One-Step Preparation Method and Rapid Detection Implementation Scheme for Simple Magnetic Tagging Materials
Abstract
:Featured Application
Abstract
1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Preparation
2.2.1. Synthesis of COOH-PEG (COOH-PEG300 or COOH-PEG800)
2.2.2. Preparation of Fe3O4 Nanoparticles (Fe3O4 NPs)
2.2.3. Preparation of Oleic Acid-Modified Fe3O4 Nanoparticles (Oleic Acid@Fe3O4 NPs)
2.2.4. Preparation of COOH-PEG-Modified Fe3O4 Nanoparticles (COOH-PEG@Fe3O4(NPs))
2.2.5. Preparation of Magnetic Labeling Solution (COOH-PEG@Fe3O4 Magnetic Labeling Solution)
2.3. Characterization
2.3.1. Nuclear Magnetic Resonance Spectrometer (1HNMR)
2.3.2. Fourier Transform Infrared Spectroscopy (IR)
2.3.3. Scanning Electron Microscopy (SEM) and Transmission Electron Microscopy (TEM)
2.3.4. EDX Spectrum
2.3.5. X-ray Diffractometer (XRD)
2.3.6. Dynamic Light Scattering (DLS)
2.3.7. Vibration Sample Magnetometer (VSM)
2.3.8. Rapid Measurement of the Magnetic Field
3. Results
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Jeon, J. Review of Therapeutic Applications of Radiolabeled Functional Nanomaterials. Int. J. Mol. Sci. 2019, 20, 2323. [Google Scholar] [CrossRef] [PubMed]
- Ren, X.; Evangelista-Leite, D.; Wu, T.; Rajab, T.K.; Moser, P.T.; Kitano, K.; Economopoulos, K.P.; Gorman, D.E.; Bloom, J.P.; Tan, J.J.; et al. Metabolic Glycan Labeling and Chemoselective Functionalization of Native Biomaterials. Biomaterials 2018, 182, 127–134. [Google Scholar] [CrossRef] [PubMed]
- Annenkov, V.V.; Danilovtseva, E.N.; Pal’shin, V.A.; Verkhozina, O.N.; Shishlyannikova, T.A.; Hickman, G.J.; Perry, C.C. Fluorescently-Tagged Polyamines for the Staining of Siliceous Materials. Plant Physiol. Biochem. 2018, 125, 205–211. [Google Scholar] [CrossRef] [PubMed]
- Woidasky, J.; Sander, I.; Schau, A.; Moesslein, J.; Wendler, P.; Wacker, D.; Gao, G.; Kirchenbauer, D.; Kumar, V.; Busko, D.; et al. Inorganic Fluorescent Marker Materials for Identification of Post-Consumer Plastic Packaging. Resour. Conserv. Recycl. 2020, 161, 104976. [Google Scholar] [CrossRef]
- Szielasko, K.; Youssef, A.; Sporn, D.; Mandel, K. Fingerprint Signatures Based on Nanomagnets as Markers in Materials for Tracing and Counterfeit Protection. J. Nanopart. Res. 2016, 18, 131. [Google Scholar] [CrossRef]
- Zhai, Y.; Shen, F.; Zhang, X.; Jing, P.; Li, D.; Yang, X.; Zhou, D.; Xu, X.; Qu, S. Synthesis of Green Emissive Carbon Dots@montmorillonite Composites and Their Application for Fabrication of Light-Emitting Diodes and Latent Fingerprints Markers. J. Colloid Interface Sci. 2019, 554, 344–352. [Google Scholar] [CrossRef] [PubMed]
- Xu, L.; Chen, Z.; Li, X.; Xiao, F. Performance, Environmental Impact and Cost Analysis of Marking Materials in Pavement Engineering, the-State-of-Art. J. Clean. Prod. 2021, 294, 126302. [Google Scholar] [CrossRef]
- Grimm, J.B.; Lavis, L.D. Caveat Fluorophore: An Insiders’ Guide to Small-Molecule Fluorescent Labels. Nat. Methods 2022, 19, 149–158. [Google Scholar] [CrossRef] [PubMed]
- Lukin, S.; Germann, L.S.; Friščić, T.; Halasz, I. Toward Mechanistic Understanding of Mechanochemical Reactions Using Real-Time In Situ Monitoring. Acc. Chem. Res. 2022, 55, 1262–1277. [Google Scholar] [CrossRef]
- Yerpude, A.N.; Parshuramkar, D.M.; Pawade, V.B.; Kokode, N.S.; Dhoble, S.J. Luminescence Properties of MgCaAl10O17:RE3+ (RE3+ = Sm3+, Dy3+) Phosphor for Eco-Friendly Solid-State Lighting Applications. Luminescence 2022, 37, 1710–1713. [Google Scholar] [CrossRef]
- Müssig, S.; Fidler, F.; Haddad, D.; Hiller, K.-H.; Wintzheimer, S.; Mandel, K. Supraparticles with a Magnetic Fingerprint Readable by Magnetic Particle Spectroscopy: An Alternative beyond Optical Tracers. Adv. Mater. Technol. 2019, 4, 1900300. [Google Scholar] [CrossRef]
- Liu, J.; Zhao, B.; Zhang, X.; Guan, D.; Sun, K.; Zhang, Y.; Liu, Q. Thiolation for Enhancing Photostability of Fluorophores at the Single-Molecule Level. Angew. Chem. Int. Ed. 2024, 63, e202316192. [Google Scholar] [CrossRef] [PubMed]
- Bakhteeva, I.A.; Medvedeva, I.V.; Filinkova, M.S.; Byzov, I.V.; Zhakov, S.V.; Uimin, M.A.; Yermakov, A.E. Magnetic sedimentation of nonmagnetic TiO2 nanoparticles in water by heteroaggregation with Fe-based nanoparticles. Sep. Purif. Technol. 2019, 218, 156–163. [Google Scholar] [CrossRef]
- Low, L.E.; Tey, B.T.; Ong, B.H.; Chan, E.S.; Tang, S.Y. Dispersion Stability, Magnetivity and Wettability of Cellulose Nanocrystal (CNC)-Dispersed Superparamagnetic Fe3O4 Nanoparticles: Impact of CNC Concentration. RSC Adv. 2016, 6, 113132–113138. [Google Scholar] [CrossRef]
- Merchant, R.R.; Maldonado-Camargo, L.; Rinaldi, C. In Situ Measurements of Dispersed and Continuous Phase Viscosities of Emulsions Using Nanoparticles. J. Colloid Interface Sci. 2017, 486, 241–248. [Google Scholar] [CrossRef]
- Gu, L.; Li, X.; Jiang, J.; Guo, G.; Wu, H.; Wu, M.; Zhu, H. Stem Cell Tracking Using Effective Self-Assembled Peptide-Modified Superparamagnetic Nanoparticles. Nanoscale 2018, 10, 15967–15979. [Google Scholar] [CrossRef]
- Komaee, A. Feedback Control for Transportation of Magnetic Fluids with Minimal Dispersion: A First Step Toward Targeted Magnetic Drug Delivery. IEEE Trans. Control Syst. Technol. 2017, 25, 129–144. [Google Scholar] [CrossRef]
- Kolitsi, L.I.; Orova, M.; Yiantsios, S.G. A Model of Magnetic Nanoparticle Transport and Their Effects in Tumor Areas: Assessment of Desirable Magnetic Properties. J. Magn. Magn. Mater. 2022, 561, 169732. [Google Scholar] [CrossRef]
- Dey, C.; Das, A.; Goswami, M.M. Dopamine Loaded SiO2 Coated Fe3O4 Magnetic Nanoparticles: A New Anticancer Agent in pH-Dependent Drug Delivery. ChemistrySelect 2019, 4, 12190–12196. [Google Scholar] [CrossRef]
- Zawadzki, J.; Bogacki, J. Smart Magnetic Markers Use in Hydraulic Fracturing. Chemosphere 2016, 162, 23–30. [Google Scholar] [CrossRef]
- Hung, A.H.; Lilley, L.M.; Hu, F.; Harrison, V.S.R.; Meade, T.J. Magnetic Barcode Imaging for Contrast Agents. Magn. Reson. Med. 2017, 77, 970–978. [Google Scholar] [CrossRef]
- Wintzheimer, S.; Granath, T.; Oppmann, M.; Kister, T.; Thai, T.; Kraus, T.; Vogel, N.; Mandel, K. Supraparticles: Functionality from Uniform Structural Motifs. ACS Nano 2018, 12, 5093–5120. [Google Scholar] [CrossRef] [PubMed]
- Yamamoto, S.; Matsuda, I. Measurement of the Resonant Magneto-Optical Kerr Effect Using a Free Electron Laser. Appl. Sci. 2017, 7, 662. [Google Scholar] [CrossRef]
- Winkler, R.; Ciria, M.; Ahmad, M.; Plank, H.; Marcuello, C. A Review of the Current State of Magnetic Force Microscopy to Unravel the Magnetic Properties of Nanomaterials Applied in Biological Systems and Future Directions for Quantum Technologies. Nanomaterials 2023, 13, 2585. [Google Scholar] [CrossRef] [PubMed]
- Kutluay, S.; Şahin, Ö.; Ece, M.Ş. Fabrication and Characterization of Fe3O4/Perlite, Fe3O4/perlite@SiO2, and Fe3O4/perlite@SiO2@sulfanilamide Magnetic Nanomaterials. Appl. Phys. A 2022, 128, 222. [Google Scholar] [CrossRef]
- Rashidi Dafeh, S.; Iranmanesh, P.; Salarizadeh, P. Fabrication, Optimization, and Characterization of Ultra-Small Superparamagnetic Fe3O4 and Biocompatible Fe3O4@ZnS Core/Shell Magnetic Nanoparticles: Ready for Biomedicine Applications. Mater. Sci. Eng. C 2019, 98, 205–212. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Kim, C.; Zhang, Z.; Hu, Q.; Sun, T.; Hu, X. Adsorption Behavior of Lysozyme on Carbon-Coated Fe3O4 Nanoparticles. Curr. Nanosci. 2017, 13, 159–166. [Google Scholar] [CrossRef]
- Xu, B.; Senthilkumar, S.; Zhong, W.; Shen, Z.; Lu, C.; Liu, X. Magnetic Core–Shell Fe3O4@Cu2O and Fe3O4@Cu2O–Cu Materials as Catalysts for Aerobic Oxidation of Benzylic Alcohols Assisted by TEMPO and N-Methylimidazole. RSC Adv. 2020, 10, 26142–26150. [Google Scholar] [CrossRef] [PubMed]
- Zhu, Y.; Yue, M.; Natarajan, V.; Kong, L.; Ma, L.; Zhang, Y.; Zhao, Q.; Zhan, J. Efficient Activation of Persulfate by Fe3O4@β-Cyclodextrin Nanocomposite for Removal of Bisphenol A. RSC Adv. 2018, 8, 14879–14887. [Google Scholar] [CrossRef]
- Sadr, M.S.; Heydarinasab, A.; Panahi, H.A.; Javan, R.S. Production and Characterization of Biocompatible Nano-Carrier Based on Fe3O4 for Magnetically Hydroxychloroquine Drug Delivery. Polym. Adv. Technol. 2021, 32, 564–573. [Google Scholar] [CrossRef]
- Shariati, B.; Goodarzi, M.T.; Jalali, A.; Salehi, N.; Mozaffari, M. Gold Nanorods Incorporated into a MoS2/Fe3O4 Nanocomposite for Photothermal Therapy and Drug Delivery. New J. Chem. 2023, 47, 20100–20108. [Google Scholar] [CrossRef]
- Yang, Z.; Wang, L.; Liu, Y.; Liu, S.; Tang, D.; Meng, L.; Cui, B. ZnO Capped Flower-like Porous Carbon-Fe3O4 Composite as Carrier for Bi-Triggered Drug Delivery. Mater. Sci. Eng. C 2020, 107, 110256. [Google Scholar] [CrossRef] [PubMed]
- Chen, C.; Yuan, H.; Wang, X.; Lin, Y.; He, Y.; Wang, F. Recyclable and High-Efficiency Methane Hydrate Formation Promoter Based on SDS-Coated Superparamagnetic Nano-Fe3O4. Chem. Eng. J. 2022, 437, 135365. [Google Scholar] [CrossRef]
- Krump, H.; Alexy, P.; Luyt, A.S. Preparation of a Maleated Fischer–Tropsch Paraffin Wax and FTIR Analysis of Grafted Maleic Anhydride. Polym. Test. 2005, 24, 129–135. [Google Scholar] [CrossRef]
- Batista de Jesus, A.C.; Santos Barbosa, C.C.; Barreto Peixoto, E.; de Jesus, J.R.; da Silva Filho, J.L.; Fabian, F.A.; Costa, I.M.; dos Santos Duque, J.G.; de Meneses, C.T. Influence of Ag on the Magnetic Anisotropy of Fe3O4 Nanocomposites. J. Supercond. Nov. Magn. 2019, 32, 2471–2477. [Google Scholar] [CrossRef]
- Zuo, Y.; Wu, Y.; Gu, J.; Zhang, Y. The UV Aging Properties of Maleic Anhydride Esterified Starch/Polylactic Acid Composites. J. Wuhan Univ. Technol.-Mat. Sci. Edit. 2017, 32, 971–977. [Google Scholar] [CrossRef]
- Hong, R.Y.; Zhang, S.Z.; Han, Y.P.; Li, H.Z.; Ding, J.; Zheng, Y. Preparation, Characterization and Application of Bilayer Surfactant-Stabilized Ferrofluids. Powder Technol. 2006, 170, 1–11. [Google Scholar] [CrossRef]
- Shin, J.R.; An, G.S.; Choi, S.-C. Influence of Carboxylic Modification Using Polyacrylic Acid on Characteristics of Fe3O4 Nanoparticles with Cluster Structure. Processes 2021, 9, 1795. [Google Scholar] [CrossRef]
- Anjum, S.; Tufail, R.; Rashid, K.; Zia, R.; Riaz, S. Effect of Cobalt Doping on Crystallinity, Stability, Magnetic and Optical Properties of Magnetic Iron Oxide Nano-Particles. J. Magn. Magn. Mater. 2017, 432, 198–207. [Google Scholar] [CrossRef]
- Hu, J.; Yamahara, H.; Liao, Z.; Yano, Y.; Tabata, H. Characterization of Hydrogen Bond Network of Waters around Polyethylene Glycol by Broadband Dielectric Spectroscopy. Appl. Phys. Lett. 2022, 120, 023702. [Google Scholar] [CrossRef]
- Pochapski, D.J.; Carvalho dos Santos, C.; Leite, G.W.; Pulcinelli, S.H.; Santilli, C.V. Zeta Potential and Colloidal Stability Predictions for Inorganic Nanoparticle Dispersions: Effects of Experimental Conditions and Electrokinetic Models on the Interpretation of Results. Langmuir 2021, 37, 13379–13389. [Google Scholar] [CrossRef] [PubMed]
- Tsuruta, T. On the Role of Water Molecules in the Interface between Biological Systems and Polymers. J. Biomater. Sci. Polym. Ed. 2010, 21, 1831–1848. [Google Scholar] [CrossRef] [PubMed]
- Bica, I.; Anitas, E.M.; Choi, H.J.; Sfirloaga, P. Microwave-Assisted Synthesis and Characterization of Iron Oxide Microfibers. J. Mater. Chem. C 2020, 8, 6159–6167. [Google Scholar] [CrossRef]
- Hu, Y.; Mignani, S.; Majoral, J.-P.; Shen, M.; Shi, X. Construction of Iron Oxide Nanoparticle-Based Hybrid Platforms for Tumor Imaging and Therapy. Chem. Soc. Rev. 2018, 47, 1874–1900. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Song, X.; Ma, W.; Song, P.; Wang, H. One-Step Preparation Method and Rapid Detection Implementation Scheme for Simple Magnetic Tagging Materials. Magnetochemistry 2024, 10, 44. https://doi.org/10.3390/magnetochemistry10070044
Song X, Ma W, Song P, Wang H. One-Step Preparation Method and Rapid Detection Implementation Scheme for Simple Magnetic Tagging Materials. Magnetochemistry. 2024; 10(7):44. https://doi.org/10.3390/magnetochemistry10070044
Chicago/Turabian StyleSong, Xianxiao, Weiting Ma, Ping Song, and Hongying Wang. 2024. "One-Step Preparation Method and Rapid Detection Implementation Scheme for Simple Magnetic Tagging Materials" Magnetochemistry 10, no. 7: 44. https://doi.org/10.3390/magnetochemistry10070044
APA StyleSong, X., Ma, W., Song, P., & Wang, H. (2024). One-Step Preparation Method and Rapid Detection Implementation Scheme for Simple Magnetic Tagging Materials. Magnetochemistry, 10(7), 44. https://doi.org/10.3390/magnetochemistry10070044