An Efficient Breeding Method for Eupeodes corollae (Diptera: Syrphidae), a Pollinator and Insect Natural Enemy in Facility-Horticulture Crops
Abstract
:1. Introduction
2. Materials and Methods
2.1. Insect Material
2.2. Method of Aphid Culture
2.3. Method of E. corollae Culture
2.3.1. E. corollae Adult Culture
Aphid Supply Method
E. corollae Adult Density Treatment
Aphid Species Treatment
2.3.2. Method of E. corollae Larvae Culture
Aphid Species Treatment
Rearing Containers
2.3.3. Preservation Method for E. corollae Pupae
2.4. Statistical Analysis
3. Results
3.1. Optimized Breeding Technique for Aphid Populations
3.2. Optimized Breeding Technique for E. corollae
3.2.1. Reproduction of E. corollae Reared Using Different Methods
Reproduction of E. corollae Using Different Aphid Densities
Reproduction of E. corollae with Different Adult Numbers
Reproduction of E. corollae Using Different Aphid Species
3.2.2. Development of E. corollae Larvae Reared Using Different Methods
Development of E. corollae Larvae Fed on Different Aphid Species
Development of E. corollae Larvae Reared in Box versus Cage
3.2.3. Emergence of E. corollae Pupae When Covered with Different Substances
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Engler, N.; Krarti, M. Review of energy efficiency in controlled environment agriculture. Renew. Sust. Energ. Rev. 2021, 141, 110786. [Google Scholar] [CrossRef]
- Ragaveena, S.; Shirly Edward, A.; Surendran, U. Smart controlled environment agriculture methods: A holistic review. Rev. Environ. Sci. Bio. 2021, 20, 887–913. [Google Scholar] [CrossRef]
- Westerkamp, C.; Gottsberger, G. Diversity pays in crop pollination. Crop Sci. 2000, 40, 1209–1222. [Google Scholar] [CrossRef]
- Fan, H.; Yang, M.S.; Wang, R.Y.; Wang, X.J.; Yue, X. Simulation of multiple unmanned aerial vehicles for compensatory pollination in facility agriculture. J. Phys. Conf. Ser. 2021, 2005, 012086. [Google Scholar] [CrossRef]
- Ma, Y.; Liu, Z.H.; Xi, B.D.; He, X.S.; Li, Q.L.; Qi, Y.J.; Jin, M.Y.; Guo, Y. Characteristics of groundwater pollution in a vegetable cultivation area of typical facility agriculture in a developed city. Ecol. Indic. 2019, 105, 709–716. [Google Scholar] [CrossRef]
- Serrano, A.R.; Guerra-Sanz, J.M. Quality fruit improvement in sweet pepper culture by bumblebee pollination. Sci. Hortic. 2006, 110, 160–166. [Google Scholar] [CrossRef]
- Andersson, G.K.S.; Rundlöf, M.; Smith, H.G. Organic farming improves pollination success in strawberries. PLoS ONE 2012, 7, e31599. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Garibaldi, L.A.; Requier, F.; Rollin, O.; Andersson, G.K.S. Towards an integrated species and habitat management of crop pollination. Curr. Opin. Insect Sci. 2017, 21, 105–114. [Google Scholar] [CrossRef]
- Meyer-Rochow, V.B. Attributes and references to honey bees (Insecta; Hymenoptera; Apidae) and their products in some Asian and Australian societies’ folkloristic domains. J. Ecol. Environ. 2021, 45, 30. [Google Scholar] [CrossRef]
- Ilse, D. Colour discrimination in the dronefly Eristalis tenax. Nature 1949, 163, 255–256. [Google Scholar] [CrossRef] [PubMed]
- Lunau, K.; Wacht, S. Optical releasers of the innate proboscis extension in the hoverfly Eristalis tenax L. (Syrphidae, Diptera). J. Comp. Physiol. A 1994, 174, 575–579. [Google Scholar] [CrossRef]
- Malasis, M.H.; Ravensberg, W.J. (Eds.) Knowing and Recognizing: The Biology of Glasshouse Pests and Their Natural Enemies; Koppert Biological Systems: Berkel en Rodenrijs, The Netherlands, 2007; ISBN 905439126X. [Google Scholar]
- Maleknia, B.; Fathipour, Y.; Soufbaf, M. How greenhouse cucumber cultivars affect population growth and two-sex life table parameters of Tetranychus urticae (Acari: Tetranychidae). Int. J. Acarol. 2016, 42, 70–78. [Google Scholar] [CrossRef]
- Devine, G.J.; Denholm, I. Chapter 135-Insecticide and Acaricide Resistance. In Encyclopedia of Insects, 2nd ed.; Resh, V.H., Cardé, R.T., Eds.; Academic Press: San Diego, CA, USA, 2009; pp. 505–511. [Google Scholar]
- Wyckhuys, K.A.G.; Aebi, A.; Van Lexmond, M.F.I.J.B.; Bojaca, C.R.; Bonmatin, J.M.; Furlan, L.; Guerrero, J.A.; Mai, T.V.; Pham, H.V.; Sanchez-Bayo, F.; et al. Resolving the twin human and environmental health hazards of a plant-based diet. Environ. Int. 2020, 144, 106081. [Google Scholar] [CrossRef]
- Ochieng, S.O.; Nderitu, P.W. Biocontrol approach to management of greenpeach aphid Myzus persicae in garden peas for a sustainable ecosystem. J. Hortic. For. 2011, 3, 231–237. [Google Scholar] [CrossRef]
- Miller, T.L.P.; Rebek, E.J. Banker plants for aphid biological control in greenhouses. J. Int. Pest Manag. 2018, 9, 9. [Google Scholar] [CrossRef] [Green Version]
- Shafir, S.; Dag, A.; Bilu, A.; Abu-Toamy, M.; Elad, Y. Honey bee dispersal of the biocontrol agent Trichoderma harzianum T39: Effectiveness in suppressing Botrytis cinerea on strawberry under field conditions. Eur. J. Plant Pathol. 2006, 116, 119–128. [Google Scholar] [CrossRef]
- Kapongo, J.P.; Shipp, L.; Kevan, P.; Sutton, J.C. Co-vectoring of Beauveria bassiana and Clonostachys rosea by bumble bees (Bombus impatiens) for control of insect pests and suppression of grey mould in greenhouse tomato and sweet pepper. Biol. Control 2008, 46, 508–514. [Google Scholar] [CrossRef]
- Bartomeus, I.; Gagic, V.; Bommarco, R. Pollinators, pests and soil properties interactively shape oilseed rape yield. Basic Appl. Ecol. 2015, 16, 737–745. [Google Scholar] [CrossRef] [Green Version]
- Dunn, L.; Lequerica, M.; Reid, C.R.; Latty, T. Dual ecosystem services of syrphid flies (Diptera: Syrphidae): Pollinators and biological control agents. Pest. Manag. Sci. 2020, 76, 1973–1979. [Google Scholar] [CrossRef]
- Tenhumberg, B.; Poehling, H.M. Syrphids as natural enemies of cereal aphids in Germany: Aspects of their biology and efficacy in different years and regions. Agric. Ecosyst. Environ. 1995, 52, 39–43. [Google Scholar] [CrossRef] [Green Version]
- Thompson, F.; Rotheray, G.; Zumbado, M. Syrphidae (flower flies). In Manual of Central American Diptera; NRC Research Press: Ottawa, ON, Canada, 2010; Volume 2, p. 624. [Google Scholar]
- Rotheray, G.E.; Gilbert, S.F. The Natural History of Hoverflies; Forrest Text: Tresaith, UK, 2011; pp. 118–120. [Google Scholar]
- Jauker, F.; Wolters, V. Hover flies are efficient pollinators of oilseed rape. Oecologia 2008, 156, 819–823. [Google Scholar] [CrossRef]
- Ssymank, A.; Kearns, C.A.; Pape, T.; Thompson, F.C. Pollinating flies (Diptera): A major contribution to plant diversity and agricultural production. Biodiversity 2008, 9, 86–89. [Google Scholar] [CrossRef]
- Wotton, K.R.; Gao, B.; Menz, M.H.M.; Morris, R.K.A.; Ball, S.G.; Lim, K.S.; Reynolds, D.R.; Hu, G.; Chapman, J.W. Mass seasonal migrations of hoverflies provide extensive pollination and crop protection services. Curr. Biol. 2019, 29, 2167–2173. [Google Scholar] [CrossRef] [PubMed]
- Pekas, A.; De Craecker, I.; Boonen, S.; Wäckers, F.L.; Moerkens, R. One stone; two birds: Concurrent pest control and pollination services provided by aphidophagous hoverflies. Biol. Control 2020, 149, 104328. [Google Scholar] [CrossRef]
- Van Oystaeyen, A.; Tuyttens, E.; Boonen, S.; De Smedt, L.; Bellinkx, S.; Wäckers, F.L.; Pekas, A. Dual purpose: Predatory hoverflies pollinate strawberry crops and protect them against the strawberry aphid, Chaetospihon fragaefolii. Pest. Manag. Sci. 2022, 78, 3051–3060. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Wu, K.M. Hoverflies provide pollination and biological pest control in greenhouse-grown horticultural crops. Front. Plant Sci. 2023, 14, 1118388. [Google Scholar] [CrossRef] [PubMed]
- Jalilian, F.; Karimpour, Y.; Aramideh, S.; Gilasian, E. Investigation on some biological characteristics of Eupeodes corollae (Dip.: Syrphidae) on Aphis pomi (Hom: Aphididae) in vitro. J. Entomol. Zool. Stud. 2016, 4, 432–435. [Google Scholar] [CrossRef]
- Jiang, S.S.; Li, H.; He, L.M.; Wu, K.M. Population fitness of Eupeodes corollae Fabricius (Diptera: Syrphidae) feeding on different species of aphids. Insects 2022, 13, 494. [Google Scholar] [CrossRef] [PubMed]
- Van Rijn, P.; Kooijman, J.; Wäckers, F. The impact of floral resources on syrphid performance and cabbage aphid biological control. IOBC/WPRS Bull. 2006, 29, 149–152. [Google Scholar] [CrossRef]
- Nelson, E.H.; Hogg, B.N.; Mills, N.J.; Daane, K.M. Syrphid flies suppress lettuce aphids. Biocontrol 2012, 57, 819–826. [Google Scholar] [CrossRef]
- Moerkens, R.; Boonen, S.; Wäckers, F.L.; Pekas, A. Aphidophagous hoverflies reduce foxglove aphid infestations and improve seed set and fruit yield in sweet pepper. Pest Manag. Sci. 2021, 77, 2690–2696. [Google Scholar] [CrossRef]
- Lillo, M.I.; Bañón, C.P.; Rojo, S. Life cycle, population parameters, and predation rate of the hover fly Eupeodes corollae fed on the aphid Myzus persicae. Entomol. Exp. Appl. 2021, 169, 1027–1038. [Google Scholar] [CrossRef]
- Sadeghi, H.; Gilbert, F. Aphid suitability and its relationship to oviposition preference in predatory hoverflies. J. Anim. Ecol. 2000, 69, 771–784. [Google Scholar] [CrossRef] [Green Version]
- Sadeghi, H.; Gilbert, F. Oviposition preference of aphidophagous hoverflies. Ecol. Entomol. 2000, 25, 91–100. [Google Scholar] [CrossRef]
- Almohamad, R.; Verheggen, F.J.; Francis, F.; Haubruge, E. Predatory hoverflies select their oviposition site according to aphid host plant and aphid species. Entomol. Exp. Appl. 2007, 125, 13–21. [Google Scholar] [CrossRef] [Green Version]
- Almohamad, R.; Verheggen, F.J.; Haubruge, É. Searching and oviposition behavior of aphidophagous hoverflies (Diptera: Syrphidae): A review. Biotechnol. Agron. Soc. Environ. 2009, 13, 467–481. [Google Scholar] [CrossRef]
- Leroy, P.D.; Almohamad, R.; Attia, S.; Capella, Q.; Verheggen, F.J.; Haubruge, E.; Francis, F. Aphid honeydew: An arrestant and a contact kairomone for Episyrphus balteatus (Diptera: Syrphidae) larvae and adults. Eur. J. Entomol. 2014, 111, 237–242. [Google Scholar] [CrossRef] [Green Version]
- Kan, E. Assessment of aphid colonies by hoverflies. I maple aphids and Episyrphus balteatus (de Geer) (Diptera: Syrphidae). J. Ethol. 1988, 6, 39–48. [Google Scholar] [CrossRef]
- Kan, E. Assessment of aphid colonies by hoverflies. II pea aphids and 3 syrphid species; Betasyrphus serarius (Wiedemann), Metasyrphus frequens Matsumura and Syrphus vitripennis (Meigen) (Diptera: Syrphidae). J. Ethol. 1988, 6, 135–142. [Google Scholar] [CrossRef]
- Putra, N.S.; Yasuda, H. Effects of prey species and its density on larval performance of two species of hoverfly larvae, Episyrphus balteatus de Geer and Eupeodes corollae Fabricius (Diptera: Syrphidae). Appl. Entomol. Zool. 2006, 41, 389–397. [Google Scholar] [CrossRef] [Green Version]
- Arcaya, E.; Pérez-Bañón, C.; Mengual, X.; Zubcoff-Vallejo, J.J.; Rojo, S. Life table and predation rates of the syrphid fly Allograpta exotica, a control agent of the cowpea aphid Aphis craccivora. Biol. Control 2017, 115, 74–84. [Google Scholar] [CrossRef] [Green Version]
- Yu, G.Y.; Wang, H.Z. Photographic Atlas of Beijing Aphids (Aphidoidea); Science Press: Beijing, China, 2019; pp. 141, 209, 216. [Google Scholar]
- Huang, C.M.; Cheng, X.Y. Fauna Sinica: Insecta, Volume 50: Diptera: Syrphidae; Science Press: Beijing, China, 2012; pp. 342–345. [Google Scholar]
- Amiri-Jami, A.R.; Sadeghi, H.; Gilbert, F.; Moravvej, G.; Asoodeh, A. Oviposition preference of aphidophagous hoverflies toward oviposition site quality: The presence of intra- and interspecific competitor, glucosinolate content, and prey species. J. Asia Pac. Entomol. 2016, 19, 275–280. [Google Scholar] [CrossRef]
- Rojo, S.; Gilbert, F.; Marcos-García, M.Á.; Nieto, J.M.; Mier, M.P. A World Review of Predatory Hoverflies (Diptera, Syrphidae: Syrphinae) and Their Prey; Centro Iberoamericano de la Biodiversidad, Ed.; Universidad de Alicante: Alicante, Spain, 2003; ISBN 8460098540. [Google Scholar]
- Almohamad, R.; Verheggen, F.; Francis, F.; Haubruge, E. Evaluation of hoverfly Episyrphus balteatus De Geer (Diptera: Syrphidae) oviposition behaviour toward aphid-infested plants using a leaf disc system. Comm. Appl. Biol. Sci. 2006, 71, 403–412. [Google Scholar] [CrossRef]
- Iwai, H.; Niijima, K.; Matsuka, M. An artificial diet for aphidophagous syrphids, Episyrphus balteatus (de Geer) and Eupeodes bucculatus (Rondani) (Diptera: Syrphidae) using drone honeybee brood powder. Appl. Entomol. Zool. 2007, 42, 167–172. [Google Scholar] [CrossRef] [Green Version]
- Iwai, H.; Niijima, K.; Matsuka, M. Improvement of artificial diet for aphidophagous syrphids, Episyrphus balteatus (de Geer) and Eupeodes bucculatus (Rondani) (Diptera: Syrphidae): Additional effects of fatty acids and preservatives. Appl. Entomol. Zool. 2009, 44, 439–446. [Google Scholar] [CrossRef] [Green Version]
- Reddy, P.L.; Naik, S.; Reddy, N. Implications of temperature and humidity on the adult eclosion patterns in silkworm, Bombyx mori L. J. Entomol. Res. 2002, 26, 223–228. [Google Scholar] [CrossRef]
- Campoy, A.; Egea-Casas, O.; Pérez-Bañón, C.; Rojo, S. Effect of cold storage on the pupal development of two pollinators, Eristalinus aeneus and Eristalis tenax. Entomol. Exp. Appl. 2021, 170, 110–121. [Google Scholar] [CrossRef]
- Landis, D.A.; Wratten, S.D.; Gurr, G.M. Habitat management to conserve natural enemies of arthropod pests in agriculture. Annu. Rev. Entomol. 2000, 45, 175–201. [Google Scholar] [CrossRef]
- Huang, N.; Enkegaard, A.; Osborne, L.S.; Ramakers, P.M.J.; Messelink, G.J.; Pijnakker, J.; Murphy, G. The banker plant method in biological control. Crit. Rev. Plant Sci. 2011, 30, 259–278. [Google Scholar] [CrossRef]
- Khan, Z.; Midega, C.; Pittchar, J.; Pickett, J.; Bruce, T. Push-pull technology: A conservation agriculture approach for integrated management of insect pests, weeds and soil health in Africa UK government’s foresight food and farming futures project. Int. J. Agric. Sustain. 2011, 9, 162–170. [Google Scholar] [CrossRef]
- Balzan, M.V.; Wäckers, F.L. Flowers to selectively enhance the fitness of a host-feeding parasitoid: Adult feeding by Tuta absoluta and its parasitoid Necremnus artynes. Biol. Control 2013, 67, 21–31. [Google Scholar] [CrossRef]
- Hodgkiss, D.; Brown, M.J.F.; Fountain, M.T. The effect of within-crop floral resources on pollination, aphid control and fruit quality in commercial strawberry. Agric. Ecosyst. Environ. 2019, 275, 112–122. [Google Scholar] [CrossRef]
- Sutherland, J.P.; Sullivan, M.S.; Poppy, G.M. The influence of floral character on the foraging behaviour of the hoverfly, Episyrphus balteatus. Entomol. Exp. Appl. 1999, 93, 157–164. [Google Scholar] [CrossRef]
- Laubertie, E.A.; Wratten, S.D.; Hemptinne, J.L. The contribution of potential beneficial insectary plant species to adult hoverfly (Diptera: Syrphidae) fitness. Biol. Control 2012, 61, 1–6. [Google Scholar] [CrossRef]
- Martínez-Uña, A.; Martín, J.M.; Fernández-Quintanilla, C.; Dorado, J. Provisioning floral resources to attract aphidophagous hoverflies (Diptera: Syrphidae) useful for pest management in central Spain. J. Econo. Entomol. 2013, 106, 2327–2335. [Google Scholar] [CrossRef] [PubMed]
- Gurr, G.M.; Wratten, S.D.; Landis, D.A.; You, M. Habitat management to suppress pest populations: Progress and prospects. Annu. Rev. Entomol. 2017, 62, 91–109. [Google Scholar] [CrossRef]
- Gardiner, M.M.; Landis, D.A.; Gratton, C.; DiFonzo, C.D.; O’Neal, M.; Chacon, J.M.; Wayo, M.T.; Schmidt, N.P.; Mueller, E.E.; Heimpel, G.E. Landscape diversity enhances biological control of an introduced crop pest in the north-central USA. Ecol. Appl. 2009, 19, 143–154. [Google Scholar] [CrossRef]
- Winqvist, C.; Bengtsson, J.; Aavik, T.; Berendse, F.; Clement, L.W.; Eggers, S.; Fischer, C.; Flohre, A.; Geiger, F.; Liira, J.; et al. Mixed effects of organic farming and landscape complexity on farmland biodiversity and biological control potential across Europe. J. Appl. Ecol. 2011, 48, 570–579. [Google Scholar] [CrossRef]
- Chaplin-Kramer, R.; O’Rourke, M.; Schellhorn, N.; Zhang, W.; Robinson, B.E.; Gratton, C.; Rosenheim, J.A.; Tscharntke, T.; Karp, D.S. Measuring what matters: Actionable information for conservation biocontrol in multifunctional landscapes. Front. Sustain. Food Syst. 2019, 3, 60. [Google Scholar] [CrossRef] [Green Version]
Replacement Frequency of Broad Bean Seedlings (d) | Total Spawn Number/Hoverflies | Egg-Hatching Rate (%) | Number of Hoverfly Larvae/Adults |
---|---|---|---|
1 | 584.9 ± 22.92 A | 95.6 ± 6.52 A | 549.3 ± 17.65 A |
2 | 450.0 ± 16.23 B | 84.2 ± 5.11 B | 301.0 ± 15.26 B |
4 | 283.5 ± 23.43 C | 77.6 ± 3.20 C | 198.6 ± 12.72 C |
No replacement | 168.2 ± 26.20 D | 43.5 ± 4.50 D | 73.2 ± 4.55 D |
Number of Hoverfly Adults | Total Spawn Number/Hoverflies | Egg Hatching Rate (%) | Number of Hoverfly Larvae/Adults |
---|---|---|---|
1 pair | 584.9 ± 22.92 A | 95.6 ± 6.52 A | 549.3 ± 17.65 A |
5 pairs | 546.4 ± 19.40 A | 94.5 ± 3.52 A | 489.5 ± 20.33 A |
10 pairs | 424.8 ± 19.43 B | 58.3 ± 5.47 B | 231.6 ± 16.52 B |
20 pairs | 303.7 ± 20.32 C | 33.4 ± 6.20 C | 96.4 ± 6.87 C |
Aphid Species | Total Spawn Number/hoverflies | Egg-Hatching Rate (%) | Number of Hoverfly Larvae/Adults |
---|---|---|---|
Me. japonica | 483.2 ± 12.2 B | 58.3 ± 6.41 C | 367.9 ± 15.72 B |
A. craccivora | 546.4 ± 19.40 A | 94.5 ± 3.52 A | 489.5 ± 20.33 A |
My. persicae | 289.5 ± 23.2 C | 81.3 ± 4.86 B | 206.6 ± 26.42 C |
Mixed aphids | 425.9 ± 16.8 C | 78.3 ± 5.43 B | 316.4 ± 15.20 B |
Aphid Species | ||||
---|---|---|---|---|
My. persicae | A. craccivora | Me. japonica | Mixed Aphids | |
Larval survival rate (%) | 94.4 ± 2.33 A | 87.8 ± 4.93 A | 63.3 ± 6.94 C | 91.1 ± 1.10 A |
Pupation rate (%) | 83.5 ± 1.41 C | 92.2 ± 2.35 B | 90.1 ± 4.14 B | 100 ± 0.00 A |
Emergence rate (%) | 83.2 ± 2.12 B | 95.5 ± 2.63 A | 74.9 ± 3.26 C | 96.3 ± 3.70 A |
Larval Rearing Method | Larval Survival Rate (%) | Pupation Rate (%) | Pupae Weight (mg) |
---|---|---|---|
Insect box | 79.9 ± 3.42 A | 95.6 ± 3.25 A | 30.1 ± 5.42 A |
Insect cage | 49.3 ± 6.85 B | 72.3 ± 4.32 B | 25.4 ± 1.84 B |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, H.; Wu, K. An Efficient Breeding Method for Eupeodes corollae (Diptera: Syrphidae), a Pollinator and Insect Natural Enemy in Facility-Horticulture Crops. Horticulturae 2023, 9, 664. https://doi.org/10.3390/horticulturae9060664
Li H, Wu K. An Efficient Breeding Method for Eupeodes corollae (Diptera: Syrphidae), a Pollinator and Insect Natural Enemy in Facility-Horticulture Crops. Horticulturae. 2023; 9(6):664. https://doi.org/10.3390/horticulturae9060664
Chicago/Turabian StyleLi, Hui, and Kongming Wu. 2023. "An Efficient Breeding Method for Eupeodes corollae (Diptera: Syrphidae), a Pollinator and Insect Natural Enemy in Facility-Horticulture Crops" Horticulturae 9, no. 6: 664. https://doi.org/10.3390/horticulturae9060664
APA StyleLi, H., & Wu, K. (2023). An Efficient Breeding Method for Eupeodes corollae (Diptera: Syrphidae), a Pollinator and Insect Natural Enemy in Facility-Horticulture Crops. Horticulturae, 9(6), 664. https://doi.org/10.3390/horticulturae9060664