Nano-Structured Dilute Magnetic Semiconductors for Efficient Spintronics at Room Temperature
Abstract
:1. Introduction
2. Theory of Ferromagnetism in Oxides
3. TiO2 and Ferromagnetism
4. SnO2 and Ferromagnetism
5. Doping in ZnO and Ferromagnetism
6. Doping in In2O3 and Ferromagnetism
7. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Dietl, T. A ten-year perspective on dilute magnetic semiconductors and oxides. Nat. Mater. 2010, 9, 965. [Google Scholar] [CrossRef] [Green Version]
- Ning, S.; Zhan, P.; Xie, Q.; Wang, W.; Zhang, Z. Defects-Driven Ferromagnetism in Undoped Dilute Magnetic Oxides: A Review. J. Mater. Sci. Technol. 2015, 31, 969–978. [Google Scholar] [CrossRef]
- Lemine, O.; Bououdina, M.; Alyamani, A.; Omri, K.; Ibnaouf, K.; Ibrahem, M.A.; Alhathlool, R. Defect-induced room temperature ferromagnetism in mechanically milled nanocrystalline In2O3 powder. Mater. Lett. 2016, 181, 152–155. [Google Scholar] [CrossRef]
- Coey, J.M.D.; Chambers, S.A. Oxide Dilute Magnetic Semiconductors—Fact or Fiction? MRS Bull. 2011, 33, 1053–1058. [Google Scholar] [CrossRef]
- Coey, J.M.D. Dilute magnetic oxides. Curr. Opin. Solid State Mater. Sci. 2006, 10, 83–92. [Google Scholar] [CrossRef]
- Coey, J.M.D.; Venkatesan, M.; Fitzgerald, C.B. Donor impurity band exchange in dilute ferromagnetic oxides. Nat. Matr. 2005, 4, 173–179. [Google Scholar] [CrossRef]
- Matsumoto, Y.; Murakami, M.; Shono, T.; Hasegawa, T.; Fukumura, T.; Kawasaki, M.; Ahmet, P.; Chikyow, T.; Koshihara, S.; Koinuma, H. Room-temperature ferromagnetism in transparent transition metal-doped titanium dioxide. Science 2001, 291, 854–856. [Google Scholar] [CrossRef]
- Yamada, Y.; Ueno, K.; Fukumura, T.; Yuan, H.T.; Shimotani, H.; Iwasa, Y.; Gu, L.; Tsukimoto, S.; Ikuhara, Y.; Kawasaki, M. Electrically induced ferromagnetism at room temperature in cobalt-doped titanium dioxide. Science 2011, 332, 1065–1067. [Google Scholar] [CrossRef]
- Saadaoui, H.; Luo, X.; Salman, Z.; Cui, X.Y.; Bao, N.N.; Bao, P.; Zheng, R.K.; Tseng, L.T.; Du, Y.H.; Prokscha, T. Intrinsic ferromagnetism in the diluted magnetic semiconductor Co: TiO2. Phys. Rev. Lett. 2016, 117, 227202. [Google Scholar] [CrossRef] [Green Version]
- Wang, D.; Chen, Q.; Xing, G.; Yi, J.; Rahman, B.S.; Ding, J.; Wang, J.; Wu, T. Robust room-temperature ferromagnetism with giant anisotropy in Nd-doped ZnO nanowire arrays. Nano Lett. 2012, 12, 3994–4000. [Google Scholar] [CrossRef]
- Lee, J.J.; Xing, G.Z.; Yi, J.B.; Chen, T.; Ionescu, M.; Li, S. Tailoring the coercivity in ferromagnetic ZnO thin films by 3 d and 4 f elements codoping. Appl. Phys. Lett. 2014, 104, 012405. [Google Scholar] [CrossRef] [Green Version]
- Ogale, S.; Choudhary, R.J.; Buban, J.P.; Lofland, S.E.; Shinde, S.R.; Kale, S.N.; Kulkarni, V.N.; Higgins, J.; Lanci, C.; Simpson, J.R. High Temperature Ferromagnetism with a Giant Magnetic Moment in Transparent Co-doped SnO2−δ. Phys. Rev. Lett. 2003, 91, 077205. [Google Scholar] [CrossRef] [Green Version]
- Nagarajan, R.; Kumar, V.; Ahmad, S. Anion Doped Binary Oxides, SnO2, TiO2 and ZnO: Fabrication Procedures, Fascinating Properties and Future Prospects. Indin J. Chem. A 2012, 51A, 145–154. [Google Scholar]
- Madian, M.; Eychmüller, A.; Giebeler, L. Current advances in TiO2-based nanostructure electrodes for high performance lithium ion batteries. Batteries 2018, 4, 7. [Google Scholar] [CrossRef] [Green Version]
- Dixon, D. Difference in Electrochemical Mechanism of SnO2 Conversion in Lithium-Ion and Sodium-Ion Batteries: Combined in Operando and Ex Situ XAS Investigations. ACS Omega 2019, 4, 9731–9738. [Google Scholar] [CrossRef] [Green Version]
- López, C.M.; Choi, K.-S. Enhancement of electrochemical and photoelectrochemical properties of fibrous Zn and ZnO electrodes. Chem. Commun. 2005, 3328–3330. [Google Scholar] [CrossRef]
- Ogale, S.B.; Venkatesan, T.V.; Blamire, M.G. Introduction to Magnetic Oxides. In Functional Metal Oxides: New Science and Novel Applications; John Wiley and Sons, Wiley-VCH Verlag GmbH & Co. KGaA: Hoboken, NJ, USA, 2013; pp. 1–49. [Google Scholar]
- Si, S.; Li, C.; Wang, X.; Yu, D.; Peng, Q.; Li, Y. Magnetic Monodisperse Fe3O4 Nanoparticles. Cryst. Growth Des. 2005, 5, 391–393. [Google Scholar] [CrossRef]
- Yang, T.; Shen, C.; Li, Z.; Zhang, H.; Xiao, C.; Chen, S.; Xu, Z.; Shi, D.; Li, J.; Gao, H. Highly Ordered Self-Assembly with Large Area of Fe3O4 Nanoparticles and the Magnetic Properties. J. Phys. Chem. B 2005, 109, 23233–23236. [Google Scholar] [CrossRef]
- Ghazanfari, M.R.; Kashefi, M.; Shams, S.F.; Jaafari, M.R. Perspective of Fe3O4 nanoparticles role in biomedical applications. Biochem. Res. Int. 2016, 2016. [Google Scholar] [CrossRef] [Green Version]
- Buschow, K.H.J.; Boer, F.R. Physics of Magnetism and Magnetic Materials; Springer: Boston, MA, USA, 2003; Volume 7. [Google Scholar] [CrossRef]
- Bedanta, S. Supermagnetism in Magnetic Nanoparticle Systems. Ph.D. Thesis. 2007. Available online: https://nbn-resolving.org/urn:nbn:de:hbz:464-20070226-114713-8 (accessed on 15 March 2020).
- Frenkel, J.; Doefman, J. Spontaneous and induced magnetisation in ferromagnetic bodies. Nature 1930, 126, 274–275. [Google Scholar] [CrossRef]
- Teja, A.S.; Koh, P.-Y. Synthesis, properties, and applications of magnetic iron oxide nanoparticles. Prog. Cryst. Growth Charact. Mater. 2009, 55, 22–45. [Google Scholar] [CrossRef]
- Hong, N.H.; Sakai, J.; Poirot, N.; Brizé, V. Room-temperature ferromagnetism observed in undoped semiconducting and insulating oxide thin films. Phys. Rev. B 2006, 73, 132404. [Google Scholar] [CrossRef]
- Sundaresan, A.; Bhargavi, R.; Rangarajan, N.; Siddesh, U.; Rao, C.N.R. Ferromagnetism as a universal feature of nanoparticles of the otherwise nonmagnetic oxides. Phys. Rev. B 2006, 74, 161306. [Google Scholar] [CrossRef]
- Ohtsuki, T.; Chainani, A.; Eguchi, R.; Matsunami, M.; Takata, Y.; Taguchi, M.; Nishino, Y.; Tamasaku, K.; Yabashi, M.; Ishikawa, T. Role of Ti 3 d Carriers in Mediating the Ferromagnetism of Co: TiO2 Anatase Thin Films. Phys. Rev. Lett. 2011, 106, 047602. [Google Scholar] [CrossRef] [Green Version]
- Wang, H.; Cao, X.; Takagiwa, Y.; Snyder, G.J. Higher mobility in bulk semiconductors by separating the dopants from the charge-conducting band—A case study of thermoelectric PbSe. Mater. Horiz. 2015, 2, 323–329. [Google Scholar] [CrossRef] [Green Version]
- Roy, S.; Luitel, H.; Sanyal, D. Magnetic properties of transition metal doped SnO2: A detailed theoretical study. Comput. Condens. Matter 2019, 21, e00393. [Google Scholar] [CrossRef]
- Norton, D.P.; Heo, Y.W.; Ivill, M.P.; Ip, K.; Pearton, S.J.; Chisholm, M.F.; Steiner, T. 8 ZnO: Growth, doping & processing. Mater. Today 2004, 7, 34–40. [Google Scholar]
- Ogale, S.B. Dilute Doping, Defects, and Ferromagnetism in Metal Oxide Systems. Adv. Mater. 2010, 22, 3125–3155. [Google Scholar] [CrossRef]
- Hameed, A.S.H.; Karthikeyan, C.; Sasikumar, S.; Kumar, V.N.; Kumaresan, S.; Ravi, G. Impact of alkaline metal ions Mg2+, Ca2+, Sr2+ and Ba2+ on the structural, optical, thermal and antibacterial properties of ZnO nanoparticles prepared by the co-precipitation method. J. Mater. Chem. B 2013, 1, 5950–5962. [Google Scholar] [CrossRef]
- Andronenko, S.I.; Misra, S.K. A Review of EPR Studies on Magnetization of Nanoparticles of Dilute Magnetic Semiconductors Doped by Transition-Metal Ions. Appl. Magn. Reson. 2015, 46, 693–707. [Google Scholar] [CrossRef]
- Choudhury, B.; Paul, S.; Ameen Ahmed, G.; Choudhury, A. Adverse effect of Mn doping on the magnetic ordering in Mn doped TiO2nanoparticles. Mater. Res. Express 2015, 2, 096104. [Google Scholar] [CrossRef]
- Sharma, S.; Chaudhary, S.; Kashyap, S.C.; Sharma, S.K. Room temperature ferromagnetism in Mn doped TiO2 thin films: Electronic structure and Raman investigations. J. Appl. Phys. 2011, 109, 083905. [Google Scholar] [CrossRef]
- Akshay, V.R.; Arun, B.; Mandal, G.; Vasundhara, M. Structural, optical and magnetic behavior of sol–gel derived Ni-doped dilute magnetic semiconductor TiO2 nanocrystals for advanced functional applications. Phys. Chem. Chem. Phys. 2019, 21, 2519–2532. [Google Scholar] [CrossRef] [PubMed]
- Hou, D.; Meng, H.J.; Jia, L.Y.; Ye, X.J.; Zhou, H.J.; Li, X.L. Oxygen vacancy enhanced the room temperature ferromagnetism in Ni-doped TiO2 thin films. Phys. Lett. A 2007, 364, 318–322. [Google Scholar] [CrossRef]
- Rodriguez-Torres, C.; Cabrera, A.F.; Errico, L.A.; Adán, C.; Requejo, F.G.; Weissmann, M.; Stewart, S.J. Local structure and magnetic behaviour of Fe-doped TiO2 anatase nanoparticles: Experiments and calculations. J. Phys. Condens. Matter 2008, 20, 135210. [Google Scholar] [CrossRef]
- Chen, J.; Rulis, P.; Ouyang, L.; Satpathy, S.; Ching, W.Y. Vacancy-enhanced ferromagnetism in Fe-doped rutile TiO2. Phys. Rev. B 2006, 74, 235207. [Google Scholar] [CrossRef]
- Santara, B.; Giri, P.; Dhara, S.; Imakita, K.; Fujii, M. Oxygen vacancy-mediated enhanced ferromagnetism in undoped and Fe-doped TiO2 nanoribbons. J. Phys. D: Appl. Phys. 2014, 47, 235304. [Google Scholar] [CrossRef] [Green Version]
- Fajariah, N.; Prabowo, W.A.E.; Fathurrahman, F.; Melati, A.; Dipojono, H.K. The investigation of electronic structure of transition metal doped TiO2 for diluted magnetic semiconductor applications: A first principle study. Procedia Eng. 2017, 170, 141–147. [Google Scholar] [CrossRef]
- Mallia, G.; Harrison, N. Magnetic moment and coupling mechanism of iron-doped rutile TiO2 from first principles. Phys. Rev. B 2007, 75, 165201. [Google Scholar] [CrossRef] [Green Version]
- Bapna, K.; Phase, D.; Choudhary, R. Study of valence band structure of Fe doped anatase TiO2 thin films. J. Appl. Phys. 2011, 110, 043910. [Google Scholar] [CrossRef]
- Ogale, S.; Kundaliya, D.; Mehraeen, S.; Fu, L.-f.; Zhang, S.; Lussier, A.; Dvorak, J.; Browning, N.; Idzerda, Y.; Venkatesan, T. Chemical Inhomogeneity and Mixed-State Ferromagnetism in Diluted Magnetic Semiconductor Co:TiO2. Chem. Mater. 2008, 20, 1344–1352. [Google Scholar] [CrossRef]
- Fukumura, T.; Toyosaki, H.; Ueno, K.; Nakano, M.; Kawasaki, M. Role of charge carriers for ferromagnetism in cobalt-doped rutile TiO2. New Journal of physics 2008, 10, 055018. [Google Scholar] [CrossRef]
- Song, Y.; Wang, X.; Tao, L.; Song, B.; Zhang, L.; Zhang, Y.; Sui, Y.; Liu, Z.; Tang, J.; Han, X. Effect of Ga-doping and oxygen vacancies on the ferromagnetism of TiO2 thin films. J. Alloy. Compd. 2017, 694, 929–934. [Google Scholar] [CrossRef]
- Zhu, Q.; Wang, X.; Jiang, J.; Xu, A.-W. Healing effect of graphene oxide in achieving robust dilute ferromagnetism in oxygen-deficient titanium dioxide. J. Phys. Chem. C 2017, 121, 22806–22814. [Google Scholar] [CrossRef]
- Gordon, R.G. Criteria for choosing transparent conductors. MRS Bull. 2000, 25, 52–57. [Google Scholar] [CrossRef] [Green Version]
- Wang, N.; Zhou, W.; Liang, Y.; Cui, W.; Wu, P. Oxygen vacancy-mediated room temperature ferromagnetism in Sr-doped SnO2 nanoparticles. J. Mater. Sci. Mater. Electron. 2015, 26, 7751–7756. [Google Scholar] [CrossRef]
- Kumar, V.; Govind, A.; Nagarajan, R. Optical and photocatalytic properties of heavily F–-doped SnO2 nanocrystals by a novel single-source precursor approach. Inorg. Chem. 2011, 50, 5637–5645. [Google Scholar] [CrossRef]
- Sundaresan, A.; Rao, C. Ferromagnetism as a universal feature of inorganic nanoparticles. Nano Today 2009, 4, 96–106. [Google Scholar] [CrossRef]
- Chang, G.; Forrest, J.; Kurmaev, E.; Morozovska, A.; Glinchuk, M.; McLeod, J.; Moewes, A.; Surkova, T.; Hong, N.H. Oxygen-vacancy-induced ferromagnetism in undoped SnO2 thin films. Phys. Rev. B 2012, 85, 165319. [Google Scholar] [CrossRef]
- Maensiri, S.; Sreesongmuang, J.; Thomas, C.; Klinkaewnarong, J. Magnetic behavior of nanocrystalline powders of Co-doped ZnO diluted magnetic semiconductors synthesized by polymerizable precursor method. J. Magn. Magn. Mater. 2006, 301, 422–432. [Google Scholar] [CrossRef]
- Rai, D.P.; Laref, A.; Shankar, A.; Sandeep; Sakhya, A.P.; Khenata, R.; Thapa, R.K. Spin-induced transition metal (TM) doped SnO2 a dilute magnetic semiconductor (DMS): A first principles study. J. Phys. Chem. Solids 2018, 120, 104–108. [Google Scholar] [CrossRef]
- Sharma, M.; Doila, S.N.; Kumar, S.; Alvi, P.A. Effect of Fe Doping on Magnetic Behavior of SnO2 Nanoparticles for Spintronics Applications. IOP Conf. Ser. Mater. Sci. Eng. 2019, 594, 012004. [Google Scholar] [CrossRef]
- Srinivas, K.; Vithal, M.; Sreedhar, B.; Raja, M.M.; Reddy, P.V. Structural, optical, and magnetic properties of nanocrystalline Co doped SnO2 based diluted magnetic semiconductors. J. Phys. Chem. C 2009, 113, 3543–3552. [Google Scholar] [CrossRef]
- Zhu, S.; Chen, C.; Li, Z. Magnetic enhancement and magnetic signal tunability of (Mn, Co) co-doped SnO2 dilute magnetic semiconductor nanoparticles. J. Magn. Magn. Mater. 2019, 471, 370–380. [Google Scholar] [CrossRef]
- Kimura, H.; Fukumura, T.; Kawasaki, M.; Inaba, K.; Hasegawa, T.; Koinuma, H. Rutile-type oxide-diluted magnetic semiconductor: Mn-doped SnO2. Appl. Phys. Lett. 2002, 80, 94–96. [Google Scholar] [CrossRef]
- Fitzgerald, C.; Venkatesan, M.; Dorneles, L.S.; Gunning, R.; Stamenov, P.; Coey, J.M.D.; Stampe, P.; Kennedy, R.; Moreira, E.C.; Sias, U.S. Magnetism in dilute magnetic oxide thin films based on Sn O2. Phys. Rev. B 2006, 74, 115307. [Google Scholar] [CrossRef] [Green Version]
- Paraguay-Delgado, F.; Vasquez, F.C.; Holguín-Momaca, J.T.; Santillán-Rodríguez, C.R.; Matutes-Aquino, J.A.; Olive-Méndez, S.F. Room-temperature ferromagnetism and morphology evolution of SnO2 flower-like microparticles by Zn-doping. J. Magn. Magn. Mater. 2019, 476, 183–187. [Google Scholar] [CrossRef]
- Boukhvalov, D.W.; Manikandan, D.; Zhidkov, I.S.; Kukharenko, A.I.; Cholakh, S.O.; Kurmaev, E.Z.; Murugan, R. Effect of doping and annealing on the electronic structure and magnetic properties of nanoscale Co and Zn co-doped SnO2: An experimental study and first-principles modeling. J. Alloy. Compd. 2019, 799, 433–441. [Google Scholar] [CrossRef]
- URS, K.; Bhat, S.; Kamble, V. On exceeding the solubility limit of Cr+ 3 dopants in SnO2 nanoparticles based dilute magnetic semiconductors. J. Appl. Phys. 2018, 123, 161518. [Google Scholar] [CrossRef]
- Pascariu, P.; Airinei, A.; Grigoras, M.; Fifere, N.; Sacarescu, L.; Lupu, N.; Stoleriu, L. Structural, optical and magnetic properties of Ni doped SnO2 nanoparticles. J. Alloy. Compd. 2016, 668, 65–72. [Google Scholar]
- Ahmed, A.; Siddique, M.N.; Ali, T.; Tripathi, P. Defect assisted improved room temperature ferromagnetism in Ce doped SnO2 nanoparticles. Appl. Surf. Sci. 2019, 483, 463–471. [Google Scholar] [CrossRef]
- Kumar, V.; Uma, S.; Nagarajan, R. Optical and magnetic properties of (Er, F) co-doped SnO2 nanocrystals. Turk. J. Phys. 2014, 38, 450–462. [Google Scholar] [CrossRef]
- Cao, E.; Zhangf, Y.; Hao, W.; Peng, H.; Sun, L.; Hu, J. Room temperature ferromagnetism in Sm-doped SnO2 PLD film. Appl. Surf. Sci. 2013, 282, 376–383. [Google Scholar] [CrossRef]
- Nomura, K.; Okabayashi, J.; Okamura, K.; Yamada, Y. Magnetic properties of Fe and Co codoped SnO2 prepared by sol-gel method. J. Appl. Phys. 2011, 110, 083901. [Google Scholar] [CrossRef]
- Ahmed, S. Room-temperature ferromagnetism in pure and Mn doped SnO2 powders. Solid State Commun. 2010, 150, 2190–2193. [Google Scholar] [CrossRef]
- Afroj, S.; Karim, N.; Wang, Z.; Tan, S.; He, P.; Holwill, M.; Ghazaryan, D.; Fernando, A.; Novoselov, K.S. Engineering graphene flakes for wearable textile sensors via highly scalable and ultrafast yarn dyeing technique. ACS Nano 2019, 13, 3847–3857. [Google Scholar] [CrossRef] [Green Version]
- Sabergharesou, T.; Wang, T.; Ju, L.; Radovanovic, P.V. Electronic structure and magnetic properties of sub-3 nm diameter Mn-doped SnO2 nanocrystals and nanowires. Appl. Phys. Lett. 2013, 103, 012401. [Google Scholar] [CrossRef]
- Mounkachi, O.; El Moussaoui, H.; Masrour, R.; Ilali, J.; Mediouri, K.E.; Hamedoun, M.; Hlil, E.; El Kenz, A.; Benyoussef, A. High freezing temperature in SnO2 based diluted magnetic semiconductor. Mater. Lett. 2014, 126, 193–196. [Google Scholar] [CrossRef]
- Mehraj, S.; Ansari, M.S. Annealed SnO2 thin films: Structural, electrical and their magnetic properties. Thin Solid Film. 2015, 589, 57–65. [Google Scholar] [CrossRef]
- Wu, P.; Zhou, B.; Zhou, W. Room-temperature ferromagnetism in epitaxial Mg-doped SnO2 thin films. Appl. Phys. Lett. 2012, 100, 182405. [Google Scholar] [CrossRef]
- Mazloom, J.; Ghodsi, F.; Golmojdeh, H. Synthesis and characterization of vanadium doped SnO2 diluted magnetic semiconductor nanoparticles with enhanced photocatalytic activities. J. Alloy. Compd. 2015, 639, 393–399. [Google Scholar] [CrossRef]
- Chi, J.; Ge, H.; Wang, J.; Zuo, Y.; Zhang, L. Synthesis and electrical and magnetic properties of Mn-doped SnO2 nanowires. J. Appl. Phys. 2011, 110, 083907. [Google Scholar] [CrossRef]
- Liu, X.; Iqbal, J.; Wu, Z.; He, B.; Yu, R. Structure and room-temperature ferromagnetism of Zn-doped SnO2 nanorods prepared by solvothermal method. J. Phys. Chem. C 2010, 114, 4790–4796. [Google Scholar] [CrossRef]
- Zhi-Yuan, C.; Zhi-Quan, C.; Rui-Kun, P.; Shao-Jie, W. Vacancy-induced ferromagnetism in SnO2 nanocrystals: A positron annihilation study. Chin. Phys. Lett. 2013, 30, 027804. [Google Scholar] [CrossRef]
- Zhou, W.; Tang, X.; Xing, P.; Liu, W.; Wu, P. Possible room-temperature ferromagnetism in SnO2 nanocrystalline powders with nonmagnetic K doping. Phys. Lett. A 2012, 376, 203–206. [Google Scholar] [CrossRef]
- Hoa Hong, N.; Song, J.-H.; Raghavender, A.; Asaeda, T.; Kurisu, M. Ferromagnetism in C-doped SnO2 thin films. Appl. Phys. Lett. 2011, 99, 052505. [Google Scholar] [CrossRef]
- Zhang, L.; Ge, S.; Zuo, Y.; Wang, J.; Qi, J. Ferromagnetic properties in undoped and Cr-doped SnO2 nanowires. Scr. Mater. 2010, 63, 953–956. [Google Scholar] [CrossRef]
- Zima, T.; Bulina, N. Enhanced room-temperature ferromagnetism of Co-doped SnO2 nanostructures produced by the hydrothermal method. Mater. Res. Bull. 2019, 117, 48–55. [Google Scholar] [CrossRef]
- Mustaqima, M.; Liu, C. ZnO-based nanostructures for diluted magnetic semiconductor. Turk. J. Phys. 2014, 38, 429–441. [Google Scholar] [CrossRef]
- Sun, Y.; Zong, Y.; Feng, J.; Li, X.; Yan, F.; Lan, Y.; Zhang, L.; Ren, Z.; Zheng, X. Oxygen vacancies driven size-dependent d0 room temperature ferromagnetism in well-dispersed dopant-free ZnO nanoparticles and density functional theory calculation. J. Alloy. Compd. 2018, 739, 1080–1088. [Google Scholar] [CrossRef]
- Qi, B.; Ólafsson, S.; Gíslason, H.P. Vacancy defect-induced d0 ferromagnetism in undoped ZnO nanostructures: Controversial origin and challenges. Prog. Mater. Sci. 2017, 90, 45–74. [Google Scholar] [CrossRef]
- Hagemark, K. Defect structure of Zn-doped ZnO. J. Solid State Chem. 1976, 16, 293–299. [Google Scholar] [CrossRef]
- Hagemark, K.; Chacka, L. Electrical transport properties of Zn doped ZnO. J. Solid State Chem. 1975, 15, 261–270. [Google Scholar] [CrossRef]
- Verma, A.; Tripathi, S. Magnetic annealing temperature modulated room temperature ferromagnetism in Zn doped ZnO thin film. J. Magn. Magn. Mater. 2019, 478, 28–37. [Google Scholar] [CrossRef]
- Dietl, T.; Ohno, H.; Matsukura, F.; Cibert, J.; Ferrand, E.D. Zener model description of ferromagnetism in zinc-blende magnetic semiconductors. Science 2000, 287, 1019–1022. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Seshadri, R. Zinc oxide-based diluted magnetic semiconductors. Curr. Opin. Solid State Mater. Sci. 2005, 9, 1–7. [Google Scholar] [CrossRef]
- Sharma, D.K.; Sharma, K.K.; Kumar, V.; Sharma, A. Synthesis of Er doped ZnO cone-like nanostructures with enhanced structural, optical and magnetic properties. J. Mater. Sci. Mater. Electron. 2018, 29, 3840–3849. [Google Scholar] [CrossRef]
- Valentin, C.B.S.; e Silva, R.L.D.S.; Banerjee, P.; Franco, A., Jr. Investigation of Fe-doped room temperature dilute magnetic ZnO semiconductors. Mater. Sci. Semicond. Process. 2019, 96, 122–126. [Google Scholar] [CrossRef]
- Elilarassi, R.; Chandrasekaran, G. Optical, electrical and ferromagnetic studies of ZnO: Fe diluted magnetic semiconductor nanoparticles for spintronic applications. Spectrochim. Acta Part A: Mol. Biomol. Spectrosc. 2017, 186, 120–131. [Google Scholar] [CrossRef]
- Torquato, R.; Shirsath, S.; Kiminami, R.; Costa, A. Synthesis and structural, magnetic characterization of nanocrystalline Zn1-xCoxO diluted magnetic semiconductors (DMS) synthesized by combustion reaction. Ceram. Int. 2018, 44, 4126–4131. [Google Scholar] [CrossRef]
- Valério, L.; Mamani, N.; De Zevallos, A.; Mesquita, A.; Bernardi, M.; Doriguetto, A.; De Carvalho, H. Preparation and structural-optical characterization of dip-coated nanostructured Co-doped ZnO dilute magnetic oxide thin films. RSC Adv. 2017, 7, 20611–20619. [Google Scholar] [CrossRef] [Green Version]
- Kayani, Z.N.; Nazir, F.; Riaz, S.; Naseem, S. Structural, optical and magnetic properties of manganese zinc oxide thin films prepared by sol–gel dip coating method. Superlattices Microstruct. 2015, 82, 472–482. [Google Scholar] [CrossRef]
- Murmu, P.P.; Kennedy, J.; Ruck, B.J.; Rubanov, S. Microstructural, electrical and magnetic properties of erbium doped zinc oxide single crystals. Electronic Mater. Lett. 2015, 11, 998–1002. [Google Scholar] [CrossRef]
- Aggarwal, N.; Vasishth, A.; Singh, B.; Singh, B. Investigation of room temperature ferromagnetic behaviour in dilute magnetic oxides. Integr. Ferroelectr. 2018, 186, 10–16. [Google Scholar] [CrossRef]
- Das, A.; Sahoo, R.K.; Mishra, D.K.; Singh, S.K.; Mane, R.S.; Kim, K.H. Thermal plasma-inspired synthesis of ZnO1− XMnx dilute magnetic semiconductors for enhanced visible light photocatalysis. Appl. Surf. Sci. 2019, 467, 1059–1069. [Google Scholar] [CrossRef]
- Zargar, R.A.; Arora, M.; Bhat, R.A. Study of nanosized copper-doped ZnO dilute magnetic semiconductor thick films for spintronic device applications. Appl. Phys. A 2018, 124, 36. [Google Scholar] [CrossRef]
- Tien, L.-C.; Hsieh, Y.-Y. Defect-induced ferromagnetism in undoped In2O3 nanowires. Mater. Res. Bull. 2014, 60, 690–694. [Google Scholar] [CrossRef]
- Sun, S.; Wu, P.; Xing, P. d 0 ferromagnetism in undoped n and p-type In2O3 films. Appl. Phys. Lett. 2012, 101, 132417. [Google Scholar] [CrossRef]
- Hong, N.H.; Sakai, J.; Huong, N.T.; Ruyter, A.; Brizé, V. Magnetism in transition-metal-doped In2O3 thin films. J. Phys. Condens. Matter 2006, 18, 6897. [Google Scholar] [CrossRef]
- Carvalho, M.; Piton, M.R.; Lemine, O.; Bououdina, M.; Galeti, H.V.A.; Souto, S.; Pereira, E.; Gobato, Y.G.; de Oliveira, A. Effects of strain, defects and crystal phase transition in mechanically milled nanocrystalline In2O3 powder. Mater. Res. Express 2018, 6, 025017. [Google Scholar] [CrossRef] [Green Version]
- An, Y.; Xing, Y.; Pan, F.; Wu, Z.; Liu, J. Investigation of local structural environments and room-temperature ferromagnetism in (Fe, Cu)-codoped In2O3 diluted magnetic oxide films. Phys. Chem. Chem. Phys. 2016, 18, 13701–13709. [Google Scholar] [CrossRef] [PubMed]
- Baqiah, H.; Ibrahim, N.; Halim, S.; Talib, Z.; Flaifel, M.; Abdi, M. Conducting mechanisms and magnetic behaviours of Fe-doped In2O3 nanocrystalline films. Results Phys. 2017, 7, 1115–1121. [Google Scholar] [CrossRef]
- Baqiah, H.; Ibrahim, N.; Halim, S.; Chen, S.; Lim, K.; Kechik, M.A. Physical properties of Fe doped In2O3 magnetic semiconductor annealed in hydrogen at different temperature. J. Magn. Magn. Mater. 2016, 401, 102–107. [Google Scholar] [CrossRef]
- Luo, X.; Tseng, L.-T.; Wang, Y.; Bao, N.; Lu, Z.; Ding, X.; Zheng, R.; Du, Y.; Huang, K.; Shu, L. Intrinsic or Interface Clustering-Induced Ferromagnetism in Fe-Doped In2O3-Diluted Magnetic Semiconductors. ACS Appl. Mater. Interfaces 2018, 10, 22372–22380. [Google Scholar] [CrossRef]
- Garnet, N.S.; Ghodsi, V.; Hutfluss, L.N.; Yin, P.; Hegde, M.; Radovanovic, P.V. Probing the role of dopant oxidation state in the magnetism of diluted magnetic oxides using Fe-doped In2O3 and SnO2 nanocrystals. J. Phys. Chem. C 2017, 121, 1918–1927. [Google Scholar] [CrossRef]
- Krishna, N.S.; Kaleemulla, S.; Amarendra, G.; Rao, N.M.; Krishnamoorthi, C.; Kuppan, M.; Begam, M.R.; Reddy, D.S.; Omkaram, I. Structural, optical, and magnetic properties of Fe doped In2O3 powders. Mater. Res. Bull. 2015, 61, 486–491. [Google Scholar] [CrossRef]
- Peleckis, G.; Wang, X.; Dou, S. Ferromagnetism in Mn-doped In2O3 oxide. J. Magn. Magn. Mater. 2006, 301, 308–311. [Google Scholar] [CrossRef]
- Pellicer, E.; Menéndez, E.; Fornell, J.; Nogués, J.; Vantomme, A.; Temst, K.; Sort, J. Mesoporous oxide-diluted magnetic semiconductors prepared by Co implantation in nanocast 3D-ordered In2O3−y materials. J. Phys. Chem. C 2013, 117, 17084–17091. [Google Scholar] [CrossRef] [Green Version]
- Kumagai, H.; Hara, Y.; Sato, K. Site occupancy, valence state, and spin state of Co ions in Co-doped In2O3 diluted magnetic semiconductor. J. Magn. Magn. Mater. 2019, 165358. [Google Scholar] [CrossRef]
- Shen, L.; An, Y.; Cao, D.; Wu, Z.; Liu, J. Room-Temperature Ferromagnetic Enhancement and Crossover of Negative to Positive Magnetoresistance in N-Doped In2O3 Films. J. Phys. Chem. C 2017, 121, 26499–26506. [Google Scholar] [CrossRef]
- Cao, H.; Xing, P.; Zhou, W.; Yao, D.; Wu, P. Indium vacancy induced d0 ferromagnetism in Li-doped In2O3 nanoparticles. J. Magn. Magn. Mater. 2018, 451, 609–613. [Google Scholar] [CrossRef]
Materials | Dopants % | Temp. | Reason for Magnetism | Value of Magnetism | Ref. |
---|---|---|---|---|---|
TiO2 | RT | Oxygen vacancies | [25] | ||
Mn doped TiO2 | 10, 15% | RT | Bound magnetic polarons | 0.035, 0.017 µB/Mn | [35] |
Anatase Ni doped TiO2 | 3, 6, 9, 12 mol.% | RT | BMP, oxygen vacancy, Ti interstitial defects | 7.21–11.33 × 10−3 µB | [36] |
Ni doped TiO2 | 2, 4, 6, 8 mol.% | RT | Oxygen vacancies | 0.61, 0.79, 0.89, 1.0 µB/Ni | [37] |
Anatase Fe doped TiO2 | 2.8, 5.4% | RT | Fe, oxygen vacancy, other electronic defects | 4.7, 4.5 µB | [38] |
Fe doped TiO2 | 1, 6, 8, 12 mol.% | RT | Oxygen vacancies, presence of impurities | 0.68, 1.3, 0.15, 0.051 µB/ Fe. | [42] |
Anatase Fe Doped TiO2 | Fe 4–8 at % | RT | Ti3+ defect, oxygen vacancies, Fe, BMP | 0.5 to 0.7 µB/Fe | [43] |
Co doped TiO2 | 3, 5, 7, 10 mol.% | RT | Charge imbalance, lattice distortion and oxygen vacancies | 0, 1.0, 1.1, 1.5 µB | [45] |
Ga Doped Rutile TiO2 | 6% | 350 K | Oxygen vacancies, ionic radii of dopant | 18 emu/cm3 | [46] |
TiO2 on rGO | Healing effect, rGO interaction with Ti3+-oxygen vacancies | [47] |
Compound | Temperature | Magnetization | % Doping | Reason Of Magnetism | Ref. |
---|---|---|---|---|---|
SnO2 | 300 K | Trapping electrons in oxygen vacancies are polarized, nanosized materials | [26] | ||
Fe doped SnO2 | 300 K | [55] | |||
Co doped SnO2 | 2–10 mass % | Oxygen vacancies | [81] | ||
Co doped SnO2 | 650 K | 7 µB per Co ion | 5% | Oxygen vacancies | [12] |
Co doped SnO2 | RT | 0.007–0.09 emu/g | 5% | oxygen vacancies, vacancy clusters and surface diffusion of Co ions | [56] |
Co and Mn codoped SnO2 | Variable temp | 1–12% Mn & 5% Co | Conc. Of Mn ions, defects | [57] | |
Co and Zn codoped SnO2 | [61] | ||||
Cr doped SnO2 | RT | 5 mol.% | Oxygen vacancies and magnetic ion impurities | [62] | |
Ni doped SnO2 | RT | 5 × 10−4 emu/g | - | Impurities and structural defects, oxygen vacancies | [63] |
Zn doped SnO2 | [60] | ||||
Ce doped SnO2 | RT | 0.16 to 0.37 emu/g | 2, 4, 6 mol.% | Ce in +3 oxidation state, Interaction of bound charge carriers in the defects with Ce ion, oxygen vacancies | [64] |
Er, F codoped SnO2 | RT | 1 mol.% | Oxygen vacancies, shallower defects | [65] | |
Er doped SnO2 | RT | 1 mol.% | Oxygen vacancies, shallower defects | [65] | |
Co and Fe codoped SnO2 | RT | - | Co = 0.5–3 mol % Fe = 5 mol % | Interfacial oxygen vacancy defects, exchange interaction between ions, surface of the nanomaterials and electronic factors, Codoping enhance FM, double exchange interaction, oxygen vacancies | [67] |
Mn doped SnO2 | Room temp. | ∼0.98 emu/g | 1% | [68] |
Compound | Temperature | % Doping | Reason for FM | Ref. |
---|---|---|---|---|
ZnO | 300 K | - | Exchange interactions between localized electron spin moment with oxygen vacancies, defects, nanomaterials | [26,84] |
Zn doped ZnO | 300 K | - | Defects, Zni, annealing in presence of magnetic field from north to south, BMP model | [87] |
Er doped ZnO | RT | 1, 3, 5, 7 at % | Oxygen vacancies, defects | [90] |
Fe doped ZnO | RT | 1, 3, 5, 7% | grain boundary barrier defect, interstitial Zn defect, oxygen vacancies | [91] |
Co doped ZnO | RT | 2, 3, 7, 10 mol.% | Oxygen vacancies, defects | [93] |
Co-doped ZnO | RT | 1, 3, 5 mol.% | Oxygen vacancies, Zn interstices | [94] |
Fe doped ZnO | RT | 2, 4, 6, 8% | RKKY exchange interaction, oxygen vacancies, defects | [92] |
Mn-doped ZnO | RT | Variable thickness of films | Higher the thickness of the film, oxygen vacancies | [95] |
Mn doped ZnO | RT | 0.2, 0.4, 0.6, 0.8 Mn/ZnO weight ratio | Synergic effect caused by oxygen vacancies and defects | [98] |
Cu doped ZnO | 4 mol.% | Oxygen vacancies | [99] |
Materials | Dopants % | Temp. | Reason for Magnetism | Value of Magnetism | Ref. |
---|---|---|---|---|---|
Pure In2O3 | - | RT | Defect induced in In2O3 formed by mechanical mining, oxygen deficient surfaces | [3,100,101] | |
Fe, Cu codoped In2O3 | 0.06 ≤ x ≤ 0.20 | RT | s-pd interexchange mechanism and overlapping of polarons | 2.52 emu/cm3 to 7.2 emu/cm3 when x goes from 0.06 to 0.20 | [104] |
Fe doped In2O3 | 2.5% | Defect like oxygen vacancy or surface passivation defects that could be created by hydrogen- annealing, mixed valence of Fe | 2–30 emu/cm3 | [106] | |
Fe doped In2O3 | 2.5–45% | Oxygen vacancies and it decreases on increasing Fe concentration, BMP | [105] | ||
Fe doped In2O3 | 5% | LT | BMP, magnetization increases on decreasing partial pressure of O2, | [107] | |
Fe doped In2O3 | 1.8, 2.5% | RT | Interfacial and local defects | [108] | |
Fe doped In2O3 | 3, 5, 7% | RT | Magnetic ions and defects formed during annealing | 11.56 memu/g to 148.64 memu/g | [109] |
Mn doped In2O3 | 10% | LT | Tetrahedrally or octahedrally coordinated Mn3+ in the intermediate spin state | 2.83 µB/Mn | [110] |
Co doped In2O3 | <0.044 and >0.052 | LT and RT | Ferromagnetism at RT observed only annealing in high vacuum due to oxygen vacancies, magnetic susceptibility of all the specimens decreases with an increase in the temperature | [112] | |
Co doped In2O3 | Oxygen vacancies | [111] | |||
N doped In2O3 | RT | N-induced acceptor defects, oxygen vacancies, | [113] | ||
Li doped at.%) In2O3 | (0.5 to 7) | Indium vacancies on substituting by Li ions | 1.64 to 4.06 µB | [114] |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gupta, A.; Zhang, R.; Kumar, P.; Kumar, V.; Kumar, A. Nano-Structured Dilute Magnetic Semiconductors for Efficient Spintronics at Room Temperature. Magnetochemistry 2020, 6, 15. https://doi.org/10.3390/magnetochemistry6010015
Gupta A, Zhang R, Kumar P, Kumar V, Kumar A. Nano-Structured Dilute Magnetic Semiconductors for Efficient Spintronics at Room Temperature. Magnetochemistry. 2020; 6(1):15. https://doi.org/10.3390/magnetochemistry6010015
Chicago/Turabian StyleGupta, Akanksha, Rui Zhang, Pramod Kumar, Vinod Kumar, and Anup Kumar. 2020. "Nano-Structured Dilute Magnetic Semiconductors for Efficient Spintronics at Room Temperature" Magnetochemistry 6, no. 1: 15. https://doi.org/10.3390/magnetochemistry6010015
APA StyleGupta, A., Zhang, R., Kumar, P., Kumar, V., & Kumar, A. (2020). Nano-Structured Dilute Magnetic Semiconductors for Efficient Spintronics at Room Temperature. Magnetochemistry, 6(1), 15. https://doi.org/10.3390/magnetochemistry6010015