Enhancing Anna Apples’ Productivity, Physico-Chemical Properties, and Marketability Using Sprays of Naphthalene Acetic Acid and Inhibitors of Ethylene for Alleviating Abiotic Stresses
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Site and Plant Materials
2.2. Measurement of the Studied Parameters
2.2.1. The Productivity of Anna Apples
2.2.2. Fruit Physico-Chemical Properties
2.2.3. Fruit Marketability
2.3. Statistical Analysis
3. Results
3.1. Productivity
3.2. Fruit Physico-Chemical Properties
3.3. Marketability
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Sevik, H.; Cetin, M.; Ozel, H.B.; Erbek, A.; Cetin, I.Z. The effect of climate on leaf micromorphological characteristics in some broad-leaved species. Environ. Dev. Sustain. 2021, 23, 6395–6407. [Google Scholar] [CrossRef]
- Cetin, M.; Adiguzel, F.; Gungor, S.; Kaya, E.; Sancar, M.C. Evaluation of thermal climatic region areas in terms of building density in urban management and planning for Burdur, Turkey. Air Qual. Atmos. Health 2019, 12, 1103–1112. [Google Scholar] [CrossRef]
- Cetin, M.; Sevik, H.; Yigit, N. Climate type-related changes in the leaf micromorphological characters of certain landscape plants. Environ. Monit. Assess. 2018, 190, 404. [Google Scholar] [CrossRef] [PubMed]
- Malik, G.; Deveshwar, P. Abiotic stress management in fruit crop Litchi chinensis. In The Lychee Biotechnology; Springer Nature: Singapore, 2017; pp. 243–263. [Google Scholar]
- Ramakrishna, A.; Ravishankar, G.A. Influences of abiotic stress signals on secondary metabolites in plants. Plant Signal. Behav. 2011, 6, 1720–1731. [Google Scholar] [CrossRef] [PubMed]
- Berini, J.L.; Brockman, S.A.; Hegeman, A.D.; Reich, P.B.; Muthukrishnan, R.; Montgomery, R.A.; Forester, J.D. Combinations of abiotic factors differentially alter production of plant secondary metabolites in five woody plant species in the boreal-temperate transition zone. Front. Plant Sci. 2018, 9, 1257. [Google Scholar] [CrossRef]
- Pérez-Pérez, J.P.; Romero, P.; Navarro, J.M.; Botia, P. Response of sweet orange cv “Lane late” to deficit irrigation in two rootstocks. I: Water relations, leaf gas exchange and vegetative growth. Irrig. Sci. 2008, 26, 415–4252. [Google Scholar] [CrossRef]
- Bolat, I.; Dikilitas, M.; Ercisli, S.; Ikinci, A.; Tonkaz, T. The effect of water stress on some morphological, physiological, and biochemical characteristics and bud success on apple and quince rootstocks. Sci. World J. 2014, 2014, 769732. [Google Scholar] [CrossRef]
- Abdel-Sattar, M.; Kotb, H.R.M. Nutritional status and productivity of Anna apple trees in the year following autumn irrigation determent. Agric. Water Manag. 2021, 252, 106882. [Google Scholar] [CrossRef]
- FAOSTAT. FAO Statics for Crop Production. 2023. Available online: http://www.fao.org/faostat/ar/#data/QC (accessed on 26 April 2023).
- Shannon, M.C. Adaption of plants to salinity. Adv. Agron. 1997, 60, 75–120. [Google Scholar]
- Johnson, S. Opportunities for Optimal Apple Production Management in Arid Conditions. Master’s Thesis, Utah State University, Logan, UT, USA, 2022. [Google Scholar]
- Hauagge, R.; Cummins, J.N. Pome fruit genetic pool for production in warm climates. In Temperate Fruit Crops in Warm Climates; Kluwer Academic: Dordrecht, The Netherlands, 2001; pp. 267–304. [Google Scholar]
- Leite, G.B.; Petri, J.L.; Basso, C. Promalin effect on ‘Imerial Gala’ and ‘Fuji’ apple trees fructification. Acta Hortic. 2006, 727, 221–226. [Google Scholar]
- Castro, D.C.; Álvarez, N.; Gabriel, P.; Micheloud, N.; Buyatti, M.; Gariglio, N. Crop loading studies on ‘Caricia’ and ‘Eva’ apples grown in a mild winter area. Sci. Agric. 2015, 72, 237–244. [Google Scholar] [CrossRef]
- Nawaz, R.; Abbasi, N.A.; Hafiz, I.A.; Khalid, A.; Ahmad, T.; Aftab, M. Impact of climate change on Kinnow fruit industry of Pakistan. Agrotechnology 2019, 8, 1–6. [Google Scholar] [CrossRef]
- Trejo-Gonzalez, A.; Soto-Valdez, H. Partial characterization of polyphenoloxidase extracted from ‘Anna’ Apple. J. Am. Soc. Hortic. Sci. 1991, 116, 672–675. [Google Scholar] [CrossRef]
- Singh, N.P.; Bal, S.K.; More, N.S.; Singh, Y.; Gudge, A. Adaptation and Intervention in Crops for Managing Atmospheric Stresses. In Climate Change and Agriculture in India: Impact and Adaptation; Springer Nature: Cham, Switzerland, 2018; pp. 111–127. [Google Scholar]
- Atkinson, D.; Porter, J.R. Temperature, plant development and crop yields. Trends Plant Sci. 1996, 1, 119–124. [Google Scholar] [CrossRef]
- Wheeler, T.R.; Craufurda, P.Q.; Ellis, R.H.; Porter, J.R.; Prasad, P.V.V. Temperature variability and the yield of annual crops. Agric. Ecosyst. Environ. 2000, 82, 159–167. [Google Scholar] [CrossRef]
- Chelong, I.; Sdoodee, S. Effect of climate variability and degree-day on development, yield and quality of Shogun (Citrus reticulata Blanco) in Southern Thailand. Agric. Nat. Resour. 2013, 47, 333–341. [Google Scholar]
- Bhattacharya, A. Plant growth hormones in plants under low-temperature stress: A Review. In Physiological Processes in Plants Under Low Temperature Stress; Springer Nature: Singapore, 2022; pp. 517–627. [Google Scholar]
- Williams, K.M.; Fallahi, E. The effects of exogenous bioregulators and environment on regular cropping of apple. HortTechnology 1999, 9, 223–327. [Google Scholar] [CrossRef]
- Morkunas, I.; Mai, V.C.; Waśkiewicz, A.; Formela, M.; Goliński, P. Major Phytohormones under abiotic stress. In Physiological Mechanisms and Adaptation Strategies in Plants Under Changing Environment; Springer: New York, NY, USA, 2013; pp. 87–135. [Google Scholar]
- Yuan, R.; Carbaugh, D.H. Effects of NAA, AVG, and 1-MCP on ethylene biosynthesis, preharvest fruit drop, fruit maturity, and quality of ‘Golden Supreme’ and ‘Golden Delicious’ apples. HortScience 2007, 42, 101–105. [Google Scholar] [CrossRef]
- Dal Cin, V.; Danesin, M.; Botton, A.; Boschetti, A.; Dorigoni, A.; Ramina, A. Ethylene and preharvest drop: The effect of AVG and NAA on fruit abscission in apple (Malus domestica L. Borkh). Plant Growth Regul. 2008, 56, 317–325. [Google Scholar] [CrossRef]
- Li, J.; Yuan, R. NAA and ethylene regulate expression of genes related to ethylene biosynthesis, perception, and cell wall degradation during fruit abscission and ripening in ‘delicious’ apples. J. Plant Growth Regul. 2008, 27, 283–295. [Google Scholar] [CrossRef]
- Yuan, R.; Li, J. Effect of sprayable 1-MCP, AVG, and NAA on ethylene biosynthesis preharvest fruit drop, fruit maturity, and quality of ’Delicious’ apples. HortScience 2008, 43, 1454–1460. [Google Scholar] [CrossRef]
- Arseneault, M.H.; Cline, J.A. A review of apple preharvest fruit drop and practices for horticultural management. Sci. Hortic. 2016, 211, 40–52. [Google Scholar] [CrossRef]
- Watkins, C.B. Advances in postharvest handling and storage of apples. In Achieving Sustainable Cultivation of Apples; Chapter 13; Burleigh Dodds Scientific Publishing: Cambridge, UK, 2017; pp. 337–367. [Google Scholar]
- Doerflinger, F.C.; Nock, J.F.; Miller, W.B.; Watkins, C.B. Preharvest aminoethoxyvinylglycine (AVG) and 1-methylcyclopropene (1- MCP) effects on ethylene and starch concentrations of ‘Empire’ and ‘McIntosh’ apples. Sci. Hortic. 2019, 244, 134–140. [Google Scholar] [CrossRef]
- Algul, B.E.; Al Shoffe, Y.; Park, D.; Miller, W.B.; Watkins, C.B. Preharvest 1-methylcyclopropene treatment enhances ‘stress-associated watercore’ dissipation in ‘Jonagold’ apples. Postharvest Biol. Technol. 2021, 181, 111689. [Google Scholar] [CrossRef]
- Cai, W.; Al Shoffe, Y.; Park, D.; Watkins, C.B. Harvest Maturity and Preharvest Aminoethoxyvinylglycine Treatment Effects on Cold-induced Ethylene Production of ‘Gala’ Apples. HortScience 2023, 58, 532–538. [Google Scholar] [CrossRef]
- Scolaro, A.M.T.; Argenta, L.C.; Amarante, C.V.T.D.; Petri, J.L.; Hawerroth, F.J. Preharvest control of ‘Royal gala’ apple fruit maturation by the inhibition of ethylene action or synthesis. Rev. Bras. Frutic. 2015, 37, 38–47. [Google Scholar] [CrossRef]
- Brighenti, A.F.; Würz, D.A.; da Silveira Pasa, M.; Rufato, L. Plant growth regulators to enhance fruit color of ‘Gala’ apples. Pesqui. Agropecuária Bras. 2017, 52, 1118–1122. [Google Scholar] [CrossRef]
- Liu, J.; Islam, M.T.; Sherif, S.M. Effects of Aminoethoxyvinylglycine (AVG) and 1-Methylcyclopropene (1-MCP) on the Pre-Harvest Drop Rate, Fruit Quality, and Stem-End Splitting in ‘Gala’ Apples. Horticulturae 2022, 8, 1100. [Google Scholar] [CrossRef]
- Robinson, T.L.; Hoying, S.; Iungerman, K.; Kviklys, D. AVG combined with NAA control pre-harvest drop of ‘McIntosh’ apples better than either chemical alone. Proc. XI International Symposium on Plant Bioregulators Fruit Production. Acta Hortic. 2010, 884, 343–350. [Google Scholar] [CrossRef]
- Ozkan, Y.; Altuntas, E.; Ozturk, B.; Yildiz, K.; Saracoglu, O. The effect of NAA (1-naphthalene acetic acid) and AVG (aminoethoxyvinylglycine) on physical, chemical, colour and mechanical properties of Braeburn apple. Int. J. Food Eng. 2012, 8, 17. [Google Scholar] [CrossRef]
- Ozkan, Y.; Ozturk, B.; Yıldız, K. Effects of Aminoethoxyvinylglycine and Naphthalene acetic Acid on Ethylene Biosynthesis, Preharvest Fruit Drop and Fruit Quality of Apple. Pak. J. Agri. Sci. 2016, 53, 893–900. [Google Scholar]
- Chaudhari, J.C.; Patel, K.D.; Yadav, L.; Patel, U.I.; Varu, D.K. Effect of plant growth regulators on flowering, fruit set and yield of custard apple (Annona squamosa L.) cv. Sindhan. Adv. Life Sci. 2016, 5, 1202–1204. [Google Scholar]
- Arseneault, M.H.; Cline, J.A. AVG, NAA, boron, and magnesium influence preharvest fruit drop and fruit quality of ‘Honeycrisp’ apples. Can. J. Plant Sci. 2018, 98, 741–752. [Google Scholar] [CrossRef]
- Wendt, L.M.; Brackmann, A.; Both, V.; Thewes, F.R.; Schultz, E.E.; Ludwig, V.; Berghetti, M.R.P. Postharvest quality of ‘Brookfield’ apple field-treated with naphthalene acetic acid alone or combined with other growth regulators. Bragantia 2020, 79, 155–168. [Google Scholar] [CrossRef]
- Tian, M.S.; Prakash, S.; Elgar, H.J.; Young, H.; Burmeister, D.M.; Ross, G.S. Responses of strawberry fruit to 1–MCP and ethylene. Plant Growth Regul. 2000, 32, 83–90. [Google Scholar] [CrossRef]
- Tuna-Gunes, N. Effect of 1-MCP and different ecological conditions on postharvest quality of ‘Eşme’ quince fruit during long term storage. Acta Hortic. 2009, 877, 387–394. [Google Scholar]
- Taş, A.; Berk, S.K.; Orman, E.; Gundogdu, M.; Ercişli, S.; Karatas, N.; Jurikova, T.; Adamkova, A.; Nedomova, S.; Mlcek, J. Influence of Pre-Harvest Gibberellic Acid and Post-Harvest 1-methyl Cyclopropane Treatments on Phenolic Compounds, Vitamin C and Organic Acid Contents during the Shelf Life of Strawberry Fruits. Plants 2021, 10, 121. [Google Scholar] [CrossRef]
- Gunes, N.T.; Poyrazoğlu, E.S. Influence of Hot Water and 1-Methylcyclopropane Treatments on Air-Stored Quince Fruit. Agronomy 2022, 12, 458. [Google Scholar] [CrossRef]
- Greene, D.W.; Schupp, J.R. Effect of aminoethoxyvinylglycine (AVG) on preharvest drop, fruit quality, and maturation of ‘McIntosh’ apples. II. Effect of timing and concentration relationships and spray volume. HortScience 2004, 39, 1036–1041. [Google Scholar] [CrossRef]
- Rath, A.C.; Kang, I.K.; Park, C.H.; Yoo, W.J.; Byun, J.K. Foliar application of aminoethoxyvinylglycine (AVG) delays fruit ripening and reduces pre-harvest fruit drop and ethylene production of bagged “Kogetsu” apples. Plant Growth Regul. 2006, 50, 91–100. [Google Scholar] [CrossRef]
- Whale, S.K.; Singh, Z.; Behboudian, M.H.; Janes, J.; Dhaliwal, S.S. Fruit quality in ‘Cripp’s Pink’ apple, especially colour, as affected by preharvest sprays of aminoethoxyvinylglycine and ethephon. Sci. Hortic. 2008, 115, 342–351. [Google Scholar] [CrossRef]
- Salas, N.A.; Molina-Corral, F.J.; González-Aguilar, G.A.; Otero, A.; Sepulveda, D.R.; Olivas, G.I. Volatile production by ‘Golden Delicious’ apples is affected by preharvest application of aminoethoxyvinylglycine. Sci. Hortic. 2011, 130, 436–444. [Google Scholar] [CrossRef]
- Brackmann, A.; Thewes, F.R.; de Oliveira Anese, R.; Both, V.; Junior, W.L.; Schultz, E.E. Aminoethoxyvinylglycine: Isolated and combined with other growth regulators on quality of ‘Brookfield’ apples after storage. Sci. Agric. 2015, 72, 221–228. [Google Scholar] [CrossRef]
- Unrath, C.R.; Obermiller, J.D.; Green, A.; McArtney, S.J. The effects of aminoethoxyvinylglycine and naphthalene acetic acid treatments on abscission and firmness of ‘Scarletspur Delicious’ apples at normal and delayed harvests. HortTechnology 2009, 19, 620–625. [Google Scholar] [CrossRef]
- Thongkum, M.; Imsabai, W.; Burns, P.; McAtee, P.A.; Schaffer, R.J.; Allan, A.C.; Ketsa, S. The effect of 1-methylcyclopropene (1-MCP) on expression of ethylene receptor genes in durian pulp during ripening. Plant Physiol. Biochem. 2018, 125, 232–238. [Google Scholar] [CrossRef]
- Pratima, P.; Chawla, W. Influence of plant growth regulators on growth and yield of pome and stone fruits. J. Pharmacogn. Phytochem. 2019, 8, 557–565. [Google Scholar]
- Choudhary, S.M.; Chavan, D.L.; Singh, R. Use of plant growth regulators in dry land fruit crops: A Review. Indian Res. J. Genet. Biotechnol. 2020, 12, 128–135. [Google Scholar]
- Tomala, K.; Grzęda, M.; Guzek, D.; Głąbska, D.; Gutkowska, K. The effects of preharvest 1-Methylcyclopropene (1-MCP) treatment on the fruit quality parameters of cold-Stored ‘Szampion’ cultivar apples. Agriculture 2020, 10, 80. [Google Scholar] [CrossRef]
- Russia’s and the EU’s Sanctions: Economic and Trade Effects, Compliance and the Way Forward. Available online: https://www.europarl.europa.eu/RegData/etudes/STUD/2017/603847/EXPO_STU(2017)603847_EN.pdf (accessed on 26 September 2021).
- Yildiz, K.; Ozturk, B.; Ozkan, Y. Effects of aminoethoxyvinylglycine (AVG) on preharvest fruit drop, fruit maturity, and quality of ‘Red Chief’ apple. Sci. Hortic. 2012, 144, 121–124. [Google Scholar] [CrossRef]
- Association of Official Analytical Chemists. Official Method of Analysis, 21st ed.; AOAC: Washington, DC, USA, 2019. [Google Scholar]
- Malik, C.P.; Singh, M.B. Plant Engymology and Histo-Engymology; A Text Manual; Kalyani Publishers: New Delhi, India, 1980. [Google Scholar]
- Rabino, L.; Alberto, L.; Monrad, M.K. Photocontrol of anthocyanin synthesis. J. Plant Physiol. 1977, 59, 569–573. [Google Scholar] [CrossRef]
- Moran, R.; Porath, D. Carotenoids determination in intact tissues. Plant Physiol. 1980, 65, 479. [Google Scholar] [CrossRef] [PubMed]
- Gomez, K.A.; Gomez, A.A. Statistical Procedures for Agricultural Research, 2nd ed.; John Wiley & Sons: New York, NY, USA, 1984; 680p. [Google Scholar]
- Snedecor, G.W.; Cochran, W.G. Statistical Methods, 7th ed.; The Iowa State University Press: Ames, IA, USA, 1990; p. 593. [Google Scholar]
- SAS Institute Inc. The SAS System for Windows, version 9.13; SAS Institute Inc.: Cary, NC, USA, 2008.
- Byers, R.E.; Carbaugh, D.H.; Combs, L.D.; Smith, A.H. Ethylene inhibitors delayfruit drop, maturity, and increase fruit size of ‘Arlet’ apples. HortScience 2005, 40, 2061–2065. [Google Scholar] [CrossRef]
- Aglar, E.; Yildiz, K.; Ozkan, Y.; Ozturk, B.; Erdem, H. The effects of aminoethoxyvinylglycine and foliar zinc treatments on pre-harvest drops and fruit quality attributes of Jersey Mac apples. Sci. Hortic 2016, 213, 173–178. [Google Scholar] [CrossRef]
- Candan, A.P.; Graell, J.; Crisosto, C.; Larrigaudiere, C. Improvement of storability and shelf-life of ‘Blackamber’ plums treated with 1-methylcyclopropene. Food Sci. Technol. Int. 2006, 15, 437–444. [Google Scholar] [CrossRef]
- Ranjan, R.; Purohit, S.S.; Prasad, V. Plant Hormones: Action and Application; Agrobios: Jodhpur, India, 2003; pp. 183–189. [Google Scholar]
- Valdés, H.H.; Pizarro, M.M.; Campos-Vargas, R.; Infante, R.; Defilippi, B.G. Effect of ethylene inhibitors on quality attributes of apricot cv. Modesto and Patterson during storage. Chil. J. Agric. Res. 2009, 69, 134–144. [Google Scholar] [CrossRef]
- D’Aquino, S.; Schirra, M.; Molinu, M.G.; Tedde, M.; Palma, A. Preharvest aminoethoxyvinylglicine treatments reduce internal browning and prolong the Shelf-life of early ripening pears. Sci. Hortic. 2010, 125, 353–360. [Google Scholar] [CrossRef]
- Muñoz-Robredo, P.; Rubio, P.; Infante, R.; Campos-Vargas, R.; Manríquez, D.; González-Agüero, M.; Defilippi, B.G. Ethylene biosynthesis in apricot: Identification of a ripening-related aminocyclopropane-1-carboxylic acid synthase (ACS) gene. Postharvest Biol. Technol. 2012, 63, 85–90. [Google Scholar] [CrossRef]
- Lv, J.; Zhang, M.; Bai, L.; Han, X.; Ge, Y.; Wang, W.; Li, J. Effects of 1-methylcyclopropene (1-MCP) on the expression of genes involved in the chlorophyll degradation pathway of apple fruit during storage. Food Chem. 2020, 308, 125707. [Google Scholar] [CrossRef]
- Kano, Y. Effect of GA and CPPU treatments on cell size and types of sugars accumulated in Japanese pear fruit. J. Hortic. Sci. Biotechnol. 2003, 78, 331–334. [Google Scholar] [CrossRef]
- Öztürk, B.; Özkan, Y.; Kılıç, K.; Uçar, M.; Karakaya, O.; Karakaya, M. The effects of pre-harvest plant growth regulators treatments on pre-harvest drop and fruit quality of Braeburn apple (Malus domestica Borkh.). J. Agric. Fac. Gaziosmanpasa Univ. 2015, 32, 68–76. [Google Scholar] [CrossRef]
- Erkan, M.; Dogan, A. Chapter 5—Harvesting of Horticultural Commodities. In Postharvest Technology of Perishable Horticultural Commodities; Yahia, E.M., Ed.; Woodhead Publishing: Cambridge, UK, 2019; pp. 129–159. ISBN 978-0-12-813276-0. [Google Scholar]
- Öztürk, B.; Özkan, Y.; Yıldız, K.; Özkan, A.; Kılıç, K.; Uçar, M.; Karakaya, M.; Karakaya, O. The Role of Pre-Harvest Aminoethoxyvinylglycine Treatments on Fruit Quality of Braeburn Apple During Cold Storage. In Proceedings of the International Mesopotamia Agriculture Congress, Diyarbakır, Turkey, 22–25 September 2014. [Google Scholar]
- Tomala, K.; Małachowska, M.; Guzek, D.; Głąbska, D.; Gutkowska, K. The effects of 1-methylcyclopropene treatment on the fruit quality of ‘Idared’ apples during storage and transportation. Agriculture 2020, 10, 490. [Google Scholar] [CrossRef]
- Soethe, C.; Steffens, C.A.; Hawerroth, F.J.; Moreira, M.A.; do Amarante, C.V.T.; Stanger, M.C. Quality of ‘Baigent’ apples as a function of pre-harvest application of aminoethoxyvinylglycine and ethephon stored in controlled atmosphere. Appl. Food Res. 2022, 2, 100117. [Google Scholar] [CrossRef]
- Soethe, C.; Steffens, C.A.; Hawerroth, F.J.; do Amarante, C.V.T.; Heinzen, A.S. Maturation of ‘Baigent’ apples protected by anti-hail nets and sprayed with aminoethoxyvinylglycine and ethephon. Pesqui. Agropecuária Bras. 2021, 56, e02439. [Google Scholar] [CrossRef]
- Byers, R.E. Effects of Aminoethoxyvinylglycine (AVG) on preharvest fruit drop, maturity, and cracking of several apple cultivars. J. Tree Fruit Prod. 2016, 2, 77–97. [Google Scholar] [CrossRef]
- Prasanna, V.; Prabha, T.N.; Tharanathan, R.N. Fruit ripening phenomena—An overview. Crit. Rev. Food Sci. Nutr. 2007, 47, 1–19. [Google Scholar] [CrossRef]
- Hossain, M.S.; Ramachandraiah, K.; Hasan, R.; Chowdhury, R.I.; Kanan, K.A.; Ahmed, S.; Ali, M.A.; Islam, M.T.; Ahmed, M. Application of Oxalic Acid and 1-Methylcyclopropane (1-Mcp) with Low and High-Density Polyethylene on Post-Harvest Storage of Litchi Fruit. Sustainability 2021, 13, 3703. [Google Scholar] [CrossRef]
- Petri, J.L.; Hawerroth, F.J.; Leite, G.B. Maturação, qualidade e queda pré-colheita de maçãs ‘Imperial Gala’ em função da aplicação de aminoetoxivinilglicina. Bragantia Camp. 2010, 69, 599–608. [Google Scholar] [CrossRef]
- Zhang, J.; Ma, Y.; Dong, C.; Terry, L.A.; Watkins, C.B.; Yu, Z.; Cheng, Z.M. Meta-analysis of the effects of 1-Methylcyclopropene (1-MCP) treatment on climacteric fruit ripening. Hortic. Res. 2020, 7, 208. [Google Scholar] [CrossRef]
- Drake, S.R.; Elfving, D.C.; Drake, M.A.; Eisele, T.A.; Drake, S.L.; Visser, D.B. Effects of aminoethoxyvinylglycine, ethephon, and 1-methylcyclopropene on apple fruit quality at harvest and after storage. HortTechnology 2006, 16, 16–23. [Google Scholar] [CrossRef]
- Amarante, C.V.T.; Steffens, C.A.; Blum, L.E.B. Fruit color, physiological disorders and diseases of ‘Gala’ and ‘Fuji’ apples sprayed with aminoethoxyvinylglycine. Rev. Bras. Frutic. 2010, 31, 9–18. [Google Scholar] [CrossRef]
- Pre-Aymard, C.; Weksler, A.; Lurie, S. Responses of ‘Anna’, a rapidly ripening summer apple, to 1-methylcyclopropene. Postharvest Biol. Technol. 2003, 27, 163–170. [Google Scholar] [CrossRef]
- Watkins, C.B. The use of 1-methylcyclopropene (1-MCP) on fruits and vegetables. Biotechnol. Adv. 2006, 24, 389–409. [Google Scholar] [CrossRef] [PubMed]
- Trainotti, L.; Tadiello, A.; Casadoro, G. The involvement of auxin in the ripening of climacteric fruits comes of age: The hormone plays a role of its own and has an intense interplay with ethylene in ripening peaches. J. Exp. Bot. 2007, 58, 3299–3308. [Google Scholar] [CrossRef] [PubMed]
- Kader, A.A. Postharvest Technology of Horticultural Crops, 2nd ed.; University of California Agriculture and Natural Resources: Davis, CA, USA, 1992; p. 3311. [Google Scholar]
- Imahori, Y. Postharvest stress treatments in fruits and vegetables. In Abiotic Stress Responses in Plants: Metabolism, Productivity and Sustainability; Ahmad, P., Prasad, M.N.V., Eds.; Springer: New York, NY, USA, 2012; pp. 347–358. [Google Scholar]
- Li, L.; Li, C.; Sun, J.; Sheng, J.; Zhou, Z.; Xin, M.; Yi, P.; He, X.; Zheng, F.; Tang, Y.; et al. The effects of 1-methylcyclopropene in the regulation of antioxidative system and softening of mango fruit during storage. J. Food Qual. 2020, 2020, 6090354. [Google Scholar] [CrossRef]
- Serra, S.; Anthony, B.; Boscolo Sesillo, F.B.; Masia, A.; Musacchi, S. Determination of post-harvest biochemical composition, enzymatic activities, and oxidative browning in 14 apple cultivars. Foods 2021, 10, 186. [Google Scholar] [CrossRef]
- Razzaq, K.; Singh, Z.; Khan, A.S.; Khan, S.A.K.U.; Ullah, S. Role of 1-MCP in regulating ‘Kensington Pride’ mango fruit softening and ripening. Plant Growth Regul. 2016, 78, 401–411. [Google Scholar] [CrossRef]
- Falagán, N.; Terry, L.A. 1-Methylcyclopropene maintains postharvest quality in Norwegian apple fruit. Food Sci. Technol. Int. 2019, 26, 420–429. [Google Scholar] [CrossRef]
Months | Relative Humidity (%) | Minimum Temperature (°C) | Maximum Temperature (°C) | ||||||
---|---|---|---|---|---|---|---|---|---|
Season | Season | Season | |||||||
2010 | 2020 | 2021 | 2010 | 2020 | 2021 | 2010 | 2020 | 2021 | |
January | 71.64 | 71.87 | 64.77 | 13.60 | 14.55 | 13.99 | 16.58 | 18.77 | 19.17 |
February | 74.32 | 71.47 | 60.94 | 13.20 | 13.63 | 14.23 | 17.07 | 17.93 | 20.09 |
March | 73.82 | 70.89 | 68.88 | 13.48 | 13.86 | 14.65 | 18.75 | 18.13 | 20.32 |
April | 73.12 | 68.40 | 64.61 | 15.14 | 14.89 | 16.36 | 20.34 | 21.86 | 22.63 |
May | 71.60 | 68.11 | 66.47 | 18.38 | 19.85 | 18.70 | 24.16 | 26.00 | 24.89 |
June | 70.22 | 71.51 | 70.60 | 21.07 | 21.92 | 21.90 | 26.59 | 26.62 | 27.47 |
July | 73.74 | 71.72 | 75.21 | 24.09 | 25.00 | 24.14 | 28.48 | 29.48 | 28.19 |
August | 72.02 | 73.07 | 75.40 | 25.45 | 25.94 | 25.46 | 29.67 | 30.47 | 29.83 |
September | 73.28 | 68.68 | 67.20 | 25.15 | 24.83 | 24.72 | 29.58 | 28.89 | 29.07 |
October | 70.12 | 68.26 | 67.38 | 23.31 | 22.13 | 22.71 | 27.47 | 26.38 | 27.44 |
November | 69.69 | 70.24 | 69.31 | 19.67 | 19.87 | 19.31 | 22.29 | 24.14 | 24.05 |
December | 67.55 | 70.16 | 66.95 | 16.47 | 15.29 | 15.79 | 20.29 | 18.47 | 20.87 |
Average | 71.76 | 70.37 | 68.14 | 19.08 | 19.31 | 19.33 | 23.44 | 22.39 | 24.5 |
Season | Treatment | Fruit Weight (g) | Fruit Volume (cm3) | Fruit Length (cm) | Fruit Diameter (cm) | Shape Index | Firmness (kPa) |
---|---|---|---|---|---|---|---|
2020 | Control | 141.78 g | 141.00 h | 7.09 f | 6.49 h | 1.092 c | 83.79 g |
1-MCP | 142.73 f | 145.25 g | 7.14 e | 6.51 g | 1.097 bc | 85.05 c | |
AVG | 143.31 e | 148.25 f | 7.20 d | 6.53 f | 1.102 b | 84.74 d | |
NAA | 148.11 a | 164.75 a | 7.48 a | 6.72 a | 1.114 a | 83.15 h | |
1-MCP + AVG | 143.76 e | 151.25 e | 7.23 d | 6.56 e | 1.101 b | 85.52 a | |
1-MCP + NAA | 145.65 d | 156.00 d | 7.38 c | 6.63 d | 1.114 a | 84.43 e | |
AVG + NAA | 146.56 c | 159.00 c | 7.42 b | 6.65 c | 1.115 a | 84.17 f | |
1-MCP + AVG + NAA | 147.13 b | 162.00 b | 7.45 a | 6.68 b | 1.116 a | 85.26 b | |
LSD (5%) | 0.56 | 1.59 | 0.031 | 0.017 | 0.005 | 0.020 | |
2021 | Control | 143.70 h | 142.00 h | 7.14 g | 6.49 h | 1.101 d | 83.77 g |
1-MCP | 144.38 g | 146.00 g | 7.22 f | 6.52 g | 1.107 c | 85.03 c | |
AVG | 146.56 f | 149.00 f | 7.28 e | 6.54 f | 1.112 bc | 84.81 d | |
NAA | 159.00 a | 166.75 a | 7.54 a | 6.74 a | 1.119 a | 83.15 h | |
1-MCP + AVG | 148.52 e | 151.75 e | 7.13 d | 6.59 e | 1.110 c | 85.48 a | |
1-MCP + NAA | 151.87 d | 157.75 d | 7.42 c | 6.65 d | 1.116 ab | 84.34 e | |
AVG + NAA | 153.92 c | 160.50 c | 7.45 c | 6.68 c | 1.116 ab | 84.10 f | |
1-MCP + AVG + NAA | 156.85 b | 163.50 b | 7.50 b | 6.70 b | 1.118 a | 85.20 b | |
LSD (5%) | 0.344 | 1.51 | 0.033 | 0.012 | 0.005 | 0.016 |
Season | Treatment | TSS (%) | Acidity (%) | TSS/ Acidity | Carotenoids (mg/100 g) | Anthocyanin (mg/100 g) | TOTAL SUGARS (%) | REDUCING SUGARS (%) | Non-Reducing Sugars (%) | Starch (%) |
---|---|---|---|---|---|---|---|---|---|---|
2020 | Control | 12.40 b | 0.54 f | 22.97 b | 2.29 b | 24.26 b | 8.47 b | 5.57 b | 2.91 g | 2.42 g |
1-MCP | 11.91 e | 0.67 b | 17.91 f | 2.12 f | 23.38 e | 8.26 e | 5.10 f | 3.16 c | 2.67 c | |
AVG | 11.94 e | 0.64 c | 18.74 e | 2.15 e | 23.92 d | 8.30 e | 5.23 e | 3.07 d | 2.63 d | |
NAA | 12.70 a | 0.52 g | 24.43 a | 2.37 a | 24.72 a | 8.73 a | 5.89 a | 2.84 h | 2.35 h | |
1-MCP + AVG | 11.79 f | 0.70 a | 16.90 g | 1.98 h | 23.07 f | 8.17 f | 4.90 h | 2.27 a | 2.77 a | |
1-MCP + NAA | 12.02 d | 0.61 d | 19.71 d | 2.18 d | 24.02 d | 8.36 d | 5.35 d | 3.01 e | 2.59 e | |
AVG + NAA | 12.20 c | 0.59 e | 20.60 c | 2.24 c | 24.14 c | 8.41 c | 5.45 c | 2.96 f | 2.53 f | |
1-MCP + AVG + NAA | 11.83 f | 0.69 a | 17.21 g | 2.06 g | 23.19 f | 8.21 f | 5.00 g | 3.21 b | 2.71 b | |
LSD (5%) | 0.076 | 0.015 | 0.475 | 0.022 | 0.090 | 0.050 | 0.057 | 0.022 | 0.024 | |
2021 | Control | 12.43 b | 0.56 e | 22.40 b | 2.29 b | 24.28 b | 8.55 b | 5.67 b | 2.88 g | 2.42 g |
1-MCP | 11.86 f | 0.64 b | 18.46 e | 2.12 f | 23.43 e | 8.27 f | 5.12 f | 3.15 c | 2.66 c | |
AVG | 11.92 e | 0.62 c | 19.16 d | 2.15 e | 23.90 d | 8.31 e | 5.24 e | 3.07 d | 2.62 d | |
NAA | 12.77 a | 0.53 f | 24.33 a | 2.36 a | 24.82 a | 8.70 a | 5.86 a | 2.84 h | 2.36 h | |
1-MCP + AVG | 11.80 g | 0.68 a | 17.35 f | 1.98 h | 23.08 g | 8.14 h | 4.86 h | 3.28 a | 2.75 a | |
1-MCP + NAA | 11.96 e | 0.61 c | 19.78 d | 2.18 d | 24.12 c | 8.36 d | 5.38 d | 2.98 e | 2.58 e | |
AVG + NAA | 12.07 d | 0.58 d | 20.83 c | 2.23 c | 24.17 c | 8.40 c | 5.46 c | 2.94 f | 2.52 f | |
1-MCP + AVG + NAA | 12.29 c | 0.67 a | 18.49 e | 2.05 g | 23.23 f | 8.21 g | 4.99 g | 3.22 b | 2.71 b | |
LSD (5%) | 0.048 | 0.018 | 0.635 | 0.016 | 0.057 | 0.032 | 0.036 | 0.016 | 0.015 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Abdel-Sattar, M.; Al-Obeed, R.S.; Lisek, A.; Eshra, D.H. Enhancing Anna Apples’ Productivity, Physico-Chemical Properties, and Marketability Using Sprays of Naphthalene Acetic Acid and Inhibitors of Ethylene for Alleviating Abiotic Stresses. Horticulturae 2023, 9, 755. https://doi.org/10.3390/horticulturae9070755
Abdel-Sattar M, Al-Obeed RS, Lisek A, Eshra DH. Enhancing Anna Apples’ Productivity, Physico-Chemical Properties, and Marketability Using Sprays of Naphthalene Acetic Acid and Inhibitors of Ethylene for Alleviating Abiotic Stresses. Horticulturae. 2023; 9(7):755. https://doi.org/10.3390/horticulturae9070755
Chicago/Turabian StyleAbdel-Sattar, Mahmoud, Rashid S. Al-Obeed, Anna Lisek, and Dalia H. Eshra. 2023. "Enhancing Anna Apples’ Productivity, Physico-Chemical Properties, and Marketability Using Sprays of Naphthalene Acetic Acid and Inhibitors of Ethylene for Alleviating Abiotic Stresses" Horticulturae 9, no. 7: 755. https://doi.org/10.3390/horticulturae9070755
APA StyleAbdel-Sattar, M., Al-Obeed, R. S., Lisek, A., & Eshra, D. H. (2023). Enhancing Anna Apples’ Productivity, Physico-Chemical Properties, and Marketability Using Sprays of Naphthalene Acetic Acid and Inhibitors of Ethylene for Alleviating Abiotic Stresses. Horticulturae, 9(7), 755. https://doi.org/10.3390/horticulturae9070755