False Chirality, Absolute Enantioselection and CP Violation: Pierre Curie’s Legacy
Abstract
:1. Introduction
2. Pasteur’s Conjecture
3. Curie’s Idea Has False Chirality
4. Parity Violation and the CP Operation
5. Violation of CP
6. Absolute Enantioselection
6.1. Truly Chiral Influences
6.2. Falsely Chiral Influences
6.3. A Falsely Chiral Influence Acts Like a Catalyst
7. Concluding Remarks
Funding
Conflicts of Interest
References
- Kelvin, L. Baltimore Lectures on Molecular Dynamics and the Wave Theory of Light; C.J. Clay & Sons: London, UK, 1901. [Google Scholar]
- Barron, L.D. Molecular Light Scattering and Optical Activity, 2nd ed.; Cambridge University Press: Cambridge, UK, 2004. [Google Scholar]
- Wagnière, G.H. On Chirality and the Universal Asymmetry; Verlag Helvetica Chimica Acta: Zürich, Switzerland; Wiley-VCH: Weinheim, Germany, 2007. [Google Scholar]
- Curie, P. Oeuvres de Pierre Curie; Société Francaise de Physique, Gauthier-Villars: Paris, France, 1908. [Google Scholar]
- De Gennes, P.G. Pierre Curie and the role of symmetry in physical laws. Ferroelectrics 1982, 40, 125–129. [Google Scholar] [CrossRef]
- Morrison, J.D.; Mosher, H.S. Asymmetric Organic Reactions; American Chemical Society: Washington, DC, USA, 1976. [Google Scholar]
- Bonner, W.A. Origin of chiral homogeneity in nature. Top. Stereochem. 1988, 18, 1–96. [Google Scholar]
- Mason, S.F. Biomolecular homochirality. Chem. Soc. Rev. 1988, 17, 347–359. [Google Scholar] [CrossRef]
- Avalos, M.; Babiano, R.; Cintas, P.; Jiménez, J.L.; Palacios, J.C.; Barron, L.D. Absolute asymmetric synthesis under physical fields: Facts and fictions. Chem. Rev. 1998, 98, 2391–2404. [Google Scholar] [CrossRef] [PubMed]
- Feringa, B.L.; Van Delden, R.A. Absolute asymmetric synthesis: The origin, control, and amplification of chirality. Angew. Chem. Int. Ed. 1999, 38, 3418–3438. [Google Scholar] [CrossRef]
- Compton, R.N.; Pagni, R.M. The chirality of biomolecules. Adv. At. Mol. Opt. Phys. 2002, 48, 219–261. [Google Scholar]
- MacDermott, A.J. The origin of biomolecular chirality. In Chirality in Natural and Applied Science; Lough, W.J., Wainer, I.W., Eds.; Blackwell Publishing: Oxford, UK, 2002; pp. 23–52. [Google Scholar]
- Guijarro, A.; Yus, M. The Origin of Chirality in the Molecules of Life; Royal Society of Chemistry: Cambridge, UK, 2009. [Google Scholar]
- Cintas, P.; Viedma, C. On the physical basis of asymmetry and homochirality. Chirality 2012, 24, 894–908. [Google Scholar] [CrossRef]
- Barron, L.D. True and false chirality and absolute enantioselection. Rend. Lincei 2013, 24, 179–189. [Google Scholar] [CrossRef]
- Mason, S.F. Molecular Optical Activity and the Chiral Discriminations; Cambridge University Press: Cambridge, UK, 1982; pp. 148–149. [Google Scholar]
- Curie, M.P. Sur la symétrie dans les phénomènes physiques, symétrie d’un champ électrique et d’un champ magnétique. J. Phys. (Paris) 1894, 3, 393–415. [Google Scholar] [CrossRef]
- Thomson, W. Dynamical illustrations of the magnetic and the helicoidal rotatory effects of transparent bodies on polarized light. Proc. R. Soc. 1856, 8, 150–158. [Google Scholar]
- Barron, L.D. Fundamental symmetry aspects of optical activity. Chem. Phys. Lett. 1981, 79, 392–394. [Google Scholar] [CrossRef]
- Barron, L.D. Optical activity and time reversal. Mol. Phys. 1981, 43, 1395–1406. [Google Scholar] [CrossRef]
- Barron, L.D. Symmetry and molecular chirality. Chem. Soc. Rev. 1986, 15, 189–223. [Google Scholar] [CrossRef]
- Barron, L.D. True and false chirality and absolute asymmetric synthesis. J. Am. Chem. Soc. 1986, 108, 5539–5542. [Google Scholar] [CrossRef]
- De Gennes, P.G. Sur l’impossibilité de certaines synthèses asymétriques. C. R. Acad. Sci. Paris 1970, B270, 891–893. [Google Scholar]
- Zocher, H.; Török, C. About space-time asymmetry in the realm of classical general and crystal physics. Proc. Natl. Acad. Sci. USA 1953, 39, 681–686. [Google Scholar] [CrossRef] [Green Version]
- Barron, L.D. True and false chirality and parity violation. Chem. Phys. Lett. 1986, 123, 423–427. [Google Scholar] [CrossRef]
- Barron, L.D. Reactions of chiral molecules in the presence of a time-non-invariant enantiomorphous influence: A new kinetic principle based on the breakdown of microscopic reversibility. Chem. Phys. Lett. 1987, 135, 1–8. [Google Scholar] [CrossRef]
- Barron, L.D. Fundamental symmetry aspects of molecular chirality. In New Developments in Molecular Chirality; Mezey, P.G., Ed.; Kluwer Academic Publishers: Dordrecht, The Netherlands, 1991; pp. 1–55. [Google Scholar]
- Barron, L.D. Chirality at the sub-molecular level: True and false chirality. In Chirality in Natural and Applied Science; Lough, W.J., Wainer, I.W., Eds.; Blackwell Publishing: Oxford, UK, 2002; pp. 53–86. [Google Scholar]
- Tellegen, B.D.H. The gyrator, a new electric network element. Philips Res. Rep. 1948, 3, 81–101. [Google Scholar]
- Lindell, I.V.; Sihvola, A.H.; Tretyakov, S.A.; Viitanen, A.J. Electromagnetic Waves in Chiral and Bi-Isotropic Media; Artech House: Boston, MA, USA, 1994. [Google Scholar]
- Ghosh, A.; Sheridon, N.K.; Fischer, P. Voltage-controllable magnetic composite based on multifunctional polyethylene microparticles. Small 2008, 4, 1956–1958. [Google Scholar] [CrossRef]
- Lacava, F. Classical Electrodynamics; Springer International Publishing: Cham, Switzerland, 2016; p. 176. [Google Scholar]
- Wagnière, G.H.; Meir, A. The influence of a static magnetic field on the absorption coefficient of a chiral molecule. Chem. Phys. Lett. 1982, 93, 78–81. [Google Scholar] [CrossRef]
- Barron, L.D.; Vrbancich, J. Magneto-chiral birefringence and dichroism. Mol. Phys. 1984, 51, 715–730. [Google Scholar] [CrossRef]
- Rikken, G.L.J.A.; Raupach, E. Observation of magneto-chiral dichroism. Nature 1997, 390, 493–494. [Google Scholar] [CrossRef]
- Gottfried, K.; Weisskopf, V.F. Concepts of Particle Physics; Clarendon Press: Oxford, UK, 1984; Volume 1. [Google Scholar]
- Branco, G.C.; Lavoura, L.; Silva, J.P. CP Violation; Clarendon Press: Oxford, UK, 1999. [Google Scholar]
- Weinberg, S. The Quantum Theory of Fields; Cambridge University Press: Cambridge, UK, 1996; Volume II. [Google Scholar]
- Hegstrom, R.A.; Rein, D.W.; Sandars, P.G.H. Calculation of the parity nonconserving energy difference between mirror-image molecules. J. Chem. Phys. 1980, 73, 2329–2341. [Google Scholar] [CrossRef]
- Bouchiat, M.A.; Bouchiat, C. Parity violation in atoms. Rep. Prog. Phys. 1997, 60, 1351–1396. [Google Scholar] [CrossRef] [Green Version]
- Quack, M. How important is parity violation for molecular and biomolecular chirality? Angew. Chem. Int. Ed. 2002, 41, 4618–4630. [Google Scholar] [CrossRef]
- MacDermott, A.J.; Fu, T.; Nakatsuka, R.; Coleman, A.P.; Hyde, G.O. Parity-violating energy shifts of Murchison L-amino acids are consistent with an electroweak origin of meteorite L-enantiomeric excesses. Orig. Life Evol. Biosph. 2009, 39, 459–478. [Google Scholar] [CrossRef]
- Bast, R.; Koers, A.; Gomes, A.S.P.; Iliaš, M.; Visscher, L.; Schwerdtfeger, P.; Saue, T. Analysis of parity violation in chiral molecules. Phys. Chem. Chem. Phys. 2011, 13, 864–876. [Google Scholar] [CrossRef]
- Okun, L.B. Particle Physics—The Quest for the Substance of Substance; Harwood Academic Publishers: Chur, Switzerland, 1985; p. 52. [Google Scholar]
- Barron, L.D. CP violation and molecular physics. Chem. Phys. Lett. 1994, 221, 311–316. [Google Scholar] [CrossRef]
- Bradley, R.; Clarke, J.; Kinion, D.; Rosenberg, L.J.; Van Bibber, K.; Matsuki, S.; Mück, M.; Sikivie, P. Microwave cavity search for dark-matter axions. Rev. Mod. Phys. 2003, 75, 777–817. [Google Scholar] [CrossRef] [Green Version]
- Moody, J.E.; Wilczek, F. New macroscopic forces? Phys. Rev. D 1984, 30, 130–138. [Google Scholar] [CrossRef]
- Rikken, G.L.J.A.; Raupach, E. Enantioselective magnetochiral photochemistry. Nature 2000, 405, 932–935. [Google Scholar] [CrossRef] [PubMed]
- Barron, L.D. Chirality, magnetism and light. Nature 2000, 405, 895–896. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dorta-Urra, A.; Bargueño, P. Homochirality: A perspective from fundamental physics. Symmetry 2019, 11, 661. [Google Scholar] [CrossRef] [Green Version]
- Aharony, A. Microscopic irreversibility, unitarity and the H-theorem. In Modern Developments in Thermodynamics; Gal-Or, B., Ed.; Wiley: New York, NY, USA, 1973; pp. 95–114. [Google Scholar]
- Weinberg, S. The Quantum Theory of Fields; Cambridge University Press: Cambridge, UK, 1995; Volume I, p. 160. [Google Scholar]
- Micali, N.; Engelkamp, H.; Van Rhee, P.G.; Christianen, P.C.M.; Scolaro, L.M.; Maan, J.C. Selection of supramolecular chirality by application of rotational and magnetic forces. Nat. Chem. 2012, 4, 201–207. [Google Scholar] [CrossRef]
- Barron, L.D. Spin and gravity give a helping hand. Nat. Chem. 2012, 4, 150–152. [Google Scholar] [CrossRef]
- Edwards, D.; Cooper, K.; Dougherty, R.C. Asymmetric synthesis in a confined vortex: Gravitational fields can cause asymmetric synthesis. J. Am. Chem. Soc. 1980, 102, 381–382. [Google Scholar] [CrossRef]
- Barron, L.D. Can a magnetic field induce absolute asymmetric synthesis? Science 1994, 266, 1491–1492. [Google Scholar] [CrossRef]
- Banerjee-Ghosh, K.; Dor, O.B.; Tassinari, F.; Capua, A.; Yochelis, S.; Capua, A.; Yang, S.-H.; Parkin, S.S.P.; Sarkar, S.; Kronik, L.; et al. Separation of enantiomers by their enantiospecific interaction with achiral magnetic substrates. Science 2018, 360, 1331–1334. [Google Scholar] [CrossRef] [Green Version]
- Naaman, R.; Paltiel, Y.; Waldeck, D.H. Chiral molecules and the electron spin. Nat. Rev. Chem. 2019, 3, 250–260. [Google Scholar] [CrossRef]
- Tassinari, F.; Steidel, J.; Paltiel, S.; Fontanesi, C.; Lahav, M.; Paltiel, Y.; Naaman, R. Enantioseparation by crystallization using magnetic substrates. Chem. Sci. 2019, 10, 5246–5250. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Barron, L.D. Cosmic chirality both true and false. Chirality 2012, 24, 957–958. [Google Scholar] [CrossRef] [PubMed]
© 2020 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Barron, L.D. False Chirality, Absolute Enantioselection and CP Violation: Pierre Curie’s Legacy. Magnetochemistry 2020, 6, 5. https://doi.org/10.3390/magnetochemistry6010005
Barron LD. False Chirality, Absolute Enantioselection and CP Violation: Pierre Curie’s Legacy. Magnetochemistry. 2020; 6(1):5. https://doi.org/10.3390/magnetochemistry6010005
Chicago/Turabian StyleBarron, Laurence D. 2020. "False Chirality, Absolute Enantioselection and CP Violation: Pierre Curie’s Legacy" Magnetochemistry 6, no. 1: 5. https://doi.org/10.3390/magnetochemistry6010005
APA StyleBarron, L. D. (2020). False Chirality, Absolute Enantioselection and CP Violation: Pierre Curie’s Legacy. Magnetochemistry, 6(1), 5. https://doi.org/10.3390/magnetochemistry6010005