Reduction of Pericarp Browning and Microbial Spoilage on Litchi Fruits in Modified Atmosphere Packaging
Abstract
:1. Introduction
2. Materials and Methods
2.1. Vegetal Material
2.2. Experimental Design
2.3. Daily Pathological Surveys
2.4. Decay Index (DI)
2.5. Peel Color
2.6. Soluble Solids Content (SSC) and Titratable Acidity (TA)
2.7. Firmness (F)
2.8. Maturity Index (M.I.)
2.9. Proximate Analysis
2.10. Vitamin Analysis
2.11. Organic Acid Analysis
2.12. Microbiological Analysis
2.13. Sensory Analysis
2.14. Statistical Analysis
3. Results
3.1. Daily Pathological Surveys and Decay Index (DI)
3.2. Peel Color Decay and Browning Index
3.3. Firmness
3.4. Chemical Composition
3.5. Organic Acids
3.6. Proximate Composition
3.7. Vitamin Composition
3.8. Microbiological Evolution during Refrigerated Storage
3.9. Sensory Analysis
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Farina, V.; Gianguzzi, G.; D’Asaro, A.; Mazzaglia, A.; Palazzolo, E. Fruit production and quality evaluation of four litchi cultivars (Litchi chinensis Sonn.) grown in Mediterranean climate. Fruits 2017, 72, 203–211. [Google Scholar] [CrossRef]
- Fratianni, A.; Adiletta, G.; Di Matteo, M.; Panfili, G.; Niro, S.; Gentile, C.; Farina, V.; Cinquanta, L.; Corona, O. Evolution of carotenoid content, antioxidant activity and volatiles compounds in dried mango fruits (Mangifera Indica L.). Foods 2020, 9, 1424. [Google Scholar] [CrossRef]
- Migliore, G.; Farina, V.; Guccione, G.D.; Schifani, G. Quality determinants of avocado fruit consumption in Italy. Implic. Small Farms. Calit. 2018, 19, 148–153. [Google Scholar]
- Adiletta, G.; Di Matteo, M.; Albanese, D.; Farina, V.; Cinquanta, L.; Corona, O.; Magri, A.; Petriccione, M. Changes in physico-chemical traits and enzymes oxidative system during cold storage of ‘Formosa’ papaya fresh cut fruits grown in the mediterranean area (Sicily). Ital. J. Food Sci. 2020, 32, 845–857. [Google Scholar]
- Mazzaglia, A.; Lanza, C.; Farina, V.; Barone, F. Evaluation of fruit quality in loquat using both chemical and sensory analyses. III Int. Symp. Loquat 2010, 887, 345–349. [Google Scholar]
- Baoyao, W.; Li, H.; Jianwen, T.; Min, J. Chemical Compositional Characterization of Ten Litchi Cultivars. In Proceedings of the 2011 International Conference on New Technology of Agricultural, Zibo, China, 27–29 May 2011; pp. 1007–1011. [Google Scholar]
- Pandey, N.; Joshi, S.K.; Singh, C.; Kumar, S.; Rajput, S.; Khandal, R. Enhancing shelf life of litchi (Litchi chinensis) fruit through integrated approach of surface coating and gamma irradiation. Radiat. Phys. Chem. 2013, 85, 197–203. [Google Scholar] [CrossRef]
- Chen, Z.; He, M.; Zhou, Y.; Chen, X.; Zhu, H.; Yang, B.; Jiang, Y.; Qu, H. Degradation of water-soluble polysaccharides in pulp of litchi during storage. Food Chem. 2023, 402, 134289. [Google Scholar] [CrossRef]
- Jiang, Y.; Duan, X.; Joyce, D.; Zhang, Z.; Li, J. Advances in understanding of enzymatic browning in harvested litchi fruit. Food Chem. 2004, 88, 443–446. [Google Scholar] [CrossRef]
- Veerappan, K.; Natarajan, S.; Chung, H.; Park, J. Molecular Insights of Fruit Quality Traits in Peaches, Prunus persica. Plants 2021, 10, 2191. [Google Scholar] [CrossRef]
- Sivakumar, D.; Korsten, L.; Zeeman, K. Postharvest management on quality retention of litchi during storage. Fresh Prod. 2007, 1, 66–75. [Google Scholar]
- Sun, J.; You, X.; Li, L.; Peng, H.; Su, W.; Li, C.; He, Q.; Liao, F. Effects of a phospholipase D inhibitor on postharvest enzymatic browning and oxidative stress of litchi fruit. Postharvest Biol. Technol. 2011, 62, 288–294. [Google Scholar] [CrossRef]
- Li, M.; Hong, Y.; Wang, X. Phospholipase D-and phosphatidic acid-mediated signaling in plants. Biochim. Et Biophys. Acta BBA Mol. Cell Biol. Lipids 2009, 1791, 927–935. [Google Scholar] [CrossRef]
- Saquet, A.; Streif, J.; Bangerth, F. Energy metabolism and membrane lipid alterations in relation to brown heart development in ‘Conference’pears during delayed controlled atmosphere storage. Postharvest Biol. Technol. 2003, 30, 123–132. [Google Scholar]
- Wang, T.; Hu, M.; Yuan, D.; Yun, Z.; Gao, Z.; Su, Z.; Zhang, Z. Melatonin alleviates pericarp browning in litchi fruit by regulating membrane lipid and energy metabolisms. Postharvest Biol. Technol. 2020, 160, 111066. [Google Scholar] [CrossRef]
- Ali, S.; Khan, A.S.; Malik, A.U.; Shahid, M. Effect of controlled atmosphere storage on pericarp browning, bioactive compounds and antioxidant enzymes of litchi fruits. Food Chem. 2016, 206, 18–29. [Google Scholar] [CrossRef]
- Zhang, Z.; Pang, X.; Ji, Z.; Jiang, Y. Role of anthocyanin degradation in litchi pericarp browning. Food Chem. 2001, 75, 217–221. [Google Scholar] [CrossRef]
- Jacobi, K.K.; Wong, L.S.; Giles, J.E. Lychee (Litchi chinensis Sonn.) fruit quality following vapour heat treatment and cool storage. Postharvest Biol. Technol. 1993, 3, 111–119. [Google Scholar] [CrossRef]
- Ray, P.; Rani, R.; Singh, S. Effect of temperature and sulphur treatments on storage behaviour of litchi fruits. Indian J. Hortic. 2004, 61, 292–295. [Google Scholar]
- Farina, V.; Sortino, G.; Saletta, F.; Passafiume, R.; Giuffré, D.; Gianguzzi, G.; Inglese, P.; Liguori, G. Effects of rapid refrigeration and modified atmosphere packaging on litchi (Litchi chinensis Sonn.) fruit quality traits. Chem. Eng. 2017, 58, 415–420. [Google Scholar]
- Liu, J.; Sun, J.; Pan, Y.; Yun, Z.; Zhang, Z.; Jiang, G.; Jiang, Y. Endogenous melatonin generation plays a positive role in chilling tolerance in relation to redox homeostasis in litchi fruit during refrigeration. Postharvest Biol. Technol. 2021, 178, 111554. [Google Scholar] [CrossRef]
- Passafiume, R.; Tinebra, I.; Gaglio, R.; Settanni, L.; Sortino, G.; Allegra, A.; Farina, V. Fresh-Cut Mangoes: How to Increase Shelf Life by Using Neem Oil Edible Coating. Coatings 2022, 12, 664. [Google Scholar] [CrossRef]
- Sivakumar, D.; Terry, L.A.; Korsten, L. An overview on litchi fruit quality and alternative postharvest treatments to replace sulfur dioxide fumigation. Food Rev. Int. 2010, 26, 162–188. [Google Scholar] [CrossRef]
- Sivakumar, D.; Arrebola, E.; Korsten, L. Postharvest decay control and quality retention in litchi (cv. McLean’s Red) by combined application of modified atmosphere packaging and antimicrobial agents. Crop Prot. 2008, 27, 1208–1214. [Google Scholar] [CrossRef]
- Ducamp-Collin, M.-N.; Ramarson, H.; Lebrun, M.; Self, G.; Reynes, M. Effect of citric acid and chitosan on maintaining red colouration of litchi fruit pericarp. Postharvest Biol. Technol. 2008, 49, 241–246. [Google Scholar] [CrossRef]
- Zheng, X.; Tian, S. Effect of oxalic acid on control of postharvest browning of litchi fruit. Food Chem. 2006, 96, 519–523. [Google Scholar] [CrossRef]
- Tian, S.-P.; Li, B.-Q.; Xu, Y. Effects of O2 and CO2 concentrations on physiology and quality of litchi fruit in storage. Food Chem. 2005, 91, 659–663. [Google Scholar] [CrossRef]
- Sivakumar, D.; Korsten, L. Influence of modified atmosphere packaging and postharvest treatments on quality retention of litchi cv. Mauritius. Postharvest Biol. Technol. 2006, 41, 135–142. [Google Scholar] [CrossRef]
- Jiang, F.; Zhou, L.; Zhou, W.; Zhong, Z.; Yu, K.; Xu, J.; Zou, L.; Liu, W. Effect of modified atmosphere packaging combined with plant essential oils on preservation of fresh-cut lily bulbs. LWT 2022, 162, 113513. [Google Scholar] [CrossRef]
- Lashkari, E. Effect of Modified Atmosphere Packaging (MAP) on the Stability of Anthocyanins and Degradation of Phenolic Compounds during Postharvest Storage of Pomegranate Fruit. Food Nutr. Sci. 2022, 13, 316–335. [Google Scholar] [CrossRef]
- Luna, M.C.; Tudela, J.A.; Tomas-Barberan, F.A.; Gil, M.I. Modified atmosphere (MA) prevents browning of fresh-cut romaine lettuce through multi-target effects related to phenolic metabolism. Postharvest Biol. Technol. 2016, 119, 84–93. [Google Scholar] [CrossRef]
- Tinebra, I.; Scuderi, D.; Sortino, G.; Inglese, P.; Farina, V. Effects of argon-based and nitrogen-based modified atmosphere packaging technology on the quality of pomegranate (Punica granatum L. cv. Wonderful) Arils. Foods 2021, 10, 370. [Google Scholar] [CrossRef]
- Tinebra, I.; Sortino, G.; Inglese, P.; Fretto, S.; Farina, V. Effect of different modified atmosphere packaging on the quality of mulberry fruit (Morus alba L. cv Kokuso 21). Int. J. Food Sci. 2021, 2021, 8844502. [Google Scholar] [CrossRef]
- Zhang, M.; Meng, X.; Bhandari, B.; Fang, Z.; Chen, H. Recent application of modified atmosphere packaging (MAP) in fresh and fresh-cut foods. Food Rev. Int. 2015, 31, 172–193. [Google Scholar] [CrossRef]
- Sun, Y.; Zhao, X.; Ma, Y.; Guan, H.; Liang, H.; Wang, D. Inhibitory effect of modified atmosphere packaging on Escherichia coli O157: H7 in fresh-cut cucumbers (Cucumis sativus L.) and effectively maintain quality during storage. Food Chem. 2022, 369, 130969. [Google Scholar] [CrossRef]
- Artin, I.; Carter, A.T.; Holst, E.; Lövenklev, M.; Mason, D.R.; Peck, M.W.; Rådström, P. Effects of carbon dioxide on neurotoxin gene expression in nonproteolytic Clostridium botulinum type E. Appl. Environ. Microbiol. 2008, 74, 2391–2397. [Google Scholar] [CrossRef]
- Ali, S.; Sattar Khan, A.; Ullah Malik, A.; Anjum, M.A.; Nawaz, A.; Shoaib Shah, H.M. Modified atmosphere packaging delays enzymatic browning and maintains quality of harvested litchi fruit during low temperature storage. Sci. Hortic. 2019, 254, 14–20. [Google Scholar] [CrossRef]
- Oliveira, M.; Abadias, M.; Usall, J.; Torres, R.; Teixidó, N.; Viñas, I. Application of modified atmosphere packaging as a safety approach to fresh-cut fruits and vegetables–A review. Trends Food Sci. Technol. 2015, 46, 13–26. [Google Scholar] [CrossRef]
- De Reuck, K.; Sivakumar, D.; Korsten, L. Effect of integrated application of chitosan coating and modified atmosphere packaging on overall quality retention in litchi cultivars. J. Sci. Food Agric. 2009, 89, 915–920. [Google Scholar] [CrossRef]
- De Reuck, K.; Sivakumar, D.; Korsten, L. Integrated application of 1-methylcyclopropene and modified atmosphere packaging to improve quality retention of litchi cultivars during storage. Postharvest Biol. Technol. 2009, 52, 71–77. [Google Scholar] [CrossRef]
- Semeerbabu, M.; Kudachikar, V.; Revathy, B.; Usha Devi, A. Effect of post-harvest treatments on shelf-life and quality of litchi fruit stored under modified atmosphere at low temperature. J. Food Sci. Technol. 2007, 44, 107–109. [Google Scholar]
- Kumar, S.; Mishra, B.; Saxena, S.; Bandyopadhyay, N.; More, V.; Wadhawan, S.; Hajare, S.N.; Gautam, S.; Sharma, A. Inhibition of pericarp browning and shelf life extension of litchi by combination dip treatment and radiation processing. Food Chem. 2012, 131, 1223–1232. [Google Scholar] [CrossRef]
- Underhill, S.J.; Wong, L. A maturity standard for lychee (Litchi chinensis Sonn.). Acta Hortic. 1989, 269, 181–188. [Google Scholar] [CrossRef]
- Tinebra, I.; Passafiume, R.; Scuderi, D.; Pirrone, A.; Gaglio, R.; Palazzolo, E.; Farina, V. Effects of Tray-Drying on the Physicochemical, Microbiological, Proximate, and Sensory Properties of White-and Red-Fleshed Loquat (Eriobotrya Japonica Lindl.) Fruit. Agronomy 2022, 12, 540. [Google Scholar] [CrossRef]
- Saleh, I.; Al-Thani, R. Fungal food spoilage of supermarkets’ displayed fruits. Vet. World 2019, 12, 1877. [Google Scholar] [CrossRef]
- Morcia, C.; Malnati, M.; Terzi, V. In vitro antifungal activity of terpinen-4-ol, eugenol, carvone, 1, 8-cineole (eucalyptol) and thymol against mycotoxigenic plant pathogens. Food Addit. Contam. Part A 2012, 29, 415–422. [Google Scholar]
- Barrera Bello, E.; Gil Loaiza, M.; García Pajón, C.M.; Durango Restrepo, D.L.; Gil González, J.H. Empleo de un recubrimiento formulado con propóleos para el manejo poscosecha de frutos de papaya (Carica papaya L. cv. Hawaiana). Rev. Fac. Nac. De Agron. Medellín 2012, 65, 6497–6506. [Google Scholar]
- Perdones, A.; Sánchez-González, L.; Chiralt, A.; Vargas, M. Effect of chitosan–Lemon essential oil coatings on storage-keeping quality of strawberry. Postharvest Biol. Technol. 2012, 70, 32–41. [Google Scholar] [CrossRef]
- Ruangchakpet, A.; Sajjaanantakul, T. Effect of browning on total phenolic, flavonoid content and antioxidant activity in Indian gooseberry (Phyllanthus emblica Linn.). Agric. Nat. Resour. 2007, 41, 331–337. [Google Scholar]
- Peralta-Ruiz, Y.; Tovar, C.G.; Sinning-Mangonez, A.; Bermont, D.; Cordero, A.P.; Paparella, A.; Chaves-López, C. Colletotrichum gloesporioides inhibition using chitosan-Ruta graveolens L essential oil coatings: Studies in vitro and in situ on Carica papaya fruit. Int. J. Food Microbiol. 2020, 326, 108649. [Google Scholar] [CrossRef]
- Williams, S. Official Methods of Analysis of the Association of Official Analytical Chemists, 14th ed.; Association of Official Analytical Chemists, Inc.: Arlington, VA, USA, 1984; ISBN 978-0-935584-24-0. [Google Scholar]
- Fogg, D.N.; Wilkinson, N.T. The colorimetric determination of phosphorus. Analyst 1958, 83, 406–414. [Google Scholar] [CrossRef]
- Palazzolo, E.; Letizia Gargano, M.; Venturella, G. The nutritional composition of selected wild edible mushrooms from Sicily (southern Italy). Int. J. Food Sci. Nutr. 2012, 63, 79–83. [Google Scholar] [CrossRef]
- Ollilainen, V.; Vahteristo, L.; Uusi-Rauva, A.; Varo, P.; Koivistoinen, P.; Huttunen, J. The HPLC determination of total thiamin (vitamin B1) in foods. J. Food Compos. Anal. 1993, 6, 152–165. [Google Scholar] [CrossRef]
- Bueno-Solano, C.; López-Cervantes, J.; Campas-Baypoli, O.; Cortez-Rocha, M.; Casillas-Hernández, R.; Milan-Carrillo, J.; Sánchez-Machado, D. Quantitative HPLC analysis of riboflavin and aromatic amino acids in three forms of shrimp hydrolysates. J. Liq. Chromatogr. Relat. Technol. 2009, 32, 3009–3024. [Google Scholar] [CrossRef]
- Ding, C.-K.; Chachin, K.; Ueda, Y.; Imahori, Y.; Wang, C.Y. Metabolism of phenolic compounds during loquat fruit development. J. Agric. Food Chem. 2001, 49, 2883–2888. [Google Scholar] [CrossRef]
- Chen, F.; Liu, X.; Lin, H.; Chen, L. Determination of the organic acids from the fruit and leaf of loquat by ion-exchange chromatography. J. Fujian Agric. For. Univ. Nat. Sci. 2004, 33, 195–199. [Google Scholar]
- Solís, L.; Sánchez, E.; García, S.; Heredia, N. Traditional Methods for Detection of Foodborne Pathogens. In Microbiologically Safe Foods; John Wiley & Sons: Hoboken, NJ, USA, 2008; pp. 525–545. [Google Scholar]
- Health Canada. MFHPB-18 Determination of the Aerobic Colony Count in Foods. 2015. Available online: https://www.canada.ca/en/health-canada/services/food-nutrition/research-programs-analytical-methods/analytical-methods/compendium-methods/methods-microbiological-analysis-foods-compendium-analytical-methods.html (accessed on 20 April 2023).
- Farina, V.; Passafiume, R.; Tinebra, I.; Scuderi, D.; Saletta, F.; Gugliuzza, G.; Gallotta, A.; Sortino, G. Postharvest application of aloe vera gel-based edible coating to improve the quality and storage stability of fresh-cut papaya. J. Food Qual. 2020, 2020, 8303140. [Google Scholar] [CrossRef]
- Zhang, D.; Quantick, P.C. Effects of chitosan coating on enzymatic browning and decay during postharvest storage of litchi (Litchi chinensis Sonn.) fruit. Postharvest Biol. Technol. 1997, 12, 195–202. [Google Scholar] [CrossRef]
- Sivakumar, D.; Regnier, T.; Demoz, B.; Korsten, L. Effect of different post-harvest treatments on overall quality retention in litchi fruit during low temperature storage. J. Hortic. Sci. Biotechnol. 2005, 80, 32–38. [Google Scholar] [CrossRef]
- Wang, J.; Chen, H.; Zhou, Q.; Zhang, X. Effects of bagging on the fruit quality in Litchi chinensis fruit and pesticide residues in it. Ying Yong Sheng Tai Xue Bao J. Appl. Ecol. 2003, 14, 710–712. [Google Scholar]
- Pesis, E.; Long, P.; Hewett, E. Compositional changes in kiwifruit infected with Botrytis cinerea 1. In vivo studies. New Zealand J. Crop Hortic. Sci. 1991, 19, 405–412. [Google Scholar] [CrossRef]
- Hess-Pierce, B.; Kader, A. Carbon Dioxide-Enriched Atmospheres Extend Postharvest Life of Pomegranate Arils. In Proceedings of the 7th International Controlled Atmosphere Research Conference CA ’97 Fresh Cut Fruits and Vegetables and MAP, Davis, CA, USA, 13–18 July 1997; Volume 5. [Google Scholar]
- Palou, L.; Crisosto, C.H.; Garner, D. Combination of postharvest antifungal chemical treatments and controlled atmosphere storage to control gray mold and improve storability of ‘Wonderful’pomegranates. Postharvest Biol. Technol. 2007, 43, 133–142. [Google Scholar] [CrossRef]
- Jiang, Y.; Wang, Y.; Song, L.; Liu, H.; Lichter, A.; Kerdchoechuen, O.; Joyce, D.; Shi, J. Postharvest characteristics and handling of litchi fruit—An overview. Aust. J. Exp. Agric. 2006, 46, 1541–1556. [Google Scholar] [CrossRef]
- Lai, D.; Shao, X.; Xiao, W.; Fan, C.; Liu, C.; He, H.; Tian, S.; Kuang, S. Suppression of fruit decay and maintenance of storage quality of litchi by Photorhabdus luminescens Hb1029 treatment. Sci. Hortic. 2020, 259, 108836. [Google Scholar] [CrossRef]
- Chen, J.; Du, J.; Li, M.; Li, C. Degradation kinetics and pathways of red raspberry anthocyanins in model and juice systems and their correlation with color and antioxidant changes during storage. LWT Food Sci. Technol. 2020, 128, 109448. [Google Scholar] [CrossRef]
- Zou, B.; Xu, Y.; Wu, J.; Yu, Y.; Xiao, G. Phenolic compounds participating in mulberry juice sediment formation during storage. J. Zhejiang Univ. Sci. B 2017, 18, 854–866. [Google Scholar] [CrossRef] [PubMed]
- Neog, M.; Saikia, L. Control of post-harvest pericarp browning of litchi (Litchi chinensis Sonn.). J. Food Sci. Technol. 2010, 47, 100–104. [Google Scholar] [CrossRef] [PubMed]
- Jiang, Y.; Su, X.; Duan, X.; Lin, W.; Li, Y. Anoxia Treatment for Delaying Skin Browning, Inhibiting Disease Development and Maintaining the Quality of Litchi Fruit. Food Technol. Biotechnol. 2004, 42, 131–134. [Google Scholar]
- Saquet, A.; Streif, J.; Bangerth, F. Changes in ATP, ADP and pyridine nucleotide levels related to the incidence of physiological disorders in ‘Conference’pears and ‘Jonagold’apples during controlled atmosphere storage. J. Hortic. Sci. Biotechnol. 2000, 75, 243–249. [Google Scholar] [CrossRef]
- Zhang, Z.; Hu, M.; Yun, Z.; Wang, J.; Feng, G.; Gao, Z.; Shi, X.; Jiang, Y. Effect of tea seed oil treatment on browning of litchi fruit in relation to energy status and metabolism. Postharvest Biol. Technol. 2017, 132, 97–104. [Google Scholar] [CrossRef]
- Kays, S.J. Postharvest Physiology of Perishable Plant Products; Van Nostrand Reinhold: New York, NY, USA, 1991. [Google Scholar]
- Lemmer, D.; Kruger, F. Identification and quantification of the factors influencing sulphur dioxide residue levels in South African export litchi fruit. Acta Hortic. 2000, 558, 331–337. [Google Scholar] [CrossRef]
- Artés, F.; Villaescusa, R.; Tudela, J. Modified atmosphere packaging of pomegranate. J. Food Sci. 2000, 65, 1112–1116. [Google Scholar] [CrossRef]
- Martínez-Ferrer, M.; Harper, C.; Pérez-Muntoz, F.; Chaparro, M. Modified atmosphere packaging of minimally processed mango and pineapple fruits. J. Food Sci. 2002, 67, 3365–3371. [Google Scholar] [CrossRef]
- Jiang, Y.; Fu, J. Postharvest browning of litchi fruit by water loss and its prevention by controlled atmosphere storage at high relative humidity. LWT Food Sci. Technol. 1999, 32, 278–283. [Google Scholar] [CrossRef]
- Pu, H.; Liu, D.; Wang, L.; Sun, D.-W. Soluble solids content and pH prediction and maturity discrimination of lychee fruits using visible and near infrared hyperspectral imaging. Food Anal. Methods 2016, 9, 235–244. [Google Scholar] [CrossRef]
- Pesis, E.; Dvir, O.; Feygenberg, O.; Arie, R.B.; Ackerman, M.; Lichter, A. Production of acetaldehyde and ethanol during maturation and modified atmosphere storage of litchi fruit. Postharvest Biol. Technol. 2002, 26, 157–165. [Google Scholar] [CrossRef]
- Gaur, G.; Bajpai, P. Post harvest physiology of litchi fruits. II. Progress. Hortic. 1979, 11, 5–16. [Google Scholar]
- Paull, R.E.; Chen, N.J. Effect of storage temperature and wrapping on quality characteristics of litchi fruit. Sci. Hortic. 1987, 33, 223–236. [Google Scholar] [CrossRef]
- Somboonkaew, N.; Terry, L.A. Physiological and biochemical profiles of imported litchi fruit under modified atmosphere packaging. Postharvest Biol. Technol. 2010, 56, 246–253. [Google Scholar] [CrossRef]
- Jiang, Y.; Li, J.; Jiang, W. Effects of chitosan coating on shelf life of cold-stored litchi fruit at ambient temperature. LWT-Food Sci. Technol. 2005, 38, 757–761. [Google Scholar] [CrossRef]
- USDA NUTRIENT. Available online: https://fdc.nal.usda.gov/fdc-app.html#/food-details/169086/nutrients (accessed on 14 April 2023).
- Cabral, T.A.; de Morais Cardoso, L.; Pinheiro-Sant’Ana, H.M. Chemical composition, vitamins and minerals of a new cultivar of lychee (Litchi chinensis cv. Tailandes) grown in Brazil. Fruits 2014, 69, 425–434. [Google Scholar] [CrossRef]
- Sinha, N.K.; Sidhu, J.; Barta, J.; Wu, J.; Cano, M.P. Handbook of Fruits and Fruit Processing; John Wiley & Sons: Hoboken, NJ, USA, 2012; ISBN 1-118-35263-7. [Google Scholar]
- Visuthiwan, S.; Assatarakul, K. Kinetic modeling of microbial degradation and antioxidant reduction in lychee juice subjected to UV radiation and shelf life during cold storage. Food Control 2021, 123, 107770. [Google Scholar] [CrossRef]
- Mahajan, P.V.; Caleb, O.J.; Gil, M.I.; Izumi, H.; Colelli, G.; Watkins, C.B.; Zude, M. Quality and safety of fresh horticultural commodities: Recent advances and future perspectives. Food Packag. Shelf Life 2017, 14, 2–11. [Google Scholar] [CrossRef]
- Caldera, L.; Franzetti, L.V.; van Coillie, E.; de Vos, P.; Stragier, P.; De Block, J.; Heyndrickx, M. Identification, enzymatic spoilage characterization and proteolytic activity quantification of Pseudomonas spp. isolated from different foods. Food Microbiol. 2016, 54, 142–153. [Google Scholar] [CrossRef]
- Barth, M.; Hankinson, T.R.; Zhuang, H.; Breidt, F. Microbiological Spoilage of Fruits and Vegetables. In Compendium of the Microbiological Spoilage of Foods and Beverages; Springer: New York, NY, USA, 2009; pp. 135–183. [Google Scholar]
- Jiang, H.; Ling, Z.; Zhang, Y.; Mao, H.; Ma, Z.; Yin, Y.; Wang, W.; Tang, W.; Tan, Z.; Shi, J. Altered fecal microbiota composition in patients with major depressive disorder. Brain Behav. Immun. 2015, 48, 186–194. [Google Scholar] [CrossRef]
- Nguyen, T.T.; Van Giau, V.; Vo, T.K. Multiplex PCR for simultaneous identification of E. coli O157: H7, Salmonella spp. and L. monocytogenes in food. 3 Biotech 2016, 6, 205. [Google Scholar] [CrossRef] [PubMed]
- Fong-in, S.; Nimitkeatkai, H.; Prommajak, T.; Nowacka, M. Ultrasound-assisted osmotic dehydration of litchi: Effect of pretreatment on mass transfer and quality attributes during frozen storage. J. Food Meas. Charact. 2021, 15, 3590–3597. [Google Scholar] [CrossRef]
- Li, Z.; Yang, H.; Fang, W.; Huang, X.; Shi, J.; Zou, X. Effects of Variety and Pulsed Electric Field on the Quality of Fresh-Cut Apples. Agriculture 2023, 13, 929. [Google Scholar] [CrossRef]
- Thomas, L.V.; Ingram, R.E.; Yu, S.; Delves-Broughton, J. Investigation of the effectiveness of Ascopyrone P as a food preservative. Int. J. Food Microbiol. 2004, 93, 319–323. [Google Scholar] [CrossRef] [PubMed]
- Qu, P.; Zhang, M.; Fan, K.; Guo, Z. Microporous modified atmosphere packaging to extend shelf life of fresh foods: A review. Crit. Rev. Food Sci. Nutr. 2022, 62, 51–65. [Google Scholar] [CrossRef]
- Chouliara, E.; Badeka, A.; Savvaidis, I.; Kontominas, M.G. Combined effect of irradiation and modified atmosphere packaging on shelf-life extension of chicken breast meat: Microbiological, chemical and sensory changes. Eur. Food Res. Technol. 2008, 226, 877–888. [Google Scholar] [CrossRef]
- Jiang, Y.; Li, Y. Effects of low-temperature acclimation on browning of litchi fruit in relation to shelf life. J. Hortic. Sci. Biotechnol. 2003, 78, 437–440. [Google Scholar] [CrossRef]
Days of Storage | |||||
---|---|---|---|---|---|
Treatments | d0 | d3 | d6 | d9 | |
Water content (g/100 g FW) | CTR | 83.87 ± 0.57 | 82.89 ± 0.87 | 81.07 ± 0.88 | 80.14 ± 0.07 |
MAP 1 | 83.87 ± 0.57 | 83.07 ± 0.16 | 83.22 ± 0.47 | 80.80 ± 0.51 | |
MAP 2 | 83.87 ± 0.57 | 83.01 ± 0.16 | 82.89 ± 0.14 | 80.86 ± 0.43 | |
MAP 3 | 83.87 ± 0.57 | 83.32 ± 0.75 | 82.74 ± 0.73 | 81.30 ± 0.29 | |
Soluble solids content (°Brix) | CTR | 16.32 ± 0.11 | 17.34 ± 0.26 | 18.92 ± 0.05 | 18.96 ± 0.05 |
MAP 1 | 16.32 ± 0.11 | 17.00 ± 0.12 | 18.59 ± 0.13 | 19.46 ± 0.15 | |
MAP 2 | 16.32 ± 0.11 | 18.06 ± 0.16 | 18.11 ± 0.15 | 18.72 ± 0.14 | |
MAP 3 | 16.32 ± 0.11 | 18.04 ± 0.2 | 19.44 ± 0.2 | 20.20 ± 0.12 | |
Maturity index (MI = SSC/TA) | CTR | 69.84 ± 1.12 | 73.33 ± 2.08 | 83.00 ± 3.61 | 92.33 * ± 4.51 |
MAP 1 | 69.84 ± 1.12 | 74.05 ± 1.50 | 79.48 ± 1.37 | 80.05 ± 1.10 | |
MAP 2 | 69.84 ± 1.12 | 74.24 ± 0.65 | 79.45 ± 2.23 | 82.71 ± 0.59 | |
MAP 3 | 69.84 ± 1.12 | 73.52 ± 1.14 | 79.59 ± 2.74 | 83.87 ± 1.26 |
Days of Storage | |||||
---|---|---|---|---|---|
Treatments | d0 | d3 | d6 | d9 | |
Malic a. (mg/100 g FW) | CTR | 3.482 ± 0.408 | 2.890 ± 0.196 | 2.598 ± 0.219 | 2.585 ± 0.133 |
MAP 1 | 3.482 ± 0.408 | 2.928 ± 0.414 | 2.863 ± 0.449 | 2.619 ± 0.360 | |
MAP 2 | 3.482 ± 0.408 | 2.873 ± 0.665 | 2.861 ± 0.150 | 2.545 ± 0.504 | |
MAP 3 | 3.482 ± 0.408 | 2.891 ± 0.508 | 2.867 ± 0.231 | 2.699 ± 0.173 | |
Fumaric a. (mg/100 g FW) | CTR | 0.111 ± 0.093 | 0.098 ± 0.044 | 0.089 ± 0.081 | 0.089 ± 0.063 |
MAP 1 | 0.111 ± 0.093 | 0.079 ± 0.080 | 0.079 ± 0.090 | 0.075 ± 0.062 | |
MAP 2 | 0.111 ± 0.093 | 0.080 ± 0.023 | 0.079 ± 0.041 | 0.079 ± 0.069 | |
MAP 3 | 0.111 ± 0.093 | 0.079 ± 0.047 | 0.079 ± 0.028 | 0.076 ± 0.059 | |
Citric a. (mg/100 g FW) | CTR | 1.656 ± 0.068 | 1.336 ± 0.399 | 1.249 ± 0.261 | 1.225 ± 0.123 |
MAP 1 | 1.656 ± 0.068 | 1.656 ± 0.201 | 1.523 ± 0.264 | 1.345 ± 0.213 | |
MAP 2 | 1.656 ± 0.068 | 1.649 ± 0.119 | 1.526 ± 0.399 | 1.241 ± 0.127 | |
MAP 3 | 1.656 ± 0.068 | 1.554 ± 0.045 | 1.436 ± 0.399 | 1.125 ± 1.233 |
Days of Storage | |||||
---|---|---|---|---|---|
Treatments | d0 | d3 | d6 | d9 | |
K (mg/100 g FW) | CTR | 38.72 aA ± 0.30 | 32.26 bA ± 1.19 | 24.93 bB ± 1.20 | 18.99 aB ± 0.38 |
MAP 1 | 38.72 aA ± 0.30 | 35.92 aA ± 2.63 | 21.76 bB ± 1.63 | 20.46 aB ± 1.07 | |
MAP 2 | 38.72 aA ± 0.30 | 37.19 aA ± 1.59 | 31.93 aA ± 1.19 | 20.99 aB ± 0.38 | |
MAP 3 | 38.72 aA ± 0.30 | 36.98 aA ± 1.62 | 32.59 aA ± 1.43 | 24.23 aB ± 1.30 | |
Na (mg/100 g FW) | CTR | 10.18 aA ± 0.75 | 7.42 aA ± 0.18 | 7.32 aA ± 0.18 | 7.28 aA ± 0.33 |
MAP 1 | 10.18 aA ± 0.75 | 8.79 aA ± 0.64 | 7.39 aA ± 0.15 | 7.64 aA ± 0.35 | |
MAP 2 | 10.18 aA ± 0.75 | 8.78 aA ± 0.67 | 7.76 aA ± 0.20 | 7.68 aA ± 0.33 | |
MAP 3 | 10.18 aA ± 0.75 | 8.74 aA ± 0.68 | 7.32 aA ± 0.18 | 7.32 aA ± 0.32 | |
Ca (mg/100 g FW) | CTR | 15.88 aA ± 0.52 | 13.10 aA ± 0.10 | 12.13 aA ± 1.77 | 11.46 aA ± 0.22 |
MAP 1 | 15.88 aA ± 0.52 | 14.54 aA ± 0.73 | 12.19 aA ± 0.09 | 11.49 aA ± 0.34 | |
MAP 2 | 15.88 aA ± 0.52 | 14.20 aA ± 0.07 | 12.17 aA ± 0.64 | 11.53 aA ± 0.17 | |
MAP 3 | 15.88 aA ± 0.52 | 14.46 aA ± 0.80 | 12.13 aA ± 0.10 | 12.13 aA ± 0.10 | |
P (mg/100 g FW) | CTR | 44.71 aA ± 1.59 | 35.63 bA ± 0.29 | 25.63 bB ± 0.29 | 24.91 aB ± 0.08 |
MAP 1 | 44.71 aA ± 1.59 | 43.46 aA ± 0.95 | 35.46 aA ± 0.57 | 25.61 aB ± 0.08 | |
MAP 2 | 44.71 aA ± 1.59 | 41.49 aA ± 1.21 | 35.63 aA ± 0.29 | 24.90 aB ± 0.07 | |
MAP 3 | 44.71 aA ± 1.59 | 44.06 aA ± 1.01 | 36.06 aA ± 0.25 | 25.96 aB ± 0.33 | |
Fe (mg/100 g FW) | CTR | 0.29 aA ± 0.02 | 0.10 aA ± 0.01 | 0.10 aA ± 0.01 | 0.09 aA ± 0.02 |
MAP 1 | 0.29 aA ± 0.02 | 0.23 aA ± 0.04 | 0.11 aA ± 0.02 | 0.10 aA ± 0.02 | |
MAP 2 | 0.29 aA ± 0.02 | 0.20 aA ± 0.01 | 0.15 aA ± 0.01 | 0.12 aA ± 0.02 | |
MAP 3 | 0.29 aA ± 0.02 | 0.24 aA ± 0.04 | 0.17 aA ± 0.01 | 0.13 aA ± 0.01 |
Days of Storage | |||||
---|---|---|---|---|---|
Treatments | d0 | d3 | d6 | d9 | |
Niacin (mg/100 g FW) | CTR | 0.743 aA ± 0.083 | 0.463 bB ± 0.049 | 0.463 bB ± 0.0049 | 0.383 aB ± 0.023 |
MAP 1 | 0.743 aA ± 0.083 | 0.667 aA ± 0.120 | 0.530 aA ± 0.010 | 0.401 aB ± 0.012 | |
MAP 2 | 0.743 aA ± 0.083 | 0.603 aA ± 0.007 | 0.530 aA ± 0.020 | 0.390 aB ± 0.007 | |
MAP 3 | 0.743 aA ± 0.083 | 0.580 aA ± 0.053 | 0.523 aA ± 0.025 | 0.403 aB ± 0.006 | |
Riboflavin (mg/100 g FW) | CTR | 0.090 aA ± 0.017 | 0.080 aA ± 0.020 | 0.080 aA ± 0.020 | 0.068 aA ± 0.017 |
MAP 1 | 0.090 aA ± 0.017 | 0.060 aA ± 0.010 | 0.077 aA ± 0.015 | 0.073 aA ± 0.021 | |
MAP 2 | 0.090 aA ± 0.017 | 0.053 aA ± 0.015 | 0.080 aA ± 0.020 | 0.069 aA ± 0.031 | |
MAP 3 | 0.090 aA ± 0.017 | 0.053 aA ± 0.015 | 0.077 aA ± 0.025 | 0.083 aA ± 0.006 | |
Thiamine (mg/100 g FW) | CTR | 0.031 aA ± 0.001 | 0.025 aA ± 0.002 | 0.025 aA ± 0.002 | 0.021 aA ± 0.008 |
MAP 1 | 0.031 aA ± 0.001 | 0.027 aA ± 0.001 | 0.027 aA ± 0.001 | 0.025 aA ± 0.001 | |
MAP 2 | 0.031 aA ± 0.001 | 0.027 aA ± 0.001 | 0.027 aA ± 0.001 | 0.024 aA ± 0.005 | |
MAP 3 | 0.031 aA ± 0.10 | 0.027 aA ± 0.001 | 0.026 aA ± 0.001 | 0.026 aA ± 0.05 | |
Ascorbic acid (mg/100 g FW) | CTR | 77.667 aA ± 2.521 | 54.667 aA ± 2.517 | 54.667 aB ± 2.517 | 52.889 aB ± 2.524 |
MAP 1 | 77. 667 aA ± 2.521 | 73.333 aA ± 2.082 | 68.000 aA ± 2.606 | 57.667 aB ± 2.642 | |
MAP 2 | 77. 667 A ± 2.521 | 74.333 aA ± 1.082 | 64.000 aA ± 1.646 | 55.667 aB ± 3.654 | |
MAP 3 | 77.667 aA ± 2.521 | 71.211 aA ± 2.213 | 62.000 aA ± 3.606 | 54.333 aB ± 2.509 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Passafiume, R.; Roppolo, P.; Tinebra, I.; Pirrone, A.; Gaglio, R.; Palazzolo, E.; Farina, V. Reduction of Pericarp Browning and Microbial Spoilage on Litchi Fruits in Modified Atmosphere Packaging. Horticulturae 2023, 9, 651. https://doi.org/10.3390/horticulturae9060651
Passafiume R, Roppolo P, Tinebra I, Pirrone A, Gaglio R, Palazzolo E, Farina V. Reduction of Pericarp Browning and Microbial Spoilage on Litchi Fruits in Modified Atmosphere Packaging. Horticulturae. 2023; 9(6):651. https://doi.org/10.3390/horticulturae9060651
Chicago/Turabian StylePassafiume, Roberta, Pasquale Roppolo, Ilenia Tinebra, Antonino Pirrone, Raimondo Gaglio, Eristanna Palazzolo, and Vittorio Farina. 2023. "Reduction of Pericarp Browning and Microbial Spoilage on Litchi Fruits in Modified Atmosphere Packaging" Horticulturae 9, no. 6: 651. https://doi.org/10.3390/horticulturae9060651
APA StylePassafiume, R., Roppolo, P., Tinebra, I., Pirrone, A., Gaglio, R., Palazzolo, E., & Farina, V. (2023). Reduction of Pericarp Browning and Microbial Spoilage on Litchi Fruits in Modified Atmosphere Packaging. Horticulturae, 9(6), 651. https://doi.org/10.3390/horticulturae9060651