Effect of Exogenous Substance K2SO4 on the Nutritional Quality of Broccoli and Its Metabolic Regulation Mechanism
Abstract
:1. Introduction
2. Materials and Methods
2.1. Test Materials and Design
2.2. Test Reagents
2.3. Test Instruments
2.4. Item Determination
2.5. Data Analysis and Processing
3. Results and Analysis
3.1. Effects of Exogenous K2SO4 Treatment on Nutritional Components and Antioxidant Activity of Broccoli
3.1.1. Effect of Exogenous K2SO4 Treatment on Vitamin C Content in Broccoli
3.1.2. Effect of Exogenous K2SO4 Treatment on Soluble Protein Content in Broccoli
3.1.3. Effect of Exogenous K2SO4 Treatment on Soluble Sugar Content in Broccoli
3.1.4. Effect of Exogenous K2SO4 Treatment on Polyphenol Content in Broccoli
3.1.5. Effect of Exogenous K2SO4 Treatment on the Content of Total Flavonoids in Broccoli
3.1.6. Effect of Exogenous K2SO4 Treatment on MDA Content in Broccoli
3.1.7. Effect of Exogenous K2SO4 Treatment on Superoxide Dismutase Activity in Broccoli
3.2. Effect of Exogenous Substance K2SO4 Treatment on Active Substances in Broccoli
3.2.1. Effect of Exogenous K2SO4 Treatment on Glucosinolate Content in Broccoli
3.2.2. Effect of Exogenous K2SO4 Treatment on Sulforaphane Content in Broccoli
3.2.3. Effect of Exogenous K2SO4 Treatment on Myrosinase Activity in Broccoli
3.3. Effect of Exogenous Substance K2SO4 Treatment on the Expression of Key Genes of Glucosinolate Synthesis in Broccoli
3.3.1. Effect of Exogenous K2SO4 Treatment on the Expression of Key Genes for Aliphatic Glucosinolate Synthesis in Broccoli
3.3.2. Effect of Exogenous K2SO4 Treatment on the Expression Level of Key Genes for Synthesis of Indole Glucosinolates in Broccoli
4. Correlation Analysis between Glucosinolate Content, Enzyme Activity, and Gene Expression Treated with Exogenous Substance K2SO4
5. Discussion
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Han, J.; Tao, W.; Hao, H.; Zhang, B.; Jiang, W.; Niu, T.; Li, Q.; Cai, T. Physiology and Quality Responses of Fresh-cut Broccoli Flores Pretreated with Ethanol Vapor. J. Food Sci. 2006, 71, S385–S389. [Google Scholar] [CrossRef]
- Del Carmen Mart í Nez-Ballesta, M.; Moreno, D.A.; Carvajal, M. The physiological impact of glucosinolates on plant response to abiotic stress in Brassica. Int. J. Mol. Sci. 2013, 14, 11607–11625. [Google Scholar] [CrossRef] [PubMed]
- Shapiro, T.A.; Fahey, J.W.; Wade, K.L.; Stephenson, K.K.; Talalay, P. Human Metabolism and Excretion of Cancer Chemoprotective Glucosinolates and Isotheocyanates of Cruciferous Vegetables. Cancer Epidemiol. Biomark. Prev. 1998, 7, 1091. [Google Scholar]
- Hanschen, F.S.; Rohn, S.; Mewis, I.; Schreiner, M.; Kroh, L.W. Influence of the chemical structure on the thermal degradation of the lucosinolates in broccoli sprouts. Food Chem. 2012, 130, 1–8. [Google Scholar] [CrossRef]
- Lin, L.Z.; Sun, J.; Chen, P.; Zhang, R.W.; Fan, X.E.; Li, L.W.; Harnly, J.M. Profiling of Glucosinolates and Flavonoids in Rorippa indica (Linn.) Hiern. (Cruciferae) by UHPLC-PDA-ESI/HRMSn. J. Financ. Food Chem. 2014, 62, 6118–6129. [Google Scholar] [CrossRef] [PubMed]
- Schuster, J.; Knill, T.; Reichelt, M.; Gershenzon, J.; Binder, S. Branched-chain aminotransferase 4 is part of the chain elongation path in the biosynthesis of methodine-derived glucosinolates in Arabidopsis. Plant Cell 2006, 18, 2664–2679. [Google Scholar] [CrossRef]
- Mikkelsen, M.D.; Hansen, C.H.; Wittstock, U.; Halkier, B.A. Cytochrome P450 CYP79B2 from Arabidopsis Catalyzes the Conversion of Tryptophan to Indole-3-acetaldoxime, a Precursor of Indole Glucosinolates and Indole-3-acetic Acid. J. Biol. Chem. 2000, 275, 33712–33717. [Google Scholar] [CrossRef]
- Hull, A.K.; Vij, R.; Celenza, J.L. Arabidopsis cytochrome P450s that catalyst the first step of tryptophan-dependent indole-3-acetic acid biosynthetic. Proc. Natl. Acad. Sci. USA 2000, 97, 2379–2384. [Google Scholar] [CrossRef]
- Hemm, M.R.; Ruegger, M.O.; Chapter, C. The Arabidopsis ref2 mutant is defective in the gene encoding CYP83A1 and shows both phenylpropanoid and glucosinolate phenotypes. Plant Cell 2003, 15, 179–194. [Google Scholar] [CrossRef]
- Hansen, C.H.; Du, L.; Naur, P.; Olsen, C.E.; Axelsen, K.B.; Hick, A.J.; Halkier, B.A. CYP83b1 is the oxime-metabolizing enzyme in the lucosinolate path in Arabidopsis. J. Biol. Chem. 2001, 276, 24790–24796. [Google Scholar] [CrossRef]
- Aghajanzadeh, T.A.; Reich, M.; Kopriva, S.; De Kok, L.J. Impact of chloride (NaCl, KCl) and sulphate (Na2SO4, K2SO4) salinity on lucosinolate metabolism in Brassica rapa. J. Agron. Crop Sci. 2018, 204, 137–146. [Google Scholar] [CrossRef]
- Yi, G.E.; Robin, A.H.K.; Yang, K.; Park, J.I.; Hwang, B.H.; Nou, I.S. Exogenous Method Jasmonate and Salicylic Acid Index Subspecies-Specific Patterns of Glucosinolate Accumulation and Gene Expression in Brassica learned L. Molecules 2016, 21, 1417. [Google Scholar] [CrossRef] [PubMed]
- Cheng, Y. Enrichment of Isothiocyanate in Western Blue Flower Buds by Selenium and Sulfur Interaction and Its Mechanism; Yangzhou University: Yangzhou, China, 2020. [Google Scholar]
- Yang, R.; Guo, L.; Jin, X.; Shen, C.; Zhou, Y.; Gu, Z. Enhancement of glucosinolate and sulforaphane formation of broccoli sprouts by zinc sulphate via its stress effect. J. Funct. Foods 2015, 13, 345–349. [Google Scholar] [CrossRef]
- Mao, S. Effect of Selenium and Sulfur Interaction on Sulforaphane Synthesis in Broccoli; Hunan Agricultural University: Changsha, China, 2019. [Google Scholar]
- Cheng, K. Effects of Selenium and Sulfur Interaction on Physiological and Photosynthetic Characteristics of Broccoli Seedlings; Sichuan Agricultural University: Chengdu, China, 2016. [Google Scholar]
- Guo, L.; Yang, R.; Wang, Z.; Guo, Q.; Gu, Z. Effect of NaCl stress on health-promoting compounds and antioxidant activity in the sprouts of three broccoli cultivars. Int. J. Food Sci. Nutr. 2014, 65, 476–481. [Google Scholar] [CrossRef]
- Bradford, M.M. A rapid and sensitive method for the quantification of microgram quantifications of protein utilizing the principle of protein-dye binding. Anal. Biochem. 1976, 72, 248–254. [Google Scholar] [CrossRef]
- Pramanik, B.K. Changes in acid invertase activity and sugar distribution during postharvest senescence in broccoli. Pak. J. Biol. Sci. 2004, 7, 679–684. [Google Scholar] [CrossRef]
- Orthofer, R.L.V.S. Analysis of total phenols and other oxidation substrates and antioxidants by means of Folin-Ciocalteu reagent. Methods Enzymol. 1998, 299, 152–178. [Google Scholar]
- Wang, L.I.; Shan, T.; Xie, B.; Ling, C.; Shao, S.; Jin, P.; Zheng, Y. Glycine betaine reduces chilling injection in peach fruit by enhancing phenolic and sugar metabolisms. Food Chem. 2019, 272, 530–538. [Google Scholar] [CrossRef]
- Papastergiadis, A.; Mubiru, E.; Van Langenhove, H.; De Meulenaer, B. Malondialdehyde Measurement in Oxidized Foods: Evaluation of the Spectrophotometric Thiobarbituric Acid Reactive Substances (TBARS) Test in Various Foods. J. Agric. Food Chem. 2012, 60, 9589–9594. [Google Scholar] [CrossRef]
- Tang, B.; Wang, Y.; Ma, L. Simple and rapid catalytic spectrophotometric determination of superoxide anion radical and superoxide dismutase activity in natural medical vegetables using phenol as the substrate for horseradish peroxidase. Anal. Bioanal. Chem. 2004, 378, 523–528. [Google Scholar] [CrossRef]
- Wang, Y.-Q.; Hu, L.-P.; Liu, G.-M.; Zhang, D.-S.; He, H.-J. Evaluation of the Nutritional Quality of Chinese Kale (Brassica alboglabra Bailey) Using UHPLC-Quadrupole-Orbitrap MS/MS-Based Metabolomics. Molecules 2017, 22, 1262. [Google Scholar] [CrossRef] [PubMed]
- Matusheski, N.V.; Juvik, J.A.; Jeffery, E.H. Heating decisions epithiospecifier protein activity and increments sulforaphane formation in broccoli. Phytochemistry 2004, 65, 1273–1281. [Google Scholar] [CrossRef] [PubMed]
- Guo, R.; Yuan, G.; Wang, Q. Effect of sucrose and mannitol on the accumulation of health-promoting compounds and the activity of metabolic enzymes in broccoli sprouts. Sci. Hortic. 2011, 128, 159–165. [Google Scholar] [CrossRef]
- Czechowski, T.; Bari, R.P.; Stitt, M.; Scheible, W.R.; Udvardi, M.K. Real-Time RT-PCR profiling of over 1400 Arabidopsis translation factors: Unpreceded sensitivity reveals novel root-And shoot-Specific genes. Plant J. Cell Mol. Biol. 2004, 38, 366–379. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Lv, C.; Sun, J.; Song, X.; Makaza, N.; Wu, Y. Protective effects of broccoli extracts and sulforaphane against hydrogen peroxide induced oxidative stress in B16 cells. J. Funct. Foods 2021, 87, 104833. [Google Scholar] [CrossRef]
- Chu, T.; Peng, C.; Guo, L. MgSO4 Effects of treatment on physiological active substances and antioxidant capacity of broccoli sprouts. Food Sci. 2018, 39, 53–59. [Google Scholar]
- Ding, Y. Effects of Selenium and Sulfur Interaction on Growth and Antioxidant Quality of Pakchoi Plants; Zhejiang Agriculture and Forestry University: Hangzhou, China, 2014. [Google Scholar]
- Augustine, R.; Bisht, N.C. Biofortification of oilseed Brassica juncea with the anti-cancer compound glucoraphanin by supporting GSL-ALK gene family. Sci. Rep. 2015, 5, 18005. [Google Scholar] [CrossRef]
- Juge, N.; Mithen, R.F.; Traka, M. Molecular basis for chemoprevention by sulforaphane: A comprehensive review. Cell. Mol. Life Sci. 2007, 64, 1105–1127. [Google Scholar] [CrossRef]
- Aires, A.; Rosa, E.; Carvalho, R. Effect of nitrogen and sulfur fertilisation on glucosinolates in the leaves and roots of broccoli sprouts (Brassica oleracea var. italica). J. Sci. Food Cult. 2006, 86, 1512–1516. [Google Scholar] [CrossRef]
- Guo, L.; Yang, R.; Zhou, Y.; Gu, Z. Heat and hypoxia stresses enhance the accumulation of aliphatic glucosinolates and sulforaphane in broccoli sprouts. Eur. Food Res. Technol. 2015, 242, 107–116. [Google Scholar] [CrossRef]
- Guo, L.; Yang, R.; Gu, Z. Cloning of genes related to aliphatic glucosinolate metabolism and the mechanism of sulforaphane accumulation in broccoli sprouts under jasmonic acid treatment. J. Sci. Food Agric. 2016, 96, 4329–4336. [Google Scholar] [CrossRef] [PubMed]
- Baenas, N.; Garcia-Viguera, C.; Moreno, D.A. Biotic elicitors effectually increase the glucosinolates content in Brassicaceae sprouts. J. Agric. Food Chem. 2014, 62, 1881–1889. [Google Scholar] [CrossRef] [PubMed]
- Guo, R.; Hou, Q.; Yuan, G.; Zhao, Y.; Wang, Q. Effect of 2, 4-epibrassinolide on main health-promoting compounds in broccoli sprouts. LWT-Food Sci. Technol. 2014, 58, 287–292. [Google Scholar] [CrossRef]
- Angelino, D.; Jeffery, E. Glucosinolate hydrolysis and bioavailability of resulting isotheocyanates: Focus on glucoraphanin. J. Funct. Foods 2014, 7, 67–76. [Google Scholar] [CrossRef]
- Guo, Q.; Guo, L.; Wang, Z.; Zhuang, Y.; Gu, Z. Response surface optimization and identification of isotheocyanates produced from broccoli sprouts. Food Chem. 2013, 141, 1580–1586. [Google Scholar] [CrossRef]
- Gu, Z.-X.; Guo, Q.-H.; Gu, Y.-J. Factors Influencing Glucoraphanin and Sulforaphane Formation in Brassica Plants: A Review. J. Integr. Agric. 2012, 11, 1804–1816. [Google Scholar] [CrossRef]
Gene | Sense Primer (5′-3′) | Anti-Sense Primer (5′-3′) |
---|---|---|
Actin | CTGTTCCAATCTACGAGGGTTTC | GCTCGGCTGTGGTGGTGAA |
MYB28 | AGACTGCGATGGACTAACTACCT | CCGACCACTTGTTTCCACGA |
MYB34 | CGGGACGAACTGACA | CGACCGAGTATTTGCT |
CYP79B2 | CGGAGATGGTAAACAA | ATGGAGACGGAAAGC |
CYP83B1 | AGCAGACGCAAAGATA | ACCCGAAAGGTAGGA |
CYP79F1 | TAGACGAAGTGGTGGGA | GGCTACCTTTGGGAAT |
CYP83A1 | TCCTTATCCCTCGTGC | ACTCGTAGTCCGTGCC |
BCAT4 | TAGCAGAGGCGAAAG | TTGTAGCCGAAATCAC |
MAM1 | GCCGAGGATAGTCATA | ATCTTCGCAACCAAA |
FMO2 | GACCGTGGTTACGGGAGACTTG | GTAGCCATTGTATAACAAGCAACCC |
UGT74B1 | TCCACAGATTCACCCAT | AAGCCACGGACGAGA |
ST5a | CAATGGAACCAACCACGAC | TGGGAGGGAAGCGATG |
ST5b | CCGACACTACCTTACCGAACCA | CGTGAGGAAAAGAGGCGATG |
ST5c | CCACGCCCAAAACTTCTTCA | TGAGTGGAGAAGAGCGTGTT |
AOP2 | GAGTAACGGAAAGAAAGAAGACAAGG | ATAAGCGTGAAGAGTAGAACGAGGT |
AOP3 | AGGTGAAGACCAAAGAGGGGAA | TCGGTGATACGGTGAAGGGA |
SUR1 | GCGGTTCGGTGGAGCTGATAAG | GCGGAAGCAAGGATAGACGGAAG |
GSTF | GAGTCTTTCCTATCCCACA | TCTTCGGCAACAACG |
CYP81F1 | AAGCAGAGCGGTTCAAGAAG | GCGTGACCATTGTGTTACCA |
CYP81F4 | CGGTGGAGGAGAAGGAGAAA | CTGACACATGGCTCGTAACG |
GSL-OH | CCAGGAAGTGAGAAGTGGGT | TAGCACCATCACCAGCATCA |
Aliphatic Glucosinolate | Tol Aliphatic Gs | Indole Glucosinolates | Tol Indole Gs | Total | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
PRO | SIN | RAA | NAP | ERU | 4OH | GBC | 4ME | NEO | ||||
S0 | 0.129 d | 0.057 c | 2.933 d | 0.011 b | 0.510 b | 3.639 d | 0.478 b | 3.568 c | 0.987 c | 2.089 c | 7.123 c | 10.762 c |
S25 | 0.140 c | 0.057 c | 3.129 c | 0.015 a | 0.532 a | 3.873 c | 0.513 a | 3.458 d | 0.894 d | 1.631 d | 6.496 d | 10.368 d |
S75 | 0.145 b | 0.061 b | 3.324 a | 0.010 b | 0.430 d | 3.970 a | 0.304 d | 4.933 b | 0.994 b | 3.842 b | 10.072 b | 14.042 b |
S150 | 0.180 a | 0.072 a | 3.196 b | 0.014 a | 0.474 c | 3.935 b | 0.470 c | 6.464 a | 1.103 a | 4.884 a | 12.922 a | 16.857 a |
Pearson | RAA | GBC | TOL | Tol Aliphatic Gs | Tol Indole Gs | Sulfor-Aphane | Myrosi-Nase | MYB34 | CYP79B2 | CYP83A1 | MAM1 | FMO2 |
---|---|---|---|---|---|---|---|---|---|---|---|---|
GBC | 1.000 ** | |||||||||||
TOL | 1.000 ** | 1.000 ** | ||||||||||
Tol aliphatic Gs | 0.999 ** | 1.000 ** | 1.000 ** | |||||||||
Tol indole Gs | 1.000 ** | 1.000 ** | 1.000 ** | 1.000 ** | ||||||||
Sulforaphane | 0.993 ** | 0.994 ** | 0.994 ** | 0.995 ** | 0.994 ** | |||||||
Myrosinase | −0.782 | −0.774 | −0.773 | −0.755 | −0.774 | −0.734 | ||||||
MYB34 | 0.922 ** | 0.921 ** | 0.921 ** | 0.921 ** | 0.921 ** | 0.888 * | −0.719 | |||||
CYP79B2 | 0.826 * | 0.830 * | 0.831 * | 0.844 * | 0.830 * | 0.824 * | −0.375 | 0.897 * | ||||
CYP83A1 | 0.981 ** | 0.983 ** | 0.983 ** | 0.986 ** | 0.983 ** | 0.993 ** | −0.677 | 0.853 * | 0.828 * | |||
MAM1 | −0.920 ** | −0.922 ** | −0.922 ** | −0.928 ** | −0.922 ** | −0.904 * | 0.59 | −0.976 ** | −0.969 ** | −0.890 * | ||
FMO2 | 0.827 * | 0.820 * | 0.819 * | 0.802 | 0.820 * | 0.788 | −0.989 ** | 0.75 | 0.424 | 0.733 | −0.633 | |
UGT74B1 | 0.992 ** | 0.991 ** | 0.990 ** | 0.986 ** | 0.991 ** | 0.979 ** | −0.851 * | 0.908 * | 0.758 | 0.957 ** | −0.881 * | 0.891 * |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, M.; Huang, W.; Zhang, J.; Zhao, Z.; Wang, Y.; Gruda, N.S.; Liu, G.; He, H. Effect of Exogenous Substance K2SO4 on the Nutritional Quality of Broccoli and Its Metabolic Regulation Mechanism. Horticulturae 2023, 9, 1058. https://doi.org/10.3390/horticulturae9091058
Liu M, Huang W, Zhang J, Zhao Z, Wang Y, Gruda NS, Liu G, He H. Effect of Exogenous Substance K2SO4 on the Nutritional Quality of Broccoli and Its Metabolic Regulation Mechanism. Horticulturae. 2023; 9(9):1058. https://doi.org/10.3390/horticulturae9091058
Chicago/Turabian StyleLiu, Meng, Wei Huang, Junhua Zhang, Zixuan Zhao, Yaqin Wang, Nazim S. Gruda, Guangmin Liu, and Hongju He. 2023. "Effect of Exogenous Substance K2SO4 on the Nutritional Quality of Broccoli and Its Metabolic Regulation Mechanism" Horticulturae 9, no. 9: 1058. https://doi.org/10.3390/horticulturae9091058
APA StyleLiu, M., Huang, W., Zhang, J., Zhao, Z., Wang, Y., Gruda, N. S., Liu, G., & He, H. (2023). Effect of Exogenous Substance K2SO4 on the Nutritional Quality of Broccoli and Its Metabolic Regulation Mechanism. Horticulturae, 9(9), 1058. https://doi.org/10.3390/horticulturae9091058