Effect of Magnetic Field and Aggregation on Electrical Characteristics of Magnetically Responsive Suspensions for Novel Hybrid Liquid Capacitor
Abstract
:1. Introduction
2. Experimental Procedure
3. Electrical Properties of MCF Rubber Liquid
4. Effect of Particles Aggregation
5. Electric Charge
6. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Wang, G.X.; Cai, J.; Xu, H.F. Enhanced capacitance of a NiO electrode prepared in the magnetic field. J. Appl. Electrochem. 2014, 44, 391–398. [Google Scholar] [CrossRef]
- Shimada, K.; Wu, Y.; Masuo, Y.; Yamamoto, K. Float polishing technique using new tool consisting of micro magnetic clusters. J. Mater. Process. Technol. 2005, 162–163, 690–695. [Google Scholar] [CrossRef]
- Svasand, E.; Kristiansen, K.D.L.; Martinsen, O.G.; Helgesen, G.; Grimnes, S.; Skjeltorp, A.T. Behavior of carbon cone particle dispersions in electric and magnetic fields. Colloids Surf. A Physicochem. Eng. Asp. 2009, 339, 211–216. [Google Scholar] [CrossRef]
- Abdalla, A.M.; Fattah, A.R.A.; Ghosh, S.; Puri, I.K. Magnetoresponsive conductive colloidal suspensions with magnetized carbon nanotubes. J. Magn. Magn. Mater. 2017, 421, 292–299. [Google Scholar] [CrossRef]
- Yu, M.; Yang, P.; Fu, J.; Liu, S.; Choi, S.B. A theoretical model for the field-dependent conductivity of magneto-rheological gels and experimental verification. Sens. Actuators A 2016, 245, 127–134. [Google Scholar] [CrossRef]
- Hao, T. Electrorheological fluids. Adv. Mater. 2001, 13, 1847–1857. [Google Scholar] [CrossRef]
- Klingenberg, D.J. Magnetorheology: Applications and challenges. AIChE J. 2001, 47, 246–249. [Google Scholar] [CrossRef]
- Jang, S.H.; Park, Y.L.; Yin, H. Influence of coalescence on the anisotropic mechanical and electrical properties of nickel powder/polydimethylsiloxane composites. Materials 2016, 9, 239. [Google Scholar] [CrossRef]
- Laflamme, S.; Kollosche, M.; Connor, J.J.; Kofod, G. Robust flexible capacitive surface sensor for structural health monitoring applications. J. Eng. Mech. 2013, 139, 879–885. [Google Scholar] [CrossRef]
- Wu, X.; Lu, C.; Han, Y.; Zhou, Z.; Yuan, G.; Zhang, X. Cellulose nanowhisker modulated 3D hierarchical conductive structure of carbon black/natural rubber nanocomposites for liquid and strain sensing application. Compos. Sci. Technol. 2016, 124, 44–51. [Google Scholar] [CrossRef] [Green Version]
- Pang, H.; Xu, L.; Yan, D.X.; Li, Z.M. Conductive polymer composites with segregated structures. Prog. Polym. Sci. 2014, 39, 1908–1933. [Google Scholar] [CrossRef]
- Taherian, R. Experimental and analytical model for the electrical conductivity of polymer-based nanocomposites. Compos. Sci. Technol. 2016, 123, 17–31. [Google Scholar] [CrossRef]
- Dai, X.; Qiang, X.; Li, J.; Yao, T.; Wang, Z.; Song, H. Design and functionalization of magnetic ionic liquids surfactants (MILSs) containing alkyltrimethylammonium fragment. J. Mol. Liq. 2019, 277, 170–174. [Google Scholar] [CrossRef]
- Lee, K.B.; Kim, J.R.; Park, G.C.; Cho, H.K. Feasibility test of a liquid film thickness sensor on a flexible printed circuit board using a three-electrode conductance method. Sensors 2017, 17, 42. [Google Scholar] [CrossRef] [PubMed]
- Danisman, M.; Tuncol, G.; Kaynar, A.; Sozer, E.M. Monitoring of resin flow in the resin transfer molding (RTM) process using point-voltage sensors. Compos. Sci. Technol. 2007, 67, 367–379. [Google Scholar] [CrossRef]
- Altava, B.; Compan, V.; Andrio, A.; Castillo, L.F.D.; Molla, S.; Burgnuete, M.I.; Verdugo, E.G.; Luis, S.V. Conductive films based on composite polymers containing ionic liquids absorbed on crosslinked polymeric ionic-like liquids (SILLPs). Polymer 2015, 72, 69–81. [Google Scholar] [CrossRef] [Green Version]
- Ge, X.; Gu, C.D.; Wang, X.L.; Tu, J.P. Endowing manganese oxide with fast adsorption ability through controlling the manganese carbonate precursor assembled in ionic liquid. J. Colloid Interface Sci. 2015, 438, 149–158. [Google Scholar] [CrossRef] [PubMed]
- Le, H.H.; Das, A.; Basak, S.; Tahir, M.; Wieβner, S.; Fischer, D.; Reuter, U.; Stockelhuber, K.W.; Bhowmick, A.K.; Do, Q.K.; et al. Effect of different ionic liquids on the dispersion and phase selective wetting of carbon nanotubes in rubber blends. Polymer 2016, 105, 284–297. [Google Scholar] [CrossRef]
- Matchawet, S.; Kaesaman, A.; Vennemann, N.; Kumerlowe, C.; Nakason, C. Effectes of imidazolium ionic liquid on cure characteristics, electrical conductivity and other related properties of epoxidized natural rubber vulcanizates. Eur. Polym. J. 2017, 87, 344–359. [Google Scholar] [CrossRef]
- Genovese, M.; Lian, K. Polyoxometalate modified inorganic-organic nanocomposite materials for energy storage applications: A review. Curr. Opin. Solid State Mater. Sci. 2015, 19, 126–137. [Google Scholar] [CrossRef]
- Boaretto, N.; Joost, C.; Seyfried, M.; Vezzu, K.; Noto, V.D. Conductivity and properties of polysiloxane-polyether cluster-LiTFSI networks as hybrid polymer electrolytes. J. Power Sources 2016, 325, 427–437. [Google Scholar] [CrossRef]
- Shimada, K.; Saga, N. Mechanical enhancement of sensitivity in natural rubber using electrolytic polymerization aided by a magnetic field and MCF for application in haptic sensors. Sensors 2016, 16, 1521. [Google Scholar] [CrossRef] [PubMed]
- Shimada, K.; Saga, N. Detailed mechanism and engineering applicability of electrolytic polymerization aided by a magnetic field in natural rubber by mechanical approach for sensing (Part 1): The effect of experimental conditions on electrolytic polymerization. World J. Mech. 2016, 6, 357–378. [Google Scholar] [CrossRef]
- Shimada, K.; Saga, N. Detailed mechanism and engineering applicability of electrolytic polymerization aided by a magnetic field in natural rubber by mechanical approach for sensing (Part 2): Other and intrinsic effects on MCF rubber property. World J. Mech. 2016, 6, 379–395. [Google Scholar] [CrossRef]
- Shimada, K.; Saga, N. Development of a hybrid piezo natural rubber piezoelectricity and piezoresistivity sensor with magnetic clusters made by electric and magnetic field assistance and filling with magnetic compound fluid. Sensors 2017, 17, 1521. [Google Scholar] [CrossRef]
- Shimada, K. Enhancement of MCF rubber utilizing electric and magnetic fields, and clarification of electrolytic polymerization. Sensors 2017, 17, 767. [Google Scholar] [CrossRef]
- Shimada, K.; Michizuki, O.; Kubota, Y. The effect of particles on electrolytically polymerized thin natural MCF rubber for soft sensors installed in artificial skin. Sensors 2017, 17, 896. [Google Scholar] [CrossRef] [PubMed]
- Shimada, K. Elastic MCF rubber with photovoltaics and sensing for use as artificial or hybrid skin (H-Skin): 1st report on dry-type solar cell rubber with piezoelectricity for compressive sensing. Sensors 2018, 18, 1841. [Google Scholar] [CrossRef] [PubMed]
- Shimada, K. Elastic MCF rubber with photovoltaics and sensing on hybrid skin (H-Skin) for artificial skin by utilizing natural rubber: 2nd report on effect of tension and compression on properties of hybrid photo- and piezo-electricity in wet-type solar cell rubber. Sensors 2018, 18, 1848. [Google Scholar] [CrossRef] [PubMed]
- Shimada, K. MCF rubber with photovoltaics and sensing for use as artificial or hybrid skin (H-Skin): Third report on electric charge and storage under tension and compression. Sensors 2018, 18, 1853. [Google Scholar] [CrossRef]
- Shimada, K.; Fujita, T.; Oka, H.; Akagami, Y.; Kamiyama, S. Hydrodynamic and magnetized characteristics of MCF (magnetic compound fluid). Trans. Jpn. Soc. Mech. Eng. 2001, 664, 3034–3040. [Google Scholar] [CrossRef]
- Shimada, K.; Wu, Y.; Wong, Y.C. Effect of magnetic cluster and magnetic field on polishing using magnetic compound fluid (MCF). J. Magn. Magn. Mater. 2003, 262, 242–247. [Google Scholar] [CrossRef]
- Shimada, K.; Miyazaki, T.; Shibayama, A.; Fujita, T. Extraction of magnetic clusters self-assembled by a magnetic field. Smart Mater. Struct. 2003, 12, 297–303. [Google Scholar] [CrossRef]
- Xie, Z.; Chang, K.; Li, B.; Tang, H.; Fu, X.; Chang, Z.; Yuan, X.Z.; Wang, H. Glucose-assisted synthesis of highly dispersed LiMnPO4 nanoparticles at a low temperature for lithium ion batteries. Electrochim. Acta 2016, 189, 205–214. [Google Scholar] [CrossRef]
- Kwon, N.H. The effect of carbon morphology of the LiCoO2 cathode of lithium ion batteries. Solid State Sci. 2013, 21, 59–65. [Google Scholar] [CrossRef]
- Jiang, M.; Wang, X.; Hu, H.; Wei, S.; Fu, Y.; Shen, Y. In situ growth and performance of spherical Fe2F5/H2O nanoparticles multi-walled carbon nanotube network matrix as cathode material for sodium ion batteries. J. Power Sources 2016, 316, 170–175. [Google Scholar] [CrossRef]
- Zhang, Y.; Narayanan, A.; Mugele, F.; Stuart, M.A.C.; Duits, M.H.G. Charge inversion and colloidal stability of carbon black in battery electrolyte solutions. Colloids Surf. A Physicochem. Eng. Asp. 2016, 489, 461–468. [Google Scholar] [CrossRef]
- Song, H.J.; Kim, J.C.; Roh, H.S.; Lee, C.W.; Park, S.; Kim, D.W.; Hong, K.S. Anion-controlled synthesis of TiO2 nano-aggregates for Li ion battery electrodes. Mater. Charact. 2014, 96, 13–20. [Google Scholar] [CrossRef]
- Yang, L.; Yan, Q.; Xi, G.; Niu, L.; Lou, T.; Wang, T.; Wang, X. Preparation of cobalt ferrite nanoparticles by using spent Li-ion batteries. J. Mater. Sci. 2011, 46, 6106–6110. [Google Scholar] [CrossRef]
- Wang, S.; Hu, X.; Dai, Y. Preparation and electrochemical performance of polymer-derived SiBCN-graphene composite as anode material for lithium ion batteries. Ceram. Int. 2017, 43, 1210–1216. [Google Scholar] [CrossRef]
- Wang, M.; Shan, Z.; Tian, J.; Yang, K.; Liu, X.; Liu, H.; Zhu, K. Mixtures of unsaturated imidazolium based ionic liquid and organic carbonate as electrolyte for Li-ion batteries. Electrochim. Acta 2013, 95, 301–307. [Google Scholar] [CrossRef]
- Zhao, Y.; Bostrom, T. Ionic liquid and nanoparticle based magnetic electrolytes: Design, preparation, and electrochemical stability characterization. J. Mol. Liq. 2016, 213, 268–272. [Google Scholar] [CrossRef]
- Ito, T.; Otobe, S.; Oda, T.; Kojima, T.; Ono, S.; Watanabe, M.; Kiyota, Y.; Misawa, T.; Koguchi, S.; Higuchi, M.; et al. Polymerizable ionic liquid crystals comprising polyoxometalate clusters toward inorganic-organic hybrid solid electrolytes. Polymers 2017, 9, 290. [Google Scholar] [CrossRef] [PubMed]
- Sun, G.; Li, K.; Xie, L.; Wang, J.; Li, Y. Preparation of mesoporous carbon spheres with a bimodal pore size distribution and its application for electrochemical double layer capacitors based on ionic liquid as the electrolyte. Microporous Mesoporous Mater. 2012, 151, 282–286. [Google Scholar] [CrossRef]
Ni [g] | MF [g] | NR-Latex [g] | Water [g] | Electric Conductivity [S/m × 10−2] | |
---|---|---|---|---|---|
Water | 1.69 | ||||
MF | 1.5 | 15.5 | 11.3 | ||
MCF | 6 | 1.5 | 15.5 | 14.8 | |
NR-latex | 8 | 15.5 | 25.7 | ||
NR-latex, Ni | 6 | 8 | 15.5 | 23.5 | |
NR-latex, MF | 1.5 | 5 | 15.5 | 25.5 | |
NR-latex, MCF | 6 | 1.5 | 8 | 15.5 | 29.8 |
© 2019 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shimada, K. Effect of Magnetic Field and Aggregation on Electrical Characteristics of Magnetically Responsive Suspensions for Novel Hybrid Liquid Capacitor. Magnetochemistry 2019, 5, 38. https://doi.org/10.3390/magnetochemistry5020038
Shimada K. Effect of Magnetic Field and Aggregation on Electrical Characteristics of Magnetically Responsive Suspensions for Novel Hybrid Liquid Capacitor. Magnetochemistry. 2019; 5(2):38. https://doi.org/10.3390/magnetochemistry5020038
Chicago/Turabian StyleShimada, Kunio. 2019. "Effect of Magnetic Field and Aggregation on Electrical Characteristics of Magnetically Responsive Suspensions for Novel Hybrid Liquid Capacitor" Magnetochemistry 5, no. 2: 38. https://doi.org/10.3390/magnetochemistry5020038
APA StyleShimada, K. (2019). Effect of Magnetic Field and Aggregation on Electrical Characteristics of Magnetically Responsive Suspensions for Novel Hybrid Liquid Capacitor. Magnetochemistry, 5(2), 38. https://doi.org/10.3390/magnetochemistry5020038