–4341. [Google Scholar] [CrossRef][Green Version] - Godfrin, C.; Ferhat, A.; Ballou, R.; Klyatskaya, S.; Ruben, M.; Wernsdorfer, W.; Balestro, F. Operating Quantum States in Single Magnetic Molecules: Implementation of Grover’s Quantum Algorithm. Phys. Rev. Lett.
**2017**, 119, 187702. [Google Scholar] [CrossRef][Green Version] - Atzori, M.; Chiesa, A.; Morra, E.; Chiesa, M.; Sorace, L.; Carretta, S.; Sessoli, R. A two-qubit molecular architecture for electronmediated nuclear quantum simulation. Chem. Sci.
**2018**, 9, 6183. [Google Scholar] [CrossRef][Green Version] - Atzori, M.; Benci, S.; Morra, E.; Tesi, L.; Chiesa, M.; Torre, R.; Sorace, L.; Sessoli, R. Structural Effects on the Spin Dynamics of Potential Molecular Qubits. Inorg. Chem.
**2018**, 57, 731–740. [Google Scholar] [CrossRef] - Hussain, R.; Allodi, G.; Chiesa, A.; Garlatti, E.; Mitcov, D.; Konstantatos, A.; Pedersen, K.; Renzi, R.D.; Piligkos, S.; Carretta, S. Coherent Manipulation of a Molecular Ln-Based Nuclear Qudit Coupled to an Electron Qubit. J. Am. Chem. Soc.
**2018**, 140, 9814–9818. [Google Scholar] [CrossRef][Green Version] - Gaita-Ariño, A.; Luis, F.; Hill, S.; Coronado, E. Molecular spins for quantum computation. Nat. Chem.
**2019**, 11, 301–309. [Google Scholar] [CrossRef] [PubMed] - Atzori, M.; Sessoli, R. The Second Quantum Revolution: Role and Challenges of Molecular Chemistry. J. Am. Chem. Soc.
**2019**, 141, 11339. [Google Scholar] [CrossRef] [PubMed] - Macaluso, E.; Rubín, M.; Aguilà, D.; Chiesa, A.; Barrios, J.I.M.; Alonso, P.J.; Roubeau, O.; Luis, F.; Aromí, G.; Carretta, S. A heterometallic [LnLn’Ln] lanthanide complex as a qubit with embedded quantum error correction. Chem. Sci.
**2020**, 11, 10337. [Google Scholar] [CrossRef] - Wojnar, M.K.; Laorenza, D.W.; Schaller, R.D.; Freedman, D.E. Nickel(II) Metal Complexes as Optically Addressable Qubit Candidates. J. Am. Chem. Soc.
**2020**, 142, 14826–14830. [Google Scholar] [CrossRef] [PubMed] - Chiesa, A.; Macaluso, E.; Petiziol, F.; Wimberger, S.; Santini, P.; Carretta, S. Molecular Nanomagnets as Qubits with Embedded Quantum-Error Correction. J. Phys. Chem. Lett.
**2020**, 11, 8610–8615. [Google Scholar] [CrossRef] [PubMed] - Woodruff, D.N.; Winpenny, R.; Layfield, R.A. Lanthanide Single-Molecule Magnets. Chem. Rev.
**2013**, 113, 5110–5148. [Google Scholar] [CrossRef] - Chiesa, A.; Guidi, T.; Carretta, S.; Ansbro, S.; Timco, G.A.; Vitorica-Yrezabal, I.; Garlatti, E.; Amoretti, G.; Winpenny, R.E.P.; Santini, P. Magnetic Exchange Interactions in the Molecular Nanomagnet Mn
_{12}. Phys. Rev. Lett.**2017**, 119, 217202. [Google Scholar] [CrossRef][Green Version] - Goodwin, C.A.P.; Ortu, F.; Reta, D.; Chilton, N.F.; Mills, D.P. Molecular magnetic hysteresis at 60 kelvin in dysprosocenium. Nature
**2017**, 548, 439. [Google Scholar] [CrossRef] - Guo, F.S.; Day, B.M.; Chen, Y.C.; Tong, M.L.; Mansikkamäki, A.; Layfield, R.A. Magnetic hysteresis up to 80 kelvin in a dysprosium metallocene single-molecule magnet. Science
**2018**, 362, 1400–1403. [Google Scholar] [CrossRef] [PubMed][Green Version] - Liu, J.L.; Chen, Y.C.; Tong, M.L. Symmetry strategies for high performance lanthanide-based single-molecule magnets. Chem. Soc. Rev.
**2018**, 47, 2431–2453. [Google Scholar] [CrossRef] - Chiesa, A.; Cugini, F.; Hussain, R.; Macaluso, E.; Allodi, G.; Garlatti, E.; Giansiracusa, M.; Goodwin, C.A.P.; Ortu, F.; Reta, D.; et al. Understanding magnetic relaxation in single-ion magnets with high blocking temperature. Phys. Rev. B
**2020**, 101, 174402. [Google Scholar] [CrossRef] - Prokof’ev, N.V.; Stamp, P.C.E. Low-Temperature Quantum Relaxation in a System of Magnetic Nanomolecules. Phys. Rev. Lett.
**1998**, 80, 5794–5797. [Google Scholar] [CrossRef][Green Version] - Martínez-Pérez, M.J.; Cardona-Serra, S.; Schlegel, C.; Moro, F.; Alonso, P.J.; Prima-García, H.; Clemente-Juan, J.M.; Evangelisti, M.; Gaita-Ariño, A.; Sesé, J.; et al. Gd-Based Single-Ion Magnets with Tunable Magnetic Anisotropy: Molecular Design of Spin Qubits. Phys. Rev. Lett.
**2012**, 108, 247213. [Google Scholar] [CrossRef][Green Version] - Wernsdorfer, W.; Ohm, T.; Sangregorio, C.; Sessoli, R.; Mailly, D.; Paulsen, C. Observation of the Distribution of Molecular Spin States by Resonant Quantum Tunneling of the Magnetization. Phys. Rev. Lett.
**1999**, 82, 3903–3906. [Google Scholar] [CrossRef][Green Version] - Wernsdorfer, W.; Bhaduri, S.; Boskovic, C.; Christou, G.; Hendrickson, D.N. Spin-parity dependent tunneling of magnetization in single-molecule magnets. Phys. Rev. B
**2002**, 65, 180403. [Google Scholar] [CrossRef][Green Version] - Santini, P.; Carretta, S.; Amoretti, G.; Guidi, T.; Caciuffo, R.; Caneschi, A.; Rovai, D.; Qiu, Y.; Copley, J.R.D. Spin dynamics and tunneling of the Néel vector in the Fe
_{10}magnetic wheel. Phys. Rev. B**2005**, 71, 184405. [Google Scholar] [CrossRef] - Schmidt, R.; Richter, J.; Schnack, J. Frustration effects in magnetic molecules. J. Magn. Magn. Mater.
**2005**, 295, 164–167. [Google Scholar] [CrossRef][Green Version] - Furukawa, Y.; Kiuchi, K.; Kumagai, K.I.; Ajiro, Y.; Narumi, Y.; Iwaki, M.; Kindo, K.; Bianchi, A.; Carretta, S.; Santini, P.; et al. Evidence of spin singlet ground state in the frustrated antiferromagnetic ring Cr
_{8}Ni. Phys. Rev. B**2009**, 79, 134416. [Google Scholar] [CrossRef] - Florek, W.; Antkowiak, M.; Kamieniarz, G. Sequences of ground states and classification of frustration in odd-numbered antiferromagnetic rings. Phys. Rev. B
**2016**, 94, 224421. [Google Scholar] [CrossRef] - Florek, W.; Antkowiak, M.; Kamieniarz, G. The Kahn degenerate frustration points and the Lieb-Mattis level order in heterometallic wheel molecules with competing interactions. J. Magn. Magn. Mater.
**2019**, 487, 165326. [Google Scholar] [CrossRef] - Prokof’ev, N.V.; Stamp, P.C.E. Theory of the spin bath. Rep. Prog. Phys.
**2000**, 63, 669–726. [Google Scholar] [CrossRef] - Waldmann, O. Spin dynamics of finite antiferromagnetic Heisenberg spin rings. Phys. Rev. B
**2001**, 65, 024424. [Google Scholar] [CrossRef] - Guidi, T.; Gillon, B.; Mason, S.A.; Garlatti, E.; Carretta, S.; Santini, P.; Stunault, A.; Caciuffo, R.; van Slageren, J.; Klemke, B.; et al. Direct observation of finite size effects in chains of antiferromagnetically coupled spins. Nat. Commun.
**2015**, 6, 7061. [Google Scholar] [CrossRef][Green Version] - Florek, W.; Kamieniarz, G.; Marlewski, A. Universal lowest energy configurations in a classical Heisenberg model describing frustrated systems with wheel geometry. Phys. Rev. B
**2019**, 100, 054434. [Google Scholar] [CrossRef] - Adelnia, F.; Chiesa, A.; Bordignon, S.; Carretta, S.; Ghirri, A.; Candini, A.; Cervetti, C.; Evangelisti, M.; Affronte, M.; Sheikin, I.; et al. Low temperature magnetic properties and spin dynamics in single crystals of Cr8Zn antiferromagnetic molecular rings. J. Chem. Phys.
**2015**, 143, 244321. [Google Scholar] [CrossRef][Green Version] - Ghirri, A.; Chiesa, A.; Carretta, S.; Troiani, F.; van Tol, J.; Hill, S.; Vitorica-Yrezabal, I.; Timco, G.A.; Winpenny, R.E.P.; Affronte, M. Coherent Spin Dynamics in Molecular Cr8Zn Wheels. J. Phys. Chem. Lett.
**2015**, 6, 5062–5066. [Google Scholar] [CrossRef] - Baker, M.L.; Lancaster, T.; Chiesa, A.; Amoretti, G.; Baker, P.J.; Barker, C.; Blundell, S.J.; Carretta, S.; Collison, D.; Güdel, H.U.; et al. Studies of a Large Odd-Numbered Odd-Electron Metal Ring: Inelastic Neutron Scattering and Muon Spin Relaxation Spectroscopy of Cr8Mn. Chem. Eur. J.
**2016**, 22, 1779–1788. [Google Scholar] [CrossRef] [PubMed][Green Version] - Baker, M.L.; Timco, G.A.; Piligkos, S.; Mathieson, J.S.; Mutka, H.; Tuna, F.; Kozłowski, P.; Antkowiak, M.; Guidi, T.; Gupta, T.; et al. A classification of spin frustration in molecular magnets from a physical study of large odd-numbered-metal, odd electron rings. Proc. Natl. Acad. Sci. USA
**2012**, 109, 19113–19118. [Google Scholar] [CrossRef] [PubMed][Green Version] - Woolfson, R.J.; Timco, G.A.; Chiesa, A.; Vitorica-Yrezabal, I.J.; Tuna, F.; Guidi, T.; Pavarini, E.; Santini, P.; Carretta, S.; Winpenny, R.E.P. [CrF(O2CtBu)2]9: Synthesis and Characterization of a Regular Homometallic Ring with an Odd Number of Metal Centers and Electrons. Angew. Chem. Int. Ed.
**2016**, 55, 8856–8859. [Google Scholar] [CrossRef] - Bruzewicz, C.D.; Chiaverini, J.; McConnell, R.; Sage, J.M. Trapped-ion quantum computing: Progress and challenges. Appl. Phys. Lett.
**2019**, 6, 021314. [Google Scholar] [CrossRef][Green Version] - Preskill, J. Quantum Computing in the NISQ era and beyond. Quantum
**2018**, 2, 79. [Google Scholar] [CrossRef] - Arute, F.; Arya, K.; Babbush, R.; Bacon, D.; Bardin, J.C.; Barends, R.; Biswas, R.; Boixo, S.; Brandao, F.G.S.L.; Buell, D.A.; et al. Quantum supremacy using a programmable superconducting processor. Nature
**2019**, 574, 505. [Google Scholar] [CrossRef] [PubMed][Green Version] - Feynman, R.P. Simulating physics with computers. Int. J. Theor. Phys.
**1982**, 21, 467–488. [Google Scholar] [CrossRef] - Georgescu, I.M.; Ashhab, S.; Nori, F. Quantum simulation. Rev. Mod. Phys.
**2014**, 86, 153–185. [Google Scholar] [CrossRef][Green Version] - Tacchino, F.; Chiesa, A.; Carretta, S.; Gerace, D. Quantum Computers as Universal Quantum Simulators: State-of-the-Art and Perspectives. Adv. Quantum Technol.
**2020**, 3, 1900052. [Google Scholar] [CrossRef] - Krantz, P.; Kjaergaard, M.; Yan, F.; Orlando, T.P.; Gustavsson, S.; Oliver, W.D. A quantum engineer’s guide to superconducting qubits. Appl. Phys. Rev.
**2019**, 6, 021318. [Google Scholar] [CrossRef] - Córcoles, A.D.; Kandala, A.; Javadi-Abhari, A.; McClure, D.T.; Cross, A.W.; Temme, K.; Nation, P.D.; Steffen, M.; Gambetta, J.M. Challenges and Opportunities of Near-Term Quantum Computing Systems. Proc. IEEE
**2020**, 108, 1338–1352. [Google Scholar] [CrossRef][Green Version] - Cross, A.W.; Bishop, L.S.; Sheldon, S.; Nation, P.D.; Gambetta, J.M. Validating quantum computers using randomized model circuits. Phys. Rev. A
**2019**, 100, 032328. [Google Scholar] [CrossRef][Green Version] - Jurcevic, P.; Javadi-Abhari, A.; Bishop, L.S.; Lauer, I.; Bogorin, D.F.; Brink, M.; Capelluto, L.; Günlük, O.; Itoko, T.; Kanazawa, N.; et al. Demonstration of quantum volume 64 on a superconducting quantum computing system. arXiv
**2020**, arXiv:2008.08571. [Google Scholar] - Li, Y.; Benjamin, S.C. Efficient Variational Quantum Simulator Incorporating Active Error Minimization. Phys. Rev. X
**2017**, 7, 021050. [Google Scholar] [CrossRef] - Bonet-Monroig, X.; Sagastizabal, R.; Singh, M.; O’Brien, T.E. Low-cost error mitigation by symmetry verification. Phys. Rev. A
**2018**, 98, 062339. [Google Scholar] [CrossRef][Green Version] - Kandala, A.; Temme, K.; Córcoles, A.D.; Mezzacapo, A.; Chow, J.M.; Gambetta, J.M. Error mitigation extends the computational reach of a noisy quantum processor. Nature
**2019**, 567, 491–495. [Google Scholar] [CrossRef][Green Version] - McArdle, S.; Yuan, X.; Benjamin, S. Error-Mitigated Digital Quantum Simulation. Phys. Rev. Lett.
**2019**, 122, 180501. [Google Scholar] [CrossRef] [PubMed][Green Version] - Bravyi, S.; Sheldon, S.; Kandala, A.; Mckay, D.C.; Gambetta, J.M. Mitigating measurement errors in multiqubit experiments. Phys. Rev. A
**2021**, 103, 042605. [Google Scholar] [CrossRef] - Suchsland, P.; Tacchino, F.; Fischer, M.H.; Neupert, T.; Barkoutsos, P.K.; Tavernelli, I. Algorithmic Error Mitigation Scheme for Current Quantum Processors. Quantum
**2021**, 5, 492. [Google Scholar] [CrossRef] - Huggins, W.J.; McArdle, S.; O’Brien, T.E.; Lee, J.; Rubin, N.C.; Boixo, S.; Whaley, K.B.; Babbush, R.; McClean, J.R. Virtual Distillation for Quantum Error Mitigation. arXiv
**2020**, arXiv:2011.07064. [Google Scholar] - Koczor, B. Exponential Error Suppression for Near-Term Quantum Devices. arXiv
**2020**, arXiv:2011.05942. [Google Scholar] - McClean, J.R.; Jiang, Z.; Rubin, N.C.; Babbush, R.; Neven, H. Decoding quantum errors with subspace expansions. Nat. Commun.
**2020**, 11, 636. [Google Scholar] [CrossRef][Green Version] - Günther, J.M.; Tacchino, F.; Wootton, J.R.; Tavernelli, I.; Barkoutsos, P.K. Improving readout in quantum simulations with repetition codes. arXiv
**2021**, arXiv:2105.13377. [Google Scholar] - Childs, A.M.; Maslov, D.; Nam, Y.; Ross, N.J.; Su, Y. Toward the first quantum simulation with quantum speedup. Proc. Natl. Acad. Sci. USA
**2018**, 115, 9456–9461. [Google Scholar] [CrossRef][Green Version] - Peruzzo, A.; McClean, J.; Shadbolt, P.; Yung, M.H.; Zhou, X.Q.; Love, P.J.; Aspuru-Guzik, A.; O’Brien, J.L. A variational eigenvalue solver on a photonic quantum processor. Nat. Commun.
**2014**, 5, 4213. [Google Scholar] [CrossRef][Green Version] - McClean, J.R.; Romero, J.; Babbush, R.; Aspuru-Guzik, A. The theory of variational hybrid quantum-classical algorithms. New J. Phys.
**2016**, 18, 023023. [Google Scholar] [CrossRef] - Kandala, A.; Mezzacapo, A.; Temme, K.; Takita, M.; Brink, M.; Chow, J.M.; Gambetta, J.M. Hardware-efficient variational quantum eigensolver for small molecules and quantum magnets. Nature
**2017**, 549, 242–246. [Google Scholar] [CrossRef] [PubMed] - Moll, N.; Barkoutsos, P.; Bishop, L.S.; Chow, J.M.; Cross, A.; Egger, D.J.; Filipp, S.; Fuhrer, A.; Gambetta, J.M.; Ganzhorn, M.; et al. Quantum optimization using variational algorithms on near-term quantum devices. Quantum Sci. Technol.
**2018**, 3, 030503. [Google Scholar] [CrossRef] - Cerezo, M.; Arrasmith, A.; Babbush, R.; Benjamin, S.C.; Endo, S.; Fujii, K.; McClean, J.R.; Mitarai, K.; Yuan, X.; Cincio, L.; et al. Variational Quantum Algorithms. arXiv
**2020**, arXiv:2012.09265. [Google Scholar] - Bharti, K.; Cervera-Lierta, A.; Kyaw, T.H.; Haug, T.; Alperin-Lea, S.; Anand, A.; Degroote, M.; Heimonen, H.; Kottmann, J.S.; Menke, T.; et al. Noisy intermediate-scale quantum (NISQ) algorithms. arXiv
**2021**, arXiv:2101.08448. [Google Scholar] - Barkoutsos, P.K.; Nannicini, G.; Robert, A.; Tavernelli, I.; Woerner, S. Improving Variational Quantum Optimization using CVaR. Quantum
**2020**, 4, 256. [Google Scholar] [CrossRef] - Havlíček, V.; Córcoles, A.D.; Temme, K.; Harrow, A.W.; Kandala, A.; Chow, J.M.; Gambetta, J.M. Supervised learning with quantum-enhanced feature spaces. Nature
**2019**, 567, 209–212. [Google Scholar] [CrossRef][Green Version] - Mangini, S.; Tacchino, F.; Gerace, D.; Bajoni, D.; Macchiavello, C. Quantum computing models for artificial neural networks. EPL (Europhys. Lett.)
**2021**, 134, 10002. [Google Scholar] [CrossRef] - Barkoutsos, P.K.; Gonthier, J.F.; Sokolov, I.; Moll, N.; Salis, G.; Fuhrer, A.; Ganzhorn, M.; Egger, D.J.; Troyer, M.; Mezzacapo, A.; et al. Quantum algorithms for electronic structure calculations: Particle-hole Hamiltonian and optimized wave-function expansions. Phys. Rev. A
**2018**, 98, 022322. [Google Scholar] [CrossRef][Green Version] - Parrish, R.M.; Hohenstein, E.G.; McMahon, P.L.; Martínez, T.J. Quantum Computation of Electronic Transitions Using a Variational Quantum Eigensolver. Phys. Rev. Lett.
**2019**, 122, 230401. [Google Scholar] [CrossRef][Green Version] - Ollitrault, P.J.; Kandala, A.; Chen, C.F.; Barkoutsos, P.K.; Mezzacapo, A.; Pistoia, M.; Sheldon, S.; Woerner, S.; Gambetta, J.M.; Tavernelli, I. Quantum equation of motion for computing molecular excitation energies on a noisy quantum processor. Phys. Rev. Res.
**2020**, 2, 043140. [Google Scholar] [CrossRef] - Mazzola, G.; Ollitrault, P.J.; Barkoutsos, P.K.; Tavernelli, I. Nonunitary Operations for Ground-State Calculations in Near-Term Quantum Computers. Phys. Rev. Lett.
**2019**, 123, 130501. [Google Scholar] [CrossRef][Green Version] - Gard, B.T.; Zhu, L.; Barron, G.S.; Mayhall, N.J.; Economou, S.E.; Barnes, E. Efficient symmetry-preserving state preparation circuits for the variational quantum eigensolver algorithm. NPJ Quantum Inf.
**2020**, 6, 10. [Google Scholar] [CrossRef] - Seki, K.; Shirakawa, T.; Yunoki, S. Symmetry-adapted variational quantum eigensolver. Phys. Rev. A
**2020**, 101, 052340. [Google Scholar] [CrossRef] - Garlatti, E.; Chiesa, A.; Guidi, T.; Amoretti, G.; Santini, P.; Carretta, S. Unravelling the Spin Dynamics of Molecular Nanomagnets with Four-Dimensional Inelastic Neutron Scattering. Eur. J. Inorg. Chem.
**2019**, 2019, 1106–1118. [Google Scholar] [CrossRef][Green Version] - Chiesa, A.; Tacchino, F.; Grossi, M.; Santini, P.; Tavernelli, I.; Gerace, D.; Carretta, S. Quantum hardware simulating four-dimensional inelastic neutron scattering. Nat. Phys.
**2019**, 15, 455–459. [Google Scholar] [CrossRef] - Choquette, A.; Di Paolo, A.; Barkoutsos, P.K.; Sénéchal, D.; Tavernelli, I.; Blais, A. Quantum-optimal-control-inspired ansatz for variational quantum algorithms. Phys. Rev. Res.
**2021**, 3, 023092. [Google Scholar] [CrossRef] - Wecker, D.; Hastings, M.B.; Troyer, M. Progress towards practical quantum variational algorithms. Phys. Rev. A
**2015**, 92, 042303. [Google Scholar] [CrossRef][Green Version] - Di Paolo, A.; Barkoutsos, P.K.; Tavernelli, I.; Blais, A. Variational quantum simulation of ultrastrong light-matter coupling. Phys. Rev. Res.
**2020**, 2, 033364. [Google Scholar] [CrossRef] - Tacchino, F.; Chiesa, A.; Sessoli, R.; Tavernelli, I.; Carretta, S. Molecular spin qudits for quantum simulation of light-matter interactions. arXiv
**2021**, arXiv:2103.09706. [Google Scholar] - McClean, J.R.; Boixo, S.; Smelyanskiy, V.N.; Babbush, R.; Neven, H. Barren plateaus in quantum neural network training landscapes. Nat. Commun.
**2018**, 9, 4812. [Google Scholar] [CrossRef] [PubMed][Green Version] - Cerezo, M.; Sone, A.; Volkoff, T.; Cincio, L.; Coles, P.J. Cost function dependent barren plateaus in shallow parametrized quantum circuits. Nat. Commun.
**2021**, 12, 1791. [Google Scholar] [CrossRef] [PubMed] - Powell, M.J.D. A Direct Search Optimization Method That Models the Objective and Constraint Functions by Linear Interpolation. In Advances in Optimization and Numerical Analysis; Gomez, S., Hennart, J.P., Eds.; Springer: Dordrecht, The Netherlands, 1994; pp. 51–67. [Google Scholar]
- Sharma, K.; Khatri, S.; Cerezo, M.; Coles, P.J. Noise resilience of variational quantum compiling. New J. Phys.
**2020**, 22, 043006. [Google Scholar] [CrossRef] - Wang, S.; Fontana, E.; Cerezo, M.; Sharma, K.; Sone, A.; Cincio, L.; Coles, P.J. Noise-Induced Barren Plateaus in Variational Quantum Algorithms. arXiv
**2020**, arXiv:2007.14384. [Google Scholar] - Aleksandrowicz, G.; Alexander, T.; Barkoutsos, P.; Bello, L.; Ben-Haim, Y.; Bucher, D.; Cabrera-Hernández, F.J.; Carballo-Franquis, J.; Chen, A.; Chen, C.; et al. Qiskit: An Open-source Framework for Quantum Computing. Zenodo
**2019**. [Google Scholar] [CrossRef] - Spall, J. An Overview of the Simultaneous Perturbation Method for Efficient Optimization. Johns Hopkins Apl Tech. Dig.
**1998**, 19, 482–492. [Google Scholar] - Huggins, W.J.; McClean, J.R.; Rubin, N.C.; Jiang, Z.; Wiebe, N.; Whaley, K.B.; Babbush, R. Efficient and noise resilient measurements for quantum chemistry on near-term quantum computers. NPJ Quantum Inf.
**2021**, 7, 23. [Google Scholar] [CrossRef] - Yuan, X.; Endo, S.; Zhao, Q.; Li, Y.; Benjamin, S.C. Theory of variational quantum simulation. Quantum
**2019**, 3, 191. [Google Scholar] [CrossRef] - Barison, S.; Vicentini, F.; Carleo, G. An efficient quantum algorithm for the time evolution of parameterized circuits. arXiv
**2021**, arXiv:2101.04579. [Google Scholar] - Chiesa, A.; Santini, P.; Gerace, D.; Raftery, J.; Houck, A.A.; Carretta, S. Digital quantum simulators in a scalable architecture of hybrid spin-photon qubits. Sci. Rep.
**2015**, 5, 16036. [Google Scholar] [CrossRef][Green Version] - Tacchino, F.; Chiesa, A.; LaHaye, M.D.; Carretta, S.; Gerace, D. Electromechanical quantum simulators. Phys. Rev. B
**2018**, 97, 214302. [Google Scholar] [CrossRef][Green Version] - Cao, Y.; Romero, J.; Olson, J.P.; Degroote, M.; Johnson, P.D.; Kieferová, M.; Kivlichan, I.D.; Menke, T.; Peropadre, B.; Sim, S.; et al. Quantum Chemistry in the Age of Quantum Computing. Chem. Rev.
**2019**, 119, 10856–10915. [Google Scholar] [CrossRef] [PubMed][Green Version] - Gambetta, J.M.; Chow, J.M.; Steffen, M. Building logical qubits in a superconducting quantum computing system. NPJ Quantum Inf.
**2017**, 3, 2. [Google Scholar] [CrossRef][Green Version] - Chow, J.M.; Córcoles, A.D.; Gambetta, J.M.; Rigetti, C.; Johnson, B.R.; Smolin, J.A.; Rozen, J.R.; Keefe, G.A.; Rothwell, M.B.; Ketchen, M.B.; et al. Simple All-Microwave Entangling Gate for Fixed-Frequency Superconducting Qubits. Phys. Rev. Lett.
**2011**, 107, 080502. [Google Scholar] [CrossRef]

**Figure 1.**Statevector simulations on four- (

**a**,

**b**) and six- (

**c**,

**d**) spin rings. (

**a**) Ground state energy VQE results using hardware-heuristic (HA, dark-green points) and physically motivated (PMA, light-green stars) ansatzes for different values of $B/J$. PMA requires only one layer (4 parameters), compared to the 3 or 2 layers needed by HA to converge in the two magnetic-field regions (yielding 16 and 12 parameters, respectively). Each point is the minimal energy solutions of five independents tests with initial parameters randomly set. Inset: corresponding state fidelity. Both ansatz converge to exact solutions (black lines calculated numerically) with high precision. (

**b**) Computed energy as a function of VQE iterations for two different values of $B/J$ belonging to the two distinct regions: low $B/J=0.4$ (blue-tones) and intermediate $B/J=3.2$ (red-tones). COBYLA has been used as classical optimizer. (

**c**,

**d**) As for panel a,b) for a six-spin ring. We used 2 layers (4 parameters) with different initial state for PMA and 5 (24 parameters) or 4 (20 parameters) layers for HA to achieve high precision. For HA, ten independent tests were performed.

**Figure 2.**$N=4$ spin ring noisy simulations, with a custom noise model derived from IBM Quantum chips with Quantum Volume 128. The VQE configuration in terms of maximum number of iterations and number of layers of the ansatzes reflects the configuration used for noiseless statevector calculations of Figure 1. (

**a**) Ground state energy VQE results using heuristic (HA, dark-green) and Heisenberg (PMA, light-green) ansatzes for different values of $B/J$. Inset: related ground-state fidelity. (

**b**) Observables computed on the ground state computed by VQE: longitudinal magnetization $M={\sum}_{i}{s}_{i}^{z}$ and total spin ${S}^{2}$ expectation value. Both ansatzes perform similarly in presence of noise. (

**c**) Ground state energy convergence as a function of VQE iterations for two different values of $B/J$, belonging to the two distinct regions: low $B/J=0.1$ (blue-tones) and intermediate $B/J=2.7$ (red-tones). SPSA has been used as classical optimizer. The horizontal lines indicate the exact solutions. Remarkably, PMA needs almost one order of magnitude less iterations to converge. (

**d**) Expectation value of local spin observables ${s}_{i}^{z}$ and ${s}_{i}^{z}{s}_{i+1}^{z}$. The black dots indicate the exact solution. Radar plots highlight that both ansatzes reconstruct the correct translational invariance of the target model.

**Figure 3.**$N=6$ spin ring noisy simulations, with a custom noise model derived by IBM Quantum chips with Quantum Volume 128, analogous to the $N=4$ case reported in Figure 2. Ground state energy VQE results with corresponding fidelity (

**a**), observables (

**b**,

**d**) and energy convergence (

**c**). Results are generally worse compared to Figure 2, due to the increased complexity of the target model, but the PMA better reconstructs the ground state, with the correct symmetry (see observables in panels (

**b**,

**d**)).

**Figure 4.**Finite size and parity effects. Expectation value of local spin operators $\langle {s}_{i}^{z}\rangle $ computed on the ground state obtained from noisy VQE simulations at low (

**a**) and intermediate magnetic field (

**b**) for a different number of sites (N) and topology (open vs closed chains). Dashed lines indicate exact solutions, generally in good agreement with simulations.

**Figure 5.**Real (

**a**–

**c**) and Imaginary (

**d**–

**f**) parts of the dynamical correlation functions ${\mathcal{C}}_{ij}^{xx}$ for $i=j=1,2$ (

**top**panels) and $i=2,j=1$ (

**bottom**) on a $N=4$ closed Heisenberg ring, in the large-field region. Phase and scale correction, as in Ref. [89], has been applied to the raw results computed on the

`ibmq_bogota`IBM Quantum processor, obtaining a very good agreement with exact results.

Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |

© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Crippa, L.; Tacchino, F.; Chizzini, M.; Aita, A.; Grossi, M.; Chiesa, A.; Santini, P.; Tavernelli, I.; Carretta, S. Simulating Static and Dynamic Properties of Magnetic Molecules with Prototype Quantum Computers. *Magnetochemistry* **2021**, *7*, 117.
https://doi.org/10.3390/magnetochemistry7080117

**AMA Style**

Crippa L, Tacchino F, Chizzini M, Aita A, Grossi M, Chiesa A, Santini P, Tavernelli I, Carretta S. Simulating Static and Dynamic Properties of Magnetic Molecules with Prototype Quantum Computers. *Magnetochemistry*. 2021; 7(8):117.
https://doi.org/10.3390/magnetochemistry7080117

**Chicago/Turabian Style**

Crippa, Luca, Francesco Tacchino, Mario Chizzini, Antonello Aita, Michele Grossi, Alessandro Chiesa, Paolo Santini, Ivano Tavernelli, and Stefano Carretta. 2021. "Simulating Static and Dynamic Properties of Magnetic Molecules with Prototype Quantum Computers" *Magnetochemistry* 7, no. 8: 117.
https://doi.org/10.3390/magnetochemistry7080117