Effect of Pepper Rootstocks as a Sustainable Alternative to Improve Yield and Fruit Quality
Abstract
:1. Introduction
2. Materials and Methods
2.1. Location of Experimental Site
2.2. Genetic Material
- Foundation (F1 from Rijk Zwaan, Culiacan, Sin. Mx [29]): A first generation rootstock that produces compact, highly productive and early-maturing plants, with strong root system and tolerance to cold soils and environments, as well as resistance to Tobacco Mosaic Virus (TM) and Potato Virus (PVY) and good resistance to nematodes.
- Yaocali (F1 from Enza Zaden, Culiacan, Sin, Mx [30]): A rootstock known for its high production, fruit quality and early crop maturity. Its strong root development promotes plant vigor and structure. It is recommended for crops exposed to root asphyxia, soil pathogens and high salinity. It also exhibits good resistance to TM.
- UAN (developed material at UAAAN-Saltillo, Coah. Mx): A vigorous plant with an excellent root system and high resistance to Fusarium oxysporum (Fo). It is an early and productive rootstock option.
- Avante (F1 from Rijk Zwaan, Culiacan, Sin. Mx [29]): High quality fruits (L and XL) with 3 and 4 locules. They have a bright red color with thick walls, providing a long shelf life. The plant exhibits excellent fruit set and high yield. It shows high resistance to Phytophtora capsici (Pc) and soil nematodes.
- DiCaprio (F1 from Enza Zaden, Culiacan, Sin, Mx [30]): A vigorous and early-maturing plant with good foliage coverage. It produces high quality fruits with great uniformity, predominantly extra-large (XL) and large (L) fruits with 4 locules. The fruits have thick walls, good firmness and a yellow color.
- Ucumari (F1 from Enza Zaden, Culiacan, Sin, Mx [30]): A highly productive plant with superior fruit quality. It exhibits quick and uniform fruit ripening, firm locules, a long shelf life and an orange coloration. The fruits have high resistance to TM.
2.3. Establishment of the Experiment
2.4. Evaluations
2.4.1. Crop Yield
2.4.2. Commercial Classification
2.4.3. Fruit Quality
Vitamin C
Total Soluble Solids (TSS)
Fruit Firmness (FF)
Morphological Characterization
2.5. Statistical Analysis
3. Results
3.1. Yield Components
3.2. Average Fruit Weight (AFW)
3.3. Number of Fruits per m−2 (NF)
3.4. Commercial Classification
3.4.1. Commercial Classification (XL)
3.4.2. Commercial Classification (L)
3.4.3. Commercial Classification (M)
3.4.4. Commercial Classification (S)
3.4.5. Rootstock × Graft Interaction
3.5. Fruit Length (FL)
3.6. Equatorial Fruit Diameter (EFD)
3.7. Vitamin C (CAA)
3.8. Total Soluble Solids (TSS)
3.9. Fruit Firmness (FF)
3.10. Mesocarp Thickness (MT)
3.11. Plant Height (PH)
4. Discussion
4.1. Yield Components
4.2. Fruit Quality
4.3. Morphological Characteristics
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Lozano-Povis, A.; Alvarez-Montalvan, C.E.; Moggiano, N. El cambio climático en los andes y su impacto en la agricultura: Una revisión sistemática. Sci. Agropecu. 2021, 12, 101–108. [Google Scholar] [CrossRef]
- Mendoza Villamizar, J.D. Determinación de Tipos de Biocidas Empleados en la Agricultura, Sus Impactos en el Ambiente, y Su Comparación Con Biocidas de Origen Natural. 2020. Available online: http://repositorio.uts.edu.co:8080/xmlui/handle/123456789/3683 (accessed on 5 December 2022).
- Piña Borrego, C.E. Cambio Climático, Inseguridad Alimentaria y Obesidad Infantil. Rev. Cuba Salud Pública 2020, 45, e1964. [Google Scholar]
- Lenaerts, B.; Collard, B.C.Y.; Demont, M. Review: Improving global food security through accelerated plant breeding. Plant Sci. 2019, 287, 110207. [Google Scholar] [CrossRef] [PubMed]
- Castañeda-Álvarez, N.P. Agrobiodiversidad, seguridad alimentaria y cambio climático. Siembra 2022, 9. Available online: http://scielo.senescyt.gob.ec/scielo.php?script=sci_arttext&pid=S2477-88502022000300002&lng=es&tlng=es (accessed on 5 December 2022).
- Basto-Pool, C.I.; Herrera-Parra, E.; Hernández-Pinto, C.D. Importancia del injerto en hortalizas. Bioagrociencias 2021, 14, 18–24. [Google Scholar] [CrossRef]
- Heredia, P.; Sosa, M.C.; Reybet, G. Biofumigacion, Una Alternativa Para la Desinfección de Suelos. In Boletin Electrónico FCA-UNCo, 2nd ed.; 2011; Volume 3, Available online: http://rdi.uncoma.edu.ar/handle/uncomaid/15555 (accessed on 5 December 2022).
- Ortega Solorzano, D.E.; Tisza Contreras, J.F. Diseño de un sistema de automatización del proceso de fumigación y control de expulsión de bromuro de metilo en la agroindustria. Rev. ECIPerú Vol. 2020, 17, 5–11. [Google Scholar] [CrossRef]
- Guiñazu Fernández, C. Influencia de la Población de Nematodos en la Composición de Compuestos Bioactivos en Melón Cantaloupe y Tomate Durinta. Bachelor’s Thesis, Universitat Politècnica de Catalunya, Escola Superior d’Agricultura de Barcelona, Departament d’Enginyeria Agroalimentària i Biotecnología, Barcelona, Spain, 2019. Available online: http://hdl.handle.net/2117/131385 (accessed on 5 December 2022).
- Gálvez, A.; Del Amor, F.M.; Ros, C.; López-Marín, J. Comportamiento fisiológico de porta-injertos de pimiento frente a nematodos. In Proceedings of the 9th Workshop on Agri-Food Research for Young Researchers; WIA.2020; Universidad Politecnica de Cartagena: Cartagena, Colombia, 2020; pp. 57–60. ISBN 978-84-17853-29-7. [Google Scholar]
- Hernández, G.J.E. Conceptos Para el Establecimiento, Operación de Viveros y Propagación de Material Vegetal: Criterios, Definiciones, Requisitos y Principales Actividades a Considerar Para el Establecimiento y Operación de un Vivero; SENA, Centro de Biotecnología Industrial: Palmira, Colombia, 2019.
- Malik, A.A.; Malik, G.; Narayan, S.; Hussain, K.; Mufti, S.; Kumar, A.; Khan, F.A.; Kumar, H.; Lone, S. Review: Grafting technique in vegetable crops. SKUAST J. Res. 2021, 23, 104–115, ISSN in Print: 0972-1126. ISSN in Line: 2349-297X. Available online: https://www.indianjournals.com/ijor.aspx?target=ijor:skuastjr&volume=23&issue=2&article=001 (accessed on 5 January 2023).
- Aparecido, G.L.; Trevisan, B.L.; Rogerio, F.C. Grafting in Vegetable Crops: A Great Technique for Agriculture. Int. J. Veg. Sci. 2017, 24, 85–102. [Google Scholar] [CrossRef]
- Palacio Márquez, A.; Sanchez Chávez, E. Influencia de la variedad, portainjerto y época de cosecha en la calidad e índices de madurez en pimiento morrón. Nova Sci. 2017, 9, 1–23. [Google Scholar] [CrossRef] [Green Version]
- Gálvez, L.A.; Del Amor, S.F.M.; Ros, C.; López, M.J. Respuestas Fisiológicas Inducidas por Diferentes Porta-Injertos Frente a la Infestación de Meloidogyne incógnita en un Cultivo de Pimiento en Invernadero. In Proceedings of the 8th Workshop on Agri-Food Research; WiA.19; Universidad Politécnica de Cartagena, CRAI Biblioteca: Cartagena, Colombia, 2020; pp. 81–84. ISBN 978-84-17853-08-2. [Google Scholar]
- Rodríguez-Moran, H.M.; Cabrera de la Fuente, M.; Benavides-Mendoza, A.; Sandoval-Rangel, A.; Robledo-Torres, V.; Delgado-Martínez, R. Inducción nutraceútica en tomate injertado y cultivado en sistema NFT. In Proceedings of the Congreso Internacional de Ciencias Agronómicas y Veterinarias, Tuxtla Gutiérrez, Mexico, 8–10 November 2022; Vázquez, F.A.C., Ed.; [Google Scholar]
- Chavez-Mendoza, C.; Sanchez, E.; Carvajal-Millan, E.; Muñoz-Marquez, E.; Guevara-Aguilar, A. Characterization of the nutraceutical quality and antioxidant activity in bell pepper in response to grafting. Molecules 2013, 18, 15689–15703. [Google Scholar] [CrossRef] [Green Version]
- Sanchez-Rodriguez, E.; Romero, L.; Ruiz, J.M. Accumulation of free polyamines enhances the antioxidant response in fruits of grafted tomato plants under water stress. J. Plant Physiol. 2016, 190, 72–78. [Google Scholar] [CrossRef] [PubMed]
- Rivero, R.M.; Ruiz, J.M.; Romero, L. Role of grafting in horticultural plants under stress conditions. J. Food Agric. Environ. 2013, 1, 70–74. [Google Scholar]
- Sánchez Chávez, E.; Torres González, A.; Flores Córdova, M.A.; Preciado Rangel, P.; Márquez Quiroz, C. Uso de Portainjerto Sobre el Rendimiento, Calidad del Fruto y Resistencia a Phytophthora capsici Leonian en Pimiento Morrón. Nova Sci. 2015, 7, 227–244. Available online: https://www.scielo.org.mx/scielo.php?script=sci_arttext&pid=S2007-07052015000300227 (accessed on 5 January 2023). [CrossRef] [Green Version]
- Cedeño, S.J.M. Efecto del Portainjerto de Calabacín con la Mutación etr2b Sobre la Tolerancia a la Salinidad de Sandía. Master’s Thesis, Universidad de Almería, Almería, Spain, 2021. Available online: http://hdl.handle.net/10835/13773 (accessed on 5 February 2023).
- Malosetti, S. Estudio de la Práctica de Injerto Sobre la Respuesta de un Híbrido de Tomate: Influencia Estiónica Sobre las Etapas Iniciales y la Productividad. Bachelor’s Thesis, Escuela de Ciencias Agrarias, Naturales y Ambientales, Universidad Nacional del Noroeste de la Provincia de Buenos Aires, Junín, Argentina, 2018. [Google Scholar]
- Servicio de Información Agroalimentaria y Pesquera (SIAP-SAGARPA). México, Principal Exportador Mundial de Pimientos Frescos: Agricultura 2022. Available online: https://www.gob.mx/agricultura/prensa/mexico-principal-exportador-mundial-de-pimientos-frescos-agricultura (accessed on 5 July 2023).
- Servicio Nacional de Sanidad, Inocuidad y Calidad Agroalimentaria (SENASICA). 2016. Available online: https://www.gob.mx/senasica/articulos/una-definicion-clara-de-inocuidad-70674?idiom=es (accessed on 5 December 2022).
- Gisbert-Mullor, R.; Martin-Garcia, R.; Bazon Zidaric, I.; Pascual-Seva, N.; Pascual, B.; Padilla, Y.G.; Calatayud, A.; Lopez-Galarza, S.A. Water Stress–Tolerant Pepper Rootstock Improves the Behavior of Pepper Plants under Deficit Irrigation through Root Biomass Distribution and Physiological Adaptation. Horticulturae 2023, 9, 362. [Google Scholar] [CrossRef]
- Navarrete-Mapen, R.Z.; Cristóbal-Alejo, J.; Uc-Varguez, A.; Reyes-Ramírez, A.; Tun-Suarez, J.M.; Alvarado-López, C.J. Respuesta del injerto de Capsicum chinense-Capsicum annuum var. glabriusculum a Begomovirus en campo. Rev. Mex. Fitopatol. 2020, 38, 226–238. [Google Scholar] [CrossRef] [Green Version]
- Penella, C.; Nebauer, S.G.; Lopez, G.S.; Quiñonez, A.; San Bautista, A.; Calatayud, A. Grafting pepper onto tolerant rootstocks: An environmental-friendly technique overcome water and salt stress. Sientia Hortic. 2017, 226, 33–41. [Google Scholar] [CrossRef]
- Camposeco-Montejo, N.; Robledo-Torres, V.; Ramírez-Godina, F.; Mendoza-Villarreal, R.; Pérez-Rodríguez, M.Á.; Cabrera-de la Fuente, M. Response of Bell Pepper to Rootstock and Greenhouse Cultivation in Coconut Fiber or Soil. Agronomy 2018, 8, 111. [Google Scholar] [CrossRef] [Green Version]
- Rijk Zwaan Mexico, S.A.d.C.V. Carretera Culiacan Costa Rica, Km. 15.6 Costa Rica, Culiacan SIN C.P. 80430. Mexico. T +52-667-173-8597 F +52-667-173-8598 [email protected]. Available online: http://www.rijkzwaan.mx (accessed on 5 July 2023).
- Enza Zaden México, S.A.d.C.V. Camino a Bachigualatito número 4503 Sur, C.P. 80396, Bachigualatito, Culiacán, Sinaloa. comunicació[email protected]. T +52-667-758-68-60. Available online: https://www.enzazaden.com/mx (accessed on 5 July 2023).
- Steiner, A.A. The influence of chemical composition of a nutrient solution on the production of tomato plants. Plant Soil 1966, 24, 454–466. [Google Scholar] [CrossRef]
- Secretaria de Agricultura, Ganadería, Desarrollo Rural, Pesca y Alimentación (SAGARPA). “México Calidad Suprema”. Pliego de Condiciones para el Uso de la Marca Oficial México Calidad Suprema en Pimiento Morrón, PC-022-2005. 2005. Available online: https://silo.tips/download/pc-pliego-de-condiciones-para-el-uso-de-la-marca-oficial-mexico-calidad-suprema (accessed on 5 May 2023).
- AOAC. Official Methods of Analysis of AOAC International. 2000. No. C/630.240 O3/2000. Available online: https://www.aoac.org/ (accessed on 5 September 2022).
- Bartlett, M. Properties of sufficiency and statistical tests. Proc. R. Soc. Lond. 1937, 160, 268. [Google Scholar] [CrossRef]
- Royston, P. An Extension of Shapiro and Wilk’s W Test for Normality to Large Samples. J. R. Stat. Soc. Ser. C Appl. Stat. 1982, 31, 115. [Google Scholar] [CrossRef]
- Statistical Analysis System (SAS), version 9; SAS Institute Inc.: Cary, NC, USA, 2006.
- Alonso, J.L.P. Incorporation of Conventional Industrial Robotic Technology to The Grafting Process of Horticultural Seedlings. Ph.D. Dissertation, Universidad de Almería, Almería, Spain, 2020. Available online: https://dialnet.unirioja.es/servlet/tesis?codigo=288568 (accessed on 5 June 2023).
- Feed the Future Innovation Lab for Horticulture. Vegetable Grafting Increases Yield, Business Opportunities 2020. Available online: https://horticulture.ucdavis.edu/information/vegetable-grafting-increases-yield-business-opportunities (accessed on 5 June 2023).
- Kyriacou, M.C.; Rouphael, Y.; Colla, G.; Zrenner, R.; Schwarz, D. Vegetable Grafting: The Implications of a Growing Agronomic Imperative for Vegetable Fruit Quality and Nutritive Value. Front. Plant Sci. 2017, 8, 741. [Google Scholar] [CrossRef] [PubMed]
- Flores, F.B.; Sanchez-Bel, P.; Estañ, M.T.; Martinez-Rodríguez, M.M.; Moyano, E.; Morales, B.; Campos, J.F.; García-Abellan, J.O.; Egea, M.I.; Fernández-García, N.; et al. The effectiveness of grafting to improve tomato fruit quality. Sci. Hortic. 2010, 125, 211–217. [Google Scholar] [CrossRef]
- Pérez-Grajales, M.; Perez-Reyes, T.Q.; Cruz-Álvarez, O.; Castro-Brindis, R.; Martínez-Damián, M.T. Compatibilidad del portainjerto CM-334 y su respuesta sobre el rendimiento, calidad fisicoquímica y contenido de capsaicinoides en frutos de Capsicum pubescens. ITEA-Inf. Técnica Económica Agrar. 2021, 117, 332–346. [Google Scholar] [CrossRef]
- Cosme Cerna, L.R.; Nicho Salas, P.E.; Paucar Janampa, D.; Eguiluz, M. Evaluacion del efecto sobre el rendimiento y calidad del fruto de dos métodos de injerto en sandia (Citrullus lanatus Thunb) en costa central de Perú. Manglar 2020, 17, 83–87. [Google Scholar] [CrossRef]
- Medranda Barre, J.N. Evaluación del Comportamiento de Injertos de Sandía (Citrullus lanatus L:) en Zapallo (Cucurbita sp. L.) en la Parroquia Puerto Cayo. Bachelor’s Thesis, UNESUM, Jipijapa, Ecuador, 2022. [Google Scholar]
- Martínez, J.P.; Sagredo, B.; Molinett, S.; Martínez, J.; Morales, L. Portainjertos en Tomate Fresco en Chile Para Mitigar los Efectos del Cambio Climático. Red Agrícola Energía. 2020. Available online: https://www.redagricola.com/cl/portainjertos-en-tomate-fresco-en-chile-para-mitigar-los-efectos-del-cambio-climatico/ (accessed on 5 June 2023).
- Sánchez Solana, F. Influencia del Fondo Genético en la Expresión de la Resistencia a Meloidogyne Incognita en Pimiento (Capsicum annuum L.). Universidad Politécnica de Cartagena Departamento de Producción Vegetal. 2015. Available online: http://hdl.handle.net/20.500.11914/2243 (accessed on 5 June 2023).
- Gisbert-Mullor, R.; Mallach-Perez, M.; Martinez-Ispizua, E.; Fernández-Albert, A.; Diaz-Ribell, A.; Martinez-Buils, J.; Lopez-Galarza, S. Mejora de la productividad y calidad de la Pebrera Blanca d’Eivissa” mediante el injerto sobre ‘NIBER’, un patrón tolerante a estreses abióticos. Agric. Vergel 2021, 430, 5–8. Available online: http://hdl.handle.net/20.500.11939/7293 (accessed on 5 June 2023).
- Fallik, E.; Ilic, Z. Grafted vegetables—The influence of rootstock and scion on postharvest quality. Folia Hortic. 2014, 26, 79–90. [Google Scholar] [CrossRef] [Green Version]
- Garcia-Bañuelos, M.L.; Sanchez-Chavez, E.; Gardea-Bejar, A.A.; Parra, J.M.; Muñoz-Marquez, E.; Garcia-Carrillo, M. Grafted bell pepper cultivars with an efficient nitrogen use to improve production. Rev. Mex. Cienc. Agric. 2016, 7, 3491–3507. [Google Scholar]
- Nilsen, E.T.; Freeman, J.; Grene, R.; Tokuhisa, J. A rootstock provides wáter conservation for a grafted commercial tomato (Solanum lycopersicum L.) line in response to mild-drough conditions: A focus on vegetative growth and photosynthetic. PLoS ONE. 2014, 9, e115380. [Google Scholar] [CrossRef]
- Nawaz, M.A.; Imtiaz, M.; Kong, Q.; Cheng, F.; Ahmed, W.; Huang, Y.; Bie, Z. Grafting: A technique to modify ion accumulation in horticultural crops. Front. Plant Sci. 2016, 7, 1457. [Google Scholar] [CrossRef] [Green Version]
- Suchoff, D.H.; Schultheis, J.R.; Gunter, C.C.; Hassell, R.L.; Louws, F.J. Effect of rootstock and nitrogen fertilizer on growth and yield in watermelon. J. Hortic. Sci. Biotechnol. 2019, 94, 798–804. [Google Scholar] [CrossRef]
- Rasol, A.; Mansoor, J.; Bhat, K.M.; Hassan, G.I.; Baba, T.R.; Alyemeni, M.N.; Alsahli, A.A.; El-Serehy, H.A.; Paray, B.A.; Ahmad, P. Mechanisms Underlying Graft Union Formation and Rootstock Scion Interaction in Horticultural Plants. Front. Plant Sci. 2020, 11, 590847. [Google Scholar] [CrossRef] [PubMed]
- Velasco-Alvarado, M.D.J.; Lobato-Ortiz, R.; García-Zavala, J.J.; Castro-Brindis, R.; Cruz-Izquierdo, S.; Corona-Torres, T. Injertos Interespecíficos Entre Solanum lycopersicum L. y S. habrochaites Knapp & Spooner Como Alternativa para Incrementar el Rendimiento de Fruto. Agrociencia 2019, 53, 1029–1042, Reservas de Derechos al Uso Exclusivo: 04-2021-031913431800-203, e-ISSN: 2521–9766. Available online: https://www.agrociencia-colpos.org/index.php/agrociencia/article/view/1861 (accessed on 5 June 2023).
- López, S.J.; Ochoa, M.J.A. Validación de Híbridos de Hortalizas de las Principales Empresas Comerciales en Sinaloa; Fundación Produce Sinaloa A.C. Innovación: Culiacán, Mexico, 2018; 59p. [Google Scholar]
- Cintora-Martinez, E.A.; Lobato-Ortiz, R.; García-Zavala, J.J.; Hernandez-Rodriguez, M.; Rodriguez-Guzman, E.; Cruz-Izquierdo, S. Generaciones avanzadas de una cruza de Solanum lycopersicum × S. habrochaites como portainjertos de tomate. Rev. Fitotec. Mex. 2021, 44, 15. [Google Scholar] [CrossRef]
- Velasco-Alvarado, M.J.; Lobato-Ortiz, R.; García-Zavala, J.J.; Castro-Brindis, R.; Cruz-Izquierdo, S.; Corona-Torres, T.; Moedano-Mariano, M.K. Mexican native tomatoes as rootstocks to increase fruit yield. Chil. J. Agric. Res. 2017, 77, 187–193. [Google Scholar] [CrossRef] [Green Version]
- Martinez-Rodriguez, M.M.; Estañ, M.T.; Moyano, E.; García-Abellan, J.O.; Flores, F.B.; Campos, J.F.; Al-Azzawi, M.J.; Flowers, T.J.; Bolarin, M.C. The effectiveness of grafting to improve salt tolerance in tomato when an “excluder” genotype is used as scion. Environ. Exp. Bot. 2008, 63, 392–401. [Google Scholar] [CrossRef]
- Doñas-Ucles, F.; Jimenez-Luna, M.M.; Gongora-Corral, J.A.; Perez-Madrid, D.; Verde-Fernández, D.; Camacho-Ferre, F. Influence of three rootstocks on yield and commercial quality of “Italian sweet” pepper. Cienc. Agrotecnología 2014, 38, 538–545. [Google Scholar] [CrossRef]
- Andrews, P.K.; Márquez, C.S. Graft incompatibility. Hort. Rev. Am. Soc. Hort. Sci. 2010, 15, 183–232. [Google Scholar]
- Lopez-Marín, J.; Galvez, A.; del Amor, F.M.; Albacete, A.; Fernández, J.A.; Egea-Gilabert, C.; Pérez-Alfocea, F. Selecting vegetative/generative/dwarfing rootstocks for improving fruit yield and quality in wáter stressed sweet peppers. Sci. Hortic. 2016, 214, 9–17. [Google Scholar] [CrossRef]
- Mestre Moreno, L.; Fayos Avellan, O.; Moreno Sánchez, M.A.; Mignard, P.; Mallor Gimenez, C.; Garces Claver, A. Estudio de compuestos antioxidantes en distintas especies del genero Capsicum. 2020 VIII Congresso Ibérico de Ciencias Horticolas. Actas Portuguesas de Horticultura, nº 30. Available online: http://hdl.handle.net/10532/5005 (accessed on 5 June 2023).
- García, C.; Llanos, M.; Mazon, B.; Dávila, K.; Cun, J. Determinación de Vitamina C en pimiento Capsicum annuum por voltametria de barrido lineal. Rev. Investig. Talent. 2016, 3, 1–9. [Google Scholar]
- Moran, A.V.M.; Veloz, R.G.N.; Pasquel, V.L.D. Evaluación del contenido de ácido ascórbico en pimiento rojo y amarillo (Capsicum annuum) en Ecuador. Rev. Univ. Guayaquil 2022, 134, 1–11. [Google Scholar] [CrossRef]
- Hernández-Fuentes, A.D.; Campos-Montiel, R.; Pinedo-Espinoza, J.M. Comportamiento postcosecha de pimiento morron (Capsicum annum L.) Var. California por efecto de la fertilización química y aplicación de lombrihumus. Rev. Iberoam. Tecnol. Postcosecha 2010, 11, 82–91. [Google Scholar]
- Tomaico Tipan, S.M. Evaluación de tres Índices de Cosecha y Desinfección en dos Híbridos de Pimiento (Capsicum annuum. Híbrido Cortes y Coach) en el Campus Experimental Salache 2019–2020. Bachelor’s Thesis, Universidad Técnica de Cotopaxi (UTC), Latacunga, Ecuador. Available online: http://repositorio.utc.edu.ec/handle/27000/6618 (accessed on 5 July 2023).
- Jang, Y.A.; Moon, J.H.; Lee, J.W.; Lee, S.G.; Kim, S.Y.; Chun, C.H. Effects of different rootstocks on fruit quality of grafted pepper (Capsicum annuum L.). Korean J. Hortic. Sci. Technol. 2013, 31, 687–699. [Google Scholar] [CrossRef]
- Zhu, I.; Bie, Z.L.; Huang, Y.; Han, X.Y. Effects of different grafting methods on the grafting work efficiency and growth of cucumber seedlings. China Veg. 2006, 9, 24–25. [Google Scholar]
- Gisbert, D.M.C.; Sanchez-Torres, P.; Raigon, J.M.D.; Nuez, V.F. Phytophthora capsica resistance evaluation in pepper hybrids: Agronomic performance and fruit quality of pepper grafted plants. J. Food Agric. Environ. 2010, 8, 116–121. [Google Scholar]
- Rouphael, Y.; Schwarz, D.; Krumbein, A.; Colla, G. Impact of grafting on product quality of fruit vegetables. Sci. Hortic. 2010, 127, 172–179. [Google Scholar] [CrossRef]
- Muramatsu, Y. Problems on vegetable grafting. Shisetu Engei 1981, 10, 48–53. [Google Scholar]
- Huang, Y.; Zhao, L.; Kong, Q.; Cheng, F.; Niu, M.; Xie, J.; Bie, Z. Comprehensive Mineral Nutrition Analysis of Watermelon Grafted onto Two Different Rootstocks. Hortic. Plant J. 2016, 2, 105–113. [Google Scholar] [CrossRef] [Green Version]
- Barrett, C.E.; Zhao, X.; Sims, C.A.; Brecht, J.K.; Dreyer, E.Q.; Gao, Z. Fruit Composition and Sensory Attributes of Organic Heirloom Tomatoes as Affected by Grafting. HortTechnology 2012, 22, 804–809. [Google Scholar] [CrossRef] [Green Version]
- Djidonou, D.; Zhao, X.; Brecht, J.K.; Cordasco, K.M. Influence of Interspecific Hybrid Rootstocks on Tomato Growth, Nutrient Accumulation, Yield, and Fruit Composition under Greenhouse Conditions. HortTechnology 2017, 27, 868–877. [Google Scholar] [CrossRef] [Green Version]
- Djidonou, D.; Simonne, A.H.; Koch, K.E.; Brecht, J.K.; Zhao, X. Nutritional Quality of Field-grown Tomato Fruit as Affected by Grafting with Interspecific Hybrid Rootstocks. HortScience 2016, 51, 1618–1624. [Google Scholar] [CrossRef] [Green Version]
- Hernández-Gonzales, Z.; Sahagun-Castellanos, J.; Espinosa-Robles, P.; Colinas-León, M.T.; Rodríguez-Pérez, J.E. Efecto del patron en el rendimiento y tamaño de frutos en pepino injertado. Rev. Fitotec. Mex. 2014, 37, 41–47, version impresa ISSN 0187-7380. [Google Scholar] [CrossRef]
- Caradonia, F.; Ronga, D.; Flore, A.; Barbieri, R.; Moulin, L.; Terzi, V.; Francia, E. Biostimulants and cherry rootstock increased tomato fruit yield and quality in sustainable farming systems. Rev. Ital. Agron. 2020, 15, 121–131. [Google Scholar] [CrossRef]
- Caradonia, F.; Francia, E.; Alfano, V.; Ronga, D. Grafting and Plant Density Influence Tomato Production in Organic Farming System. Horticulturae 2023, 9, 669. [Google Scholar] [CrossRef]
- Lee, J.M.; Oda, M. Grafting of herbaceous vegetable and ornamental crops. Hortic. Rev. Westport N. Y. 2002, 28, 61–124. [Google Scholar]
TFY | AFW | NF | |
---|---|---|---|
kg m−2 | g | Fruits m−2 | |
Rootstock | |||
UAN | 25.9 a | 189.6 b | 137.1 a |
Foundation | 25.06 a | 191.6 b | 131.3 a |
Yaocali | 28.68 a | 214.9 a | 133.4 a |
Non-grafted | 24.36 a | 199 ab | 123.4 a |
Anova p≤ | 0.128 ns | 0.001 | 0.5 ns |
Hybrids | |||
Avante | 26.08 ab | 204.14 a | 128.6 a |
DiCaprio | 28.78 a | 204.64 a | 124.5 a |
Ucumari | 23.27 b | 187.65 b | 140.8 a |
Anova p≤ | 0.007 | 0.005 | 0.144 ns |
Interaction | 0.73 ns | 0.63 ns | 0.724 ns |
CV (%) | 15.0 | 6.5 | 15.2 |
Error | 15.31 | 168.43 | 396.13 |
XL Extra-Large | L Large | M Medium | S Small | |
---|---|---|---|---|
(Fruits per m−2) | ||||
Rootstock | ||||
UAN | 1.83 b | 18.80 b | 24.2 a | 24.8 a |
Foundation | 2.28 b | 19.60 b | 23.6 a | 20.1 ab |
Yaocali | 3.00 a | 26.50 a | 20.6 a | 16.2 b |
Non-grafted | 2.44 b | 20.60 b | 21.9 a | 16.3 ab |
Anova p≤ | 0.0003 | 0.021 | 0.44 ns | 0.034 |
Hybrids | ||||
Avante | 2.50 b | 20.91 b | 47.41 a | 38.67 a |
DiCaprio | 3.58 a | 26.50 a | 47.41 a | 32.75 a |
Ucumari | 1.08 c | 16.87 b | 43.41 a | 45.00 a |
Anova p≤ | 0.0001 | 0.0008 | 0.62 ns | 0.09 ns |
Interaction | 0.0001 | 0.16 ns | 0.17 ns | 0.93 ns |
CV (%) | 19 | 24 | 22 | 33 |
Error | 0.89 | 111.93 | 102.03 | 170 |
FL | EFD | CAA | TSS (°Brix) | FF | MT (mm) | PH | |
---|---|---|---|---|---|---|---|
(cm) | (cm) | (mg 100 g−1) | (kg cm−2) | (m) | |||
Rootstock | |||||||
UAN | 8.05 a | 7.91 a | 127.10 a | 6.70 a | 7.38 a | 6.87 a | 1.21 ab |
Foundation | 8.06 a | 8.57 a | 124.41 a | 6.50 a | 7.33 a | 7.03 a | 1.19 ab |
Yaocali | 8.60 a | 8.03 a | 124.81 a | 6.89 a | 7.34 a | 7.06 a | 1.32 a |
Non-grafted | 8.23 a | 7.89 a | 121.22 a | 6.64 a | 7.22 a | 6.85 a | 1.14 b |
Anova p≤ | 0.48 ns | 0.29 ns | 0.88 ns | 0.6 ns | 0.84 ns | 0.52 ns | 0.019 |
Hybrids | |||||||
Avante | 8.78 a | 8.256 a | 132.47 a | 6.98 a | 7.99 a | 7.44 a | 1.23 ab |
DiCaprio | 8.01 ab | 8.179 a | 116.84 a | 5.52 b | 6.79 b | 6.78 b | 1.28 a |
Ucumari | 7.92 b | 7.873 a | 123.85 a | 7.54 a | 7.16 b | 6.64 b | 1.13 b |
Anova p≤ | 0.036 | 0.5 ns | 0.075 ns | 0.0001 | 0.0001 | 0.0001 | 0.009 |
Interaction | 0.184 ns | 0.90 ns | 0.015 | 0.55 ns | 0.27 ns | 0.40 ns | 0.78 ns |
CV (%) | 10.1 | 10.3 | 12.7 | 9.2 | 5.43 | 5.3 | 9.3 |
Error | 0.693 | 0.693 | 250 | 0.377 | 0.158 | 0.136 | 0.012 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Luna-Garcia, L.R.; Robledo-Torres, V.; Gonzalez-Cortes, A.; Mendoza-Villarreal, R.; Paredes-Jacome, J.R. Effect of Pepper Rootstocks as a Sustainable Alternative to Improve Yield and Fruit Quality. Horticulturae 2023, 9, 795. https://doi.org/10.3390/horticulturae9070795
Luna-Garcia LR, Robledo-Torres V, Gonzalez-Cortes A, Mendoza-Villarreal R, Paredes-Jacome JR. Effect of Pepper Rootstocks as a Sustainable Alternative to Improve Yield and Fruit Quality. Horticulturae. 2023; 9(7):795. https://doi.org/10.3390/horticulturae9070795
Chicago/Turabian StyleLuna-Garcia, Laura Raquel, Valentin Robledo-Torres, Areli Gonzalez-Cortes, Rosalinda Mendoza-Villarreal, and Jose Rafael Paredes-Jacome. 2023. "Effect of Pepper Rootstocks as a Sustainable Alternative to Improve Yield and Fruit Quality" Horticulturae 9, no. 7: 795. https://doi.org/10.3390/horticulturae9070795
APA StyleLuna-Garcia, L. R., Robledo-Torres, V., Gonzalez-Cortes, A., Mendoza-Villarreal, R., & Paredes-Jacome, J. R. (2023). Effect of Pepper Rootstocks as a Sustainable Alternative to Improve Yield and Fruit Quality. Horticulturae, 9(7), 795. https://doi.org/10.3390/horticulturae9070795