# A Ti/Pt/Co Multilayer Stack for Transfer Function Based Magnetic Force Microscopy Calibrations

^{1}

^{2}

^{3}

^{*}

## Abstract

**:**

## 1. Introduction

_{x}Ni

_{1−x}and Pt layers was introduced to compare the resolution of different MFM setups [21]. Other reference samples exploit intrinsic domain patterns in different stacks (Cu(200 nm) Ni/Cu/Si(001) [16] and Co/Pt multilayer [22,23]) or rely on a pattern written on a hard disk [24].

## 2. Results

#### 2.1. Fabrication of the Multilayer Stack

_{20}on a naturally oxidized Si(111) wafer. This sample will be referred to as Ti/Pt/Co or ‘tpc’ in the remainder of this paper. The Ti, Pt, and Co layers were deposited by using pulsed DC, DC, and RF power sources, respectively. The deposition chamber’s base pressure was $3\times {10}^{-9}\mathrm{mbar}$. The substrates were annealed prior to the deposition to clean it from residual surface contaminations as carbon and oxygen. The purity of the substrate and the targets were checked by x-ray photoemission spectroscopy (XPS). The XPS system, mounted on the same UHV cluster as the deposition system, allows control of the quality of the deposition. The deposition rates were calibrated by using XPS prior to the deposition and monitored by a quartz crystal microbalance (QCM) during the deposition. The QCM is calibrated according to the calibration values obtained from XPS. The calibrated deposition rates are $0.018{\mathrm{nms}}^{-1}$, $0.019{\mathrm{nms}}^{-1}$, and $0.037{\mathrm{nms}}^{-1}$ for Ti, Pt, and Co, respectively. As a result, the layer thicknesses are traceably defined and very reproducible. Alongside the thickness calibration, XPS based monitoring of the fabrication allows reproduction of the sample interface and layer structure in further depositions with very high accuracy. Furthermore, as an advantage of the magnetron sputtering technique, samples can be prepared on substrates with radii up to 5 cm. This guarantees a high availability of the reference material. The detailed steps for the calibration of deposition and XPS control of the samples can be found in the Appendices (Appendix A).

#### 2.2. Magnetic and Geometric Characterization of the Ti/Pt/Co Sample

- The domain pattern comparison is used to prove a good understanding of the micromagnetics of the Ti/PtCo material.
- The tpc stray field comparison serves the purpose of demonstrating that the reference sample is well understood and thus calculable and that different approaches (micromagnetic simulations, discrimination + forward calculation, qMFM) give the same magnetic stray field.
- The IFW stray field comparison will show that the Ti/Pt/Co sample, when actually used as a reference sample, gives correct quantitative stray field data in calibrated measurements, as validated by a comparison of Ti/Pt/Co-calibrated qMFM data on the Co/Pt sample with the results from discrimination and forward calculation.
- Finally, the ICF comparison will show that, not merely a proper quantitative analysis of “unknown” samples is achieved, but also a very good agreement of the ICF and the thereof derived tip magnetic properties, compared to calibrations with another reference sample.

#### 2.3. Micromagnetic Simulations of the Ti/Pt/Co Sample’s Magnetization Structure

^{3}[41] over a $1024\times 1024\times 20$ cell grid with a cell size of $5\times 5\times 3.8{\mathrm{nm}}^{3}$, starting from a random magnetization distribution. The exchange stiffness, ${A}_{ex}$, is slightly varied throughout the simulations within the range of ${A}_{ex}$ values discussed in the literature for similar magnetic multilayers ($5{\mathrm{pJm}}^{-1}-15{\mathrm{pJm}}^{-1}$) [42,43]. Considering an optimum recovery of the experimentally observed domain width of $\langle {D}^{MFM}\rangle =345\mathrm{nm}$, a value for ${A}_{ex}=6{\mathrm{pJm}}^{-1}$ is derived. A long-range Ruderman–Kittel–Kasuya–Yosida (RKKY) exchange coupling was incorporated into the simulations, which arises due to the Ti/Pt layers stacking. An effective RKKY exchange field, ${J}_{RKKY}$, was implemented to the simulations by scaling the exchange coupling between each layer. The scaling factor is defined by $\Delta S=\frac{\left({J}_{RKKY}\cdot \delta {c}_{z}\right)}{\left(2\langle {A}_{ex}\rangle \right)}$, where $\delta {c}_{z}$ and $\langle {A}_{ex}\rangle $ are the thickness of the single simulation cell and the average of ${A}_{ex}$ over the coupled layers [44]. Similar to what was done in the case of the exchange stiffness, ${J}_{RKKY}$ was varied throughout the simulations, and the optimum value was found to be ${J}_{RKKY}=0.07{\mathrm{mJm}}^{-2}$. The simulation results for optimized parameters are summarized in Figure 3.

#### 2.4. Validation with qMFM and Stray Field Simulations

- (i)
- qMFM characterization of the Ti/Pt/Co sample

_{100}/Pt(2 nm). Similar to the Ti/Pt/Co sample, it shows a stripe domain pattern, at zero field with, however, a lower average domain size, $\langle {D}^{MFM,ref}\rangle =235\mathrm{nm}$. The magnetic parameters of the sample are summarized in Table 1. The MFM measurements were performed with a Nanoscope IIIa with a Dimension head using a NT-MDT Low Moment MFM tip, following the procedure discussed in [32]. The measurement heights were ${z}^{ref}=64\mathrm{nm}$ and ${z}^{tpc}=64\mathrm{nm}$ for calibration and validation measurements, respectively, with a pixel size of ${\delta}_{A}=10\times 10{\mathrm{nm}}^{2}$ on a $512\times 512$ spatial pixel grid. The quality factor, $Q=250$, was determined by fitting the resonance curve of the tip with a Lorentzian function. The full width of the resonance curve at $0.707$ of the maximum was used as the $Q$ [32]. The cantilever stiffness, $c=3\mathrm{N}/\mathrm{m}$, was provided by the manufacturer. The $IC{F}^{ref}$ will be further discussed below. The $TT{F}^{ref}$, i.e., the z-component of the stray field gradient, ${\mu}_{0}\frac{d{H}_{z}^{tip}}{dz}$, of the tip at the sample surface, calculated from the $IC{F}^{ref}$ using Equation (1). Before the calibrated measurement, i.e., the deconvolution as described in Equation (3), the ${\mu}_{0}\frac{d{H}_{z}^{tip}}{dz}$ distribution is circularly averaged around the center in order to eliminate artefacts arising from fast Fourier transforms (FFT).

- (ii)
- MFM domain pattern-based simulations

- (iii)
- Micromagnetic simulations

#### 2.5. Cross Validation of the Co/Pt Reference Sample by Ti/Pt/Co Calibrated qMFM

_{100}sample stray field data that result from applying the $TT{F}^{tpc}$ to the MFM phase shift data (Figure 5a) shown in Figure 5b–d show the magnetization distribution from the discrimination of the phase shift data and the thereof calculated stray field data, respectively. Line plots of both stray field data distributions, taken along the dashed lines and plotted together with their uncertainty bands, are compared in Figure 5f. The Ti/Pt/Co-calibrated qMFM data show excellent agreement with the simulations, mostly within the uncertainty margins. Again, small discrepancies can be explained by imperfections in the real sample that were not regarded in the uncertainty calculations.

#### 2.6. Feature Size Spectra

## 3. Conclusions

## Author Contributions

## Funding

## Data Availability Statement

## Acknowledgments

## Conflicts of Interest

## Appendix A. XPS Study and Calibration of Deposition

**Figure A1.**X-ray photoemission spectra of Au4f and Ag3d used for calibration of Co (

**a**), Pt (

**b**), and Ti (

**c**) depositions. Thickness-deposition time graph and deposition rates for Co, Pt, and Ti targets (

**d**).

**Figure A2.**X-ray photoemission spectra of tpc sample recorded from the top of first Co layer. The survey spectrum is used to detect any contamination on the sample and check the general structure of the sample (

**a**). High resolution windows of each layers and substrate is used to check the consistency of the photoemission cross section and the change in the chemical state of any layer (or substrate) (

**b**–

**g**).

## Appendix B. A Self-Correlation-Based Analysis of Domain Wall Widths

**Figure A3.**Plotlines through (

**a**,

**c**,

**e**) the self-correlation transforms for the Co/Pt reference sample (ref) (

**b**), the tpc reference sample (TPC (dec)) (

**d**), and the simulated MFM image of the micromagnetic simulation results (TPC (sim)) (

**f**).

## Appendix C. Determination of the Ti/Pt/Co Sample’s Uniaxial Anisotropy Constant, K_{u}, from the VSM Data

**Figure A4.**VSM measured M-H curves of the Ti/Pt/Co reference sample: (

**a**) shows a zoomed-in version of (

**b**). The red line shows the fit to the low-field linear part of the curve; (

**b**) also shows the construction of the μ

_{0}H

_{sat}value from the intersection of the fit with M = M

_{sat}.

## Appendix D. Domain Wall Kernel

## Appendix E. Uncertainties Used in Uncertainty Calculations

Parameter | Uncertainty |
---|---|

MFM phase shift Δ | $u\_\Delta \phi ={0.2}^{\xb0}$ |

regularization parameter, $\mathit{\alpha}$ | $u\_\alpha $: 1% |

stack thickness tpc sample, ${\mathit{d}}^{\mathit{t}\mathit{p}\mathit{c}}$ | $u\_d$ = 2 nm |

stack thickness ref sample, ${\mathit{d}}^{\mathit{r}\mathit{e}\mathit{f}}$ | $u\_d$ = 4 nm |

saturation magnetization tpc sample, ${\mathit{M}}_{\mathit{S}}^{\mathit{r}\mathit{e}\mathit{f}}$ | $u\_{M}_{S}^{ref}$: 6% |

saturation magnetization Co/Pt sample, ${\mathit{M}}_{\mathit{S}}^{\mathit{t}\mathit{p}\mathit{c}}$ | $u\_{M}_{S}^{tpc}$: 6% |

measurement height, $\mathit{h}$ | $u\_h:10\%$ |

## Appendix F. Estimation of Accessible Spatial Frequency Range

_{x}= sigma

_{x}= 50 nm).

**Figure A5.**Estimation of accessible wave vector range after calibration; tip mediated sensitivity, $\frac{d{B}_{z}^{}}{dz}$, and circularly averaged sample, ${\sigma}_{eff}^{}$, distribution in Fourier space for the Ti/Pt/Co (

**a**) and the Co/Pt sample (

**b**). The inset shows the generic tips, $\frac{d{B}_{z}^{}}{dz}$, in real space; (

**c**,

**d**) show the phase shift distribution of a simulated reference sample measurement using the generic tip for the Ti/Pt/Co and the Co/Pt sample, respectively. The horizontal lines show the noise floor for white Gaussian noise with 0.2° (black) and 0.02° (green) standard deviation.

**Table A2.**Cut-off wave vector and corresponding wavelength data for the Ti/Pt/Co and the Co/Pt sample for two different noise levels.

Δϕ | Low Cut-Off | High Cut-Off | ||
---|---|---|---|---|

Frequency | Wavelength | Frequency | Wavelength | |

Ti/Pt/Co multilayer Stack (tpc) | ||||

0.02° | <1.22 µm^{−1} | >5.12 µm | 42.256 µm^{−1} | 149 nm |

0.2° | <1.22 µm^{−1} | >5.12 µm | 56.295 µm^{−1} | 112 nm |

Co/Pt Stack (ref) | ||||

0.02° | <1.22 µm^{−1} | >5.12 µm | 50.726 µm^{−1} | 124 nm |

0.2° | <1.22 µm^{−1} | >5.12 µm | 63.231 µm^{−1} | 99 nm |

## Appendix G. Estimation of the Ti/Pt/Co Sample Surface Roughness

**Figure A6.**Surface roughness analysis: AFM topography image of the Ti/Pt/Co sample (

**a**) and histogram plot of the height distribution (

**b**).

## References

- Kazakova, O.; Puttock, R.; Barton, C.; Corte-León, H.; Jaafar, M.; Neu, V.; Asenjo, A. Frontiers of magnetic force microscopy. J. Appl. Phys.
**2019**, 125, 60901. [Google Scholar] [CrossRef] - Amos, N.; Lavrenov, A.; Fernandez, R.; Ikkawi, R.; Litvinov, D.; Khizroev, S. High-resolution and high-coercivity FePtL10 magnetic force microscopy nanoprobes to study next-generation magnetic recording media. J. Appl. Phys.
**2009**, 105, 07D526. [Google Scholar] [CrossRef] - Zhao, X.; Schwenk, J.; Mandru, A.O.; Penedo, M.; Baćani, M.; Marioni, M.A.; Hug, H.J. Magnetic force microscopy with frequency-modulated capacitive tip–sample distance control. New J. Phys.
**2018**, 20, 13018. [Google Scholar] [CrossRef][Green Version] - Yamaoka, T.; Watanabe, K.; Shirakawabe, Y.; Chinone, K.; Saitoh, E.; Tanaka, M.; Miyajima, H. Applications of high-resolution MFM system with low-moment probe in a vacuum. IEEE Trans. Magn.
**2005**, 41, 3733–3735. [Google Scholar] [CrossRef] - Babcock, K.L.; Elings, V.B.; Shi, J.; Awschalom, D.D.; Dugas, M. Field-dependence of microscopic probes in magnetic force microscopy. Appl. Phys. Lett.
**1996**, 69, 705–707. [Google Scholar] [CrossRef] - Lohau, J.; Kirsch, S.; Carl, A.; Dumpich, G.; Wassermann, E.F. Quantitative determination of effective dipole and monopole moments of magnetic force microscopy tips. J. Appl. Phys.
**1999**, 86, 3410–3417. [Google Scholar] [CrossRef] - McVitie, S.; Ferrier, R.P.; Scott, J.; White, G.S.; Gallagher, A. Quantitative field measurements from magnetic force microscope tips and comparison with point and extended charge models. J. Appl. Phys.
**2001**, 89, 3656–3661. [Google Scholar] [CrossRef] - Kong, L.; Chou, S.Y. Quantification of magnetic force microscopy using a micronscale current ring. Appl. Phys. Lett.
**1997**, 70, 2043–2045. [Google Scholar] [CrossRef][Green Version] - Kebe, T.; Carl, A. Calibration of magnetic force microscopy tips by using nanoscale current-carrying parallel wires. J. Appl. Phys.
**2004**, 95, 775–792. [Google Scholar] [CrossRef] - Rice, P.; Russek, S.E.; Haines, B. Magnetic Imaging Reference Sample. IEEE Trans. Magn.
**1996**, 32, 4133. [Google Scholar] [CrossRef] - Rice, P.; Russek, S.; Hoinville, J.; Kelley, M. The NIST Magnetic Imaging Reference Sample. In Proceedings of the Fourth Workshop on Industrial Applications of Scanned Probe Microscopy, Gaithersburg, MD, USA, 1997. Available online: https://tsapps.nist.gov/publication/get_pdf.cfm?pub_id=620490 (accessed on 28 May 2021).
- Corte-León, H.; Neu, V.; Manzin, A.; Barton, C.; Tang, Y.; Gerken, M.; Klapetek, P.; Schumacher, H.W.; Kazakova, O. Comparison and Validation of Different Magnetic Force Microscopy Calibration Schemes. Small
**2020**, 16, e1906144. [Google Scholar] [CrossRef] - Panchal, V.; Corte-León, H.; Gribkov, B.; Rodriguez, L.A.; Snoeck, E.; Manzin, A.; Simonetto, E.; Vock, S.; Neu, V.; Kazakova, O. Calibration of multi-layered probes with low/high magnetic moments. Sci. Rep.
**2017**, 7, 7224. [Google Scholar] [CrossRef] [PubMed] - Di Giorgio, C.; Scarfato, A.; Longobardi, M.; Bobba, F.; Iavarone, M.; Novosad, V.; Karapetrov, G.; Cucolo, A.M. Quantitative magnetic force microscopy using calibration on superconducting flux quanta. Nanotechnology
**2019**, 30. [Google Scholar] [CrossRef] - Hug, H.J.; Stiefel, B.; Van Schendel, P.J.A.; Moser, A.; Hofer, R.; Martin, S.; Güntherodt, H.J.; Porthun, S.; Abelmann, L.; Lodder, J.C.; et al. Quantitative magnetic force microscopy on perpendicularly magnetized samples. J. Appl. Phys.
**1998**, 83, 5609–5620. [Google Scholar] [CrossRef][Green Version] - Van Schendel, P.J.A.; Hug, H.J.; Stiefel, B.; Martin, S.; Güntherodt, H.J. A method for the calibration of magnetic force microscopy tips. J. Appl. Phys.
**2000**, 88, 435–445. [Google Scholar] [CrossRef] - Baćani, M.; Marioni, M.A.; Schwenk, J.; Hug, H.J. How to measure the local Dzyaloshinskii-Moriya Interaction in Skyrmion Thin-Film Multilayers. Sci. Rep.
**2019**, 9, 3114. [Google Scholar] [CrossRef] - Zingsem, N.; Ahrend, F.; Vock, S.; Gottlob, D.; Krug, I.; Doganay, H.; Holzinger, D.; Neu, V.; Ehresmann, A. Magnetic charge distribution and stray field landscape of asymmetric néel walls in a magnetically patterned exchange bias layer system. J. Phys. D Appl. Phys.
**2017**, 50, 495006. [Google Scholar] [CrossRef] - Mandru, A.-O.; Yıldırım, O.; Tomasello, R.; Heistracher, P.; Penedo, M.; Giordano, A.; Suess, D.; Finocchio, G.; Hug, H.J. Coexistence of distinct skyrmion phases observed in hybrid ferromagnetic/ferrimagnetic multilayers. Nat. Commun.
**2020**, 11, 6365. [Google Scholar] [CrossRef] - Dai, G.; Hu, X.; Sievers, S.; Fernández Scarioni, A.; Neu, V.; Fluegge, J.; Schumacher, H.W. Metrological large range magnetic force microscopy. Rev. Sci. Instrum.
**2018**, 89, 93703. [Google Scholar] [CrossRef] - Abelmann, L.; Porthun, S.; Haast, M.; Lodder, C.; Moser, A.; Best, M.E.; van Schendel, P.J.A.; Stiefel, B.; Hug, H.J.; Heydon, G.P.; et al. Comparing the resolution of magnetic force microscopes using the CAMST reference samples. J. Magn. Magn. Mater.
**1998**, 190, 135–147. [Google Scholar] [CrossRef][Green Version] - Vock, S.; Hengst, C.; Wolf, M.; Tschulik, K.; Uhlemann, M.; Sasvári, Z.; Makarov, D.; Schmidt, O.G.; Schultz, L.; Neu, V. Magnetic vortex observation in FeCo nanowires by quantitative magnetic force microscopy. Appl. Phys. Lett.
**2014**, 105, 172409. [Google Scholar] [CrossRef] - Neu, V.; Vock, S.; Sturm, T.; Schultz, L. Epitaxial hard magnetic SmCo5 MFM tips-a new approach to advanced magnetic force microscopy imaging. Nanoscale
**2018**, 10, 16881–16886. [Google Scholar] [CrossRef] - Gao, L.; Yue, L.P.; Yokota, T.; Skomski, R.; Liou, S.H.; Takahoshi, H.; Saito, H.; Ishio, S. Focused ion beam milled CoPt magnetic force microscopy tips for high resolution domain images. IEEE Trans. Magn.
**2004**, 40, 2194–2196. [Google Scholar] [CrossRef] - Schwenk, J. Multi-modal and quantitative Magnetic Force Microscopy–Application to Thin Film Systems with interfacial Dzyaloshinskii-Moriya Interaction. Univ. Basel Basel
**2016**. [Google Scholar] [CrossRef] - Hansen, P.C. The L-Curve and its Use in the Numerical Treatment of Inverse Problems. Comput. Inverse Probl. Electrocardiol. Ed. P. Johnston Adv. Comput. Bioeng.
**2000**, 4, 119–142. [Google Scholar] - Engl, W.; Sulzbach, T. Force Constant Determination of AFM Cantilevers with Calibrated Thermal Tune Method. In Proceedings of the 12th Euspen International Conference, Stockholm, Sweden, 2012; pp. 292–296. Available online: https://www.euspen.eu/knowledge-base/ICE12173.pdf (accessed on 28 May 2021).
- Brand, U.; Gao, S.; Engl, W.; Sulzbach, T.; Stahl, S.W.; Milles, L.F.; Nesterov, V.; Li, Z. Comparing AFM cantilever stiffness measured using the thermal vibration and the improved thermal vibration methods with that of an SI traceable method based on MEMS. Meas. Sci. Technol.
**2017**, 28, 34010. [Google Scholar] [CrossRef] - Kim, M.S.; Pratt, J.R.; Brand, U.; Jones, C.W. Report on the first international comparison of small force facilities: A pilot study at the micronewton level. Metrologia
**2012**, 49, 70–81. [Google Scholar] [CrossRef][Green Version] - Marti, K.; Wuethrich, C.; Aeschbacher, M.; Russi, S.; Brand, U.; Li, Z. Micro-force measurements: A new instrument at METAS. Meas. Sci. Technol.
**2020**, 31. [Google Scholar] [CrossRef] - Dejong, M.D.; Livesey, K.L. Analytic theory for the switch from Bloch to Néel domain wall in nanowires with perpendicular anisotropy. Phys. Rev. B Condens. Matter Mater. Phys.
**2015**, 92, 214420. [Google Scholar] [CrossRef][Green Version] - Hu, X.; Dai, G.; Sievers, S.; Fernández Scarioni, A.; Corte-León, H.; Puttock, R.; Barton, C.; Kazakova, O.; Ulvr, M.; Klapetek, P.; et al. Round robin comparison on quantitative nanometer scale magnetic field measurements by magnetic force microscopy. J. Magn. Magn. Mater.
**2020**, 511, 166947. [Google Scholar] [CrossRef] - Sbiaa, R.; Bilin, Z.; Ranjbar, M.; Tan, H.K.; Wong, S.J.; Piramanayagam, S.N.; Chong, T.C. Effect of magnetostatic energy on domain structure and magnetization reversal in (Co/Pd) multilayers. J. Appl. Phys.
**2010**, 107, 103901. [Google Scholar] [CrossRef] - Quantum Design Accuracy of the Reported Moment: Sample Shape Effects. SQUID VSM Application Note 1500-015. Rev. A0.1 October 4-2010. Available online: https://www.qdusa.com/siteDocs/appNotes/1500-015.pdf (accessed on 28 May 2021).
- Stoner, E.C.; Wohlfarth, E.P. A mechanism of magnetic hysteresis in heterogeneous alloys. Philos. Trans. R. Soc. Lond. Ser. A Math. Phys. Sci.
**1948**, 240, 599–642. [Google Scholar] [CrossRef] - Fukami, S.; Suzuki, T.; Nakatani, Y.; Ishiwata, N.; Yamanouchi, M.; Ikeda, S.; Kasai, N.; Ohno, H. Current-induced domain wall motion in perpendicularly magnetized CoFeB nanowire. Appl. Phys. Lett.
**2011**, 98, 82504. [Google Scholar] [CrossRef] - Lim, S.T.; Tran, M.; Chenchen, J.W.; Ying, J.F.; Han, G. Effect of different seed layers with varying Co and Pt thicknesses on the magnetic properties of Co/Pt multilayers. J. Appl. Phys.
**2015**, 117, 17A731. [Google Scholar] [CrossRef] - Öcal, M.T.; Sakar, B.; Öztoprak, İ.; Balogh-Michels, Z.; Neels, A.; Öztürk, O. Structural and Morphological Effect of Ti Underlayer on Pt/Co/Pt Magnetic Ultra-Thin Film. arXiv
**2021**, arXiv:2105.09355. [Google Scholar] - Demirci, E.; Öztürk, M.; Sınır, E.; Ulucan, U.; Akdoğan, N.; Öztürk, O.; Erkovan, M. Temperature-dependent exchange bias properties of polycrystalline PtxCo1−x/CoO bilayers. Thin Solid Films
**2014**, 550, 595–601. [Google Scholar] [CrossRef][Green Version] - Öztürk, M.; Sınır, E.; Demirci, E.; Erkovan, M.; Öztürk, O.; Akdoğan, N. Exchange bias properties of [Co/CoO]n multilayers. J. Appl. Phys.
**2012**, 112, 93911. [Google Scholar] [CrossRef] - Vansteenkiste, A.; Leliaert, J.; Dvornik, M.; Helsen, M.; Garcia-Sanchez, F.; Van Waeyenberge, B. The design and verification of MuMax3. AIP Adv.
**2014**, 4, 107133. [Google Scholar] [CrossRef][Green Version] - Moreau-Luchaire, C.; Moutafis, C.; Reyren, N.; Sampaio, J.; Vaz, C.A.F.; Van Horne, N.; Bouzehouane, K.; Garcia, K.; Deranlot, C.; Warnicke, P.; et al. Additive interfacial chiral interaction in multilayers for stabilization of small individual skyrmions at room temperature. Nat. Nanotechnol.
**2016**, 11, 444–448. [Google Scholar] [CrossRef][Green Version] - Schott, M.; Ranno, L.; Béa, H.; Baraduc, C.; Auffret, S.; Bernand-Mantel, A. Electric field control of interfacial Dzyaloshinskii-Moriya interaction in Pt/Co/AlOx thin films. J. Magn. Magn. Mater.
**2021**, 520, 167122. [Google Scholar] [CrossRef] - Deger, C.; Yavuz, I.; Yildiz, F. Impact of interlayer coupling on magnetic skyrmion size. J. Magn. Magn. Mater.
**2019**, 489, 165399. [Google Scholar] [CrossRef] - Lilley, B.A. LXXI. Energies and widths of domain boundaries in ferromagnetics. Lond. Edinb. Dublin Philos. Mag. J. Sci.
**1950**, 41, 792–813. [Google Scholar] [CrossRef] - Thiaville, A.; Nakatani, Y. Chapter 6—Micromagnetics of Domain-Wall Dynamics in Soft Nanostrips. In Nanomagnetism and Spintronics; Shinjo, T., Ed.; Elsevier: Amsterdam, The Netherlands, 2009; pp. 231–276. ISBN 978-0-444-53114-8. [Google Scholar]
- Joint Committee for Guides in Metrology. Evaluation of Measurement Data—Guide to the Expression of Uncertainty in Measurement. International Bureau of Weights and Measures (BIPM), Sèvres, France, September 2008. BIPM, IEC, IFCC, ILAC, ISO, IUPAC, IUPAP and OIML, JCGM 100:2008, GUM 1995 with Minor Corrections. Available online: https://www.bipm.org/documents/20126/2071204/JCGM_100_2008_E.pdf/cb0ef43f-baa5-11cf-3f85-4dcd86f77bd6 (accessed on 28 May 2021).
- Hu, X.; Dai, G.; Sievers, S.; Fernández Scarioni, A.; Neu, V.; Bieler, M.; Schumacher, H.W. Uncertainty Analysis of Stray Field Measurements by Quantitative Magnetic Force Microscopy. IEEE Trans. Instrum. Meas.
**2020**, 69, 8187–8195. [Google Scholar] [CrossRef][Green Version] - Paynter, R.W. Modification of the Beer–Lambert equation for application to concentration gradients. Surf. Interface Anal.
**1981**, 3, 186–187. [Google Scholar] [CrossRef] - Powell, C.J.; Jablonski, A. National Institute of Standards and Technology, Gaithersburg, MD. 2010. Available online: https://www.nist.gov/system/files/documents/srd/SRD71UsersGuideV1-2.pdf (accessed on 28 May 2021).
- Navas, D.; Nam, C.; Velazquez, D.; Ross, C.A. Shape and strain-induced magnetization reorientation and magnetic anisotropy in thin film Ti/CoCrPt/Ti lines and rings. Phys. Rev. B
**2010**, 81, 224439. [Google Scholar] [CrossRef]

**Figure 1.**M-H hysteresis loop of the Ti/Pt/Co sample. (

**a**) the easy axis and hard axis hysteresis loops recorded by external field applied in plane, parallel to the sample surface (‖, blue) and out of plane, perpendicular to the sample surface ⊥, red). Measurements were performed by using VSM at room temperature (295 K). (

**b**) Zoomed-in plot of the out-of-plane measurement shown in (

**a**). The inset in (

**b**) shows an MFM image of the sample.

**Figure 2.**Flowchart of the validation process. The flowchart shows the different simulation and measurement steps used to validate the Ti/Pt/Co sample’s micromagnetic parameters. The comparisons that were performed based on the measurement results are marked as grey shaded boxes.

**Figure 3.**Results of the MuMax3 micromagnetic simulations of the Ti/Pt/Co sample: The relaxed magnetization pattern averaged over the stack thickness together with a zoomed in view (

**a**). Perpendicular magnetization component of the top layer in a transition between two domains together with a calculated transition using the standard Bloch wall model (

**b**). Cross section of a cutout of the magnetization of the Ti/Pt/Co sample showing all 20 layers (

**c**). The magnetization in the domains is homogeneous and independent of the layer number. The overall magnetization of the domains is depicted by the arrows. The dashed line shows the angle of the magnetization that follows a Bloch-like course of the domain wall transition. The dotted lines mark the domain wall width calculated using the Lilley formula.

**Figure 4.**Comparison of simulated and experimental Ti/Pt/Co sample data: (

**a**) measured MFM phase shift data and (

**b**) perpendicular stray field components B

_{z}data calculated using the Co/Pt sample calibrated qMFM; (

**c**) z component of the magnetization calculated from a discrimination of the MFM phase shift data from (

**a**); (

**d**) the thereof calculated perpendicular stray field components B

_{z}data using the Ti/Pt/Co micromagnetic material parameters; (

**e**) z-component of the magnetization from the micromagnetic simulation and (

**f**) the perpendicular stray field components B

_{z}data calculated thereof using a layer by layer approach; (

**g**) the stray field data with uncertainty bands from the data marked by the dashed lines in the stray field images in (

**b**,

**d**,

**f**).

**Figure 5.**(

**a**) MFM phase shift data of the [Pt/Co]

_{100}sample and (

**b**) quantitative perpendicular stray field components, B

_{z}, data, calculated thereof using Ti/Pt/Co calibrated qMFM; (

**c**) sample magnetization pattern from discrimination of the phase shift data followed by a convolution with a domain wall kernel and (

**d**) perpendicular stray field components, B

_{z}, data, calculated thereof by forward simulation using the known micromagnetic material parameters; (

**e**) plotlines of the perpendicular stray field components, B

_{z}, taken along the dashed lines of the stray field images together with uncertainty bands.

**Figure 6.**Comparison of ICFs and reference sample spectra: (

**a**,

**b**) show the ICFs calculated from calibration measurements using the Co/Pt (ICF

^{ref}) and the Ti/Pt/Co (ICF

^{tpc}) reference sample, respectively; (

**c**) shows plotlines through the maxima of the TTFs for both calibrations, TTF

^{ref}(red) and TTF

^{tpc}(blue) for a distance of 64 nm from the tip apex; (

**d**) shows plotlines through the Fourier spectra of the effective surface charge density of the Co/Pt reference sample (red) and Ti/Pt/Co sample. Dotted line marks the area of k-values accessible after calibration with the respective reference sample (see text).

**Table 1.**Sample parameters required for the calculation of the effective magnetic charge density of the Ti/Pt/Co sample and the Co/Pt reference sample.

Ti/Pt/Co Multilayer Stack | Co/Pt Stack | |
---|---|---|

Saturation Magnetization M_{s} | 201 kA/m | 500 kA/m |

Stack Thickness t | 20 × 3.8 nm | 100 × 1.3 nm |

Domain Wall Width ${\delta}_{DW}^{tpc}$ | 27 nm | 16 nm |

Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |

© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Sakar, B.; Sievers, S.; Fernández Scarioni, A.; Garcia-Sanchez, F.; Öztoprak, İ.; Schumacher, H.W.; Öztürk, O.
A Ti/Pt/Co Multilayer Stack for Transfer Function Based Magnetic Force Microscopy Calibrations. *Magnetochemistry* **2021**, *7*, 78.
https://doi.org/10.3390/magnetochemistry7060078

**AMA Style**

Sakar B, Sievers S, Fernández Scarioni A, Garcia-Sanchez F, Öztoprak İ, Schumacher HW, Öztürk O.
A Ti/Pt/Co Multilayer Stack for Transfer Function Based Magnetic Force Microscopy Calibrations. *Magnetochemistry*. 2021; 7(6):78.
https://doi.org/10.3390/magnetochemistry7060078

**Chicago/Turabian Style**

Sakar, Baha, Sibylle Sievers, Alexander Fernández Scarioni, Felipe Garcia-Sanchez, İlker Öztoprak, Hans Werner Schumacher, and Osman Öztürk.
2021. "A Ti/Pt/Co Multilayer Stack for Transfer Function Based Magnetic Force Microscopy Calibrations" *Magnetochemistry* 7, no. 6: 78.
https://doi.org/10.3390/magnetochemistry7060078