Effect of Light Intensity and Spectra on Inorganic Constituents in Vietnamese Coriander (Persicaria odorata (Lour.) Soják)
Abstract
1. Introduction
2. Material and Methods
2.1. Plant Material and Cultivation
2.2. Growth Conditions
2.3. Light Modification Using LED and Photoselective Plastic Films
2.4. Determination of Fresh and Dry Matter, Water Content
2.5. Determination of Inorganic Constituents
2.6. Data Evaluation
3. Results
3.1. Inorganic Constituents—Cultivation in Greenhouse
3.2. Inorganic Constituents—Cultivation in Climate Chamber
3.3. Calculated Interdependencies between Analyzed Parameters and Light Parameters
4. Discussion
5. Conclusions
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Darko, É.; Heydarizadeh, P.; Schoefs, B.; Sabzalian, M.R. Photosynthesis under artificial light: The shift in primary and secondary metabolism. Philos. Trans. R. Soc. B Biol. Sci. 2014, 369, 20130243. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Stuefer, J.F.; Huber, H. Differential effects of light quantity and spectral light quality on growth, morphology and development of two stoloniferous Potentilla species. Oecologia 1998, 117, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Gupta, S.D.; Karmakar, A. Machine vision based evaluation of impact of light emitting diodes (LEDs) on shoot regeneration and the effect of spectral quality on phenolic content and antioxidant capacity in Swertia chirata. J. Photochem. Photobiol. B Biol. 2017, 174, 162–172. [Google Scholar] [CrossRef] [PubMed]
- Grbic, N.; Paschko, K.; Pinker, I.; Böhme, M. Effect of different light spectra by using coloured plastic films on growth, fresh and dry matter, nutrient solution uptake and secondary metabolites of Perilla frutescens (L.) Britt. Sci. Hortic. 2016, 210, 93–98. [Google Scholar] [CrossRef]
- Manivannan, A.; Soundararajan, P.; Halimah, N.; Ko, C.H.; Jeong, B.R. Blue LED light enhances growth, phytochemical contents, and antioxidant enzyme activities of Rehmannia glutinosa cultured in vitro. Hortic. Environ. Biotechnol. 2015, 56, 105–113. [Google Scholar] [CrossRef]
- Page, M.; Sultana, N.; Paszkiewicz, K.; Florance, H.; Smirnoff, N. The influence of ascorbate on anthocyanin accumulation during high light acclimation in Arabidopsis thaliana: Further evidence for redox control of anthocyanin synthesis. Plant Cell Environ. 2011, 35, 388–404. [Google Scholar] [CrossRef]
- Tattini, M.; Galardi, C.; Pinelli, P.; Massai, R.; Remorini, D.; Agati, G. Differential accumulation of flavonoids and hydroxycinnamates in leaves of Ligustrum vulgare under excess light and drought stress. New Phytol. 2004, 163, 547–561. [Google Scholar] [CrossRef]
- Trudel, M.J.; Ozbun, J.L. Relationship between chlorophylls and carotinoids of ripening tomato fruit as influenced by potassium nutrition. J. Exp. Bot. 1970, 21, 881–886. [Google Scholar] [CrossRef]
- Bush, L.P. Influence of certain cations on activity of succinyl coa synthetase from tobacco. Plant Physiol. 1969, 44, 347–350. [Google Scholar] [CrossRef][Green Version]
- Verbruggen, N.; Hermans, C. Physiological and molecular responses to magnesium nutritional imbalance in plants. Plant Soil 2013, 368, 87–99. [Google Scholar] [CrossRef]
- Kobayashi, T.; Nishizawa, N.K. Iron uptake, translocation, and regulation in higher plants. Annu. Rev. Plant Biol. 2012, 63, 131–152. [Google Scholar] [CrossRef][Green Version]
- Samuoliene, G.; Miliauskiene, J.; Kazlauskas, A.; Viršile, A. Growth Stage Specific Lighting Spectra Affect Photosynthetic Performance, Growth and Mineral Element Contents in Tomato. Agronomy 2021, 11, 901. [Google Scholar] [CrossRef]
- Pennisi, G.; Blasioli, S.; Cellini, A.; Maia, L.; Crepaldi, A.; Braschi, I.; Spinelli, F.; Nicola, S.; Fernandez, J.A.; Stanghellini, C.; et al. Unraveling the Role of Red:Blue LED Lights on Resource Use Efficiency and Nutritional Properties of Indoor Grown Sweet Basil. Front. Plant Sci. 2019, 10, 305. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Pennisi, G.; Orsini, F.; Blasioli, S.; Cellini, A.; Crepaldi, A.; Braschi, I.; Spinelli, F.; Nicola, S.; Fernandez, J.A.; Stanghellini, C.; et al. Resource use efficiency of indoor lettuce (Lactuca sativa L.) cultivation as affected by red:blue ratio provided by LED lighting. Sci. Rep. 2019, 9, 1–11. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Beard, J.L. Iron biology in immune function, muscle metabolism and neuronal functioning. J. Nutr. 2001, 131, 568–580. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Berridge, M.J.; Bootman, M.D.; Lipp, P. Calcium—A life and death signal. Nature 1998, 395, 645–648. [Google Scholar] [CrossRef] [PubMed]
- Doberer, E. Kalium: Was man über Kalium wissen sollte. Aktuel. Ernährungsmed. 2008, 33, 82–87. [Google Scholar] [CrossRef]
- Milman, N.T. Dietary Iron Intake in Women of Reproductive Age in Europe: A Review of 49 Studies from 29 Countries in the Period 1993–2015. J. Nutr. Metab. 2019, 2019, 1–13. [Google Scholar] [CrossRef][Green Version]
- Alexy, U.; Fischer, M.; Weder, S.; Längler, A.; Michalsen, A.; Sputtek, A.; Keller, M. Nutrient Intake and Status of German Children and Adolescents Consuming Vegetarian, Vegan or Omnivore Diets: Results of the VeChi Youth Study. Nutrients 2021, 13, 1707. [Google Scholar] [CrossRef]
- Pawłowska, K.A.; Strawa, J.; Tomczyk, M.; Granica, S. Changes in the phenolic contents and composition of Persicaria odorata fresh and dried leaves. J. Food Compos. Anal. 2020, 91, 103507. [Google Scholar] [CrossRef]
- Nguyen, V.T.; Nguyen, N.Q.; Truc, T.T. Phytochemical Screening, Antioxidant Activities, Total Phenolics and Flavonoids content of Leaves from Persicaria odorata Polygonaceae. IOP Conf. Series: Mater. Sci. Eng. 2020, 991, 012029. [Google Scholar] [CrossRef]
- Böhme, M.; Grbic, N.; Paschko, K.; Pinker, I. Growth and internal quality of Vietnamese coriander (Polygonum odoratum Lour.) affected by additional lighting with blue, red and green LEDs. Acta Hortic. 2015, 1107, 113–120. [Google Scholar] [CrossRef]
- Bergmann, W. Tue Determination of the Nutrient Requirements of the Soil. In Handbook of Plant Physiology; Springer: Berlin/Heidelberg, Germany, 1958; p. 881. ISBN 978-3-642-94729-2. [Google Scholar]
- Böhme, M.H. Parameters for calculating nutrient solution for hydroponics. In Proceedings of the 8th International Congress on Soilless Culture, Hunter’s Rest, South Africa, 2–9 October 1992; pp. 85–96. [Google Scholar]
- Riedell, W.E. Mineral-nutrient synergism and dilution responses to nitrogen fertilizer in field-grown maize. J. Plant Nutr. Soil Sci. 2010, 173, 869–874. [Google Scholar] [CrossRef]
- Blom-Zandstra, M.; Lampe, J.E.M. The role of nitrate in the osmoregulation of lettuce (Lactuca sativa L.) grown at different light intensities. J. Exp. Bot. 1985, 36, 1043–1052. [Google Scholar] [CrossRef]
- McIntyre, G.I. The Role of Nitrate in the Osmotic and Nutritional Control of Plant Development. Funct. Plant Biol. 1997, 24, 103–118. [Google Scholar] [CrossRef]
- Steingröver, E.; Ratering, P.; Siesling, J. Daily changes in uptake, reduction and storage of nitrate in spinach grown at low light intensity. Physiol. Plant. 1986, 66, 550–556. [Google Scholar] [CrossRef]
- Cárdenas Navarro, R.; Adamowicz, S.; Robin, P. Modelling diurnal nitrate uptake in young tomato (Lycopersicon esculentum Mill.) plants using a homoeostatic model. Acta Hortic. 1998, 456, 247–254. [Google Scholar] [CrossRef]
- Carrasco, G.A.; Burrage, S.W. Diurnal fluctuations in nitrate uptake and nitrate accumulation in lettuce (Lactuca sativa L.). Acta Hortic. 1992, 339, 137–147. [Google Scholar] [CrossRef]
- Lillo, C. Circadiae rhythmicity of nitrate reductase activity in barley leaves. Physiol. Plant. 1984, 61, 219–223. [Google Scholar] [CrossRef]
- Matt, P.; Geiger, M.; Walch-Liu, P.; Engels, C.; Krapp, A.; Stitt, M. Immediate cause of the diurnal changes of nitrogen metabolism in leaves of nitrate-replete tobacco: A major im- balance between the rate of nitrate reduction. Plant. Cell Environ. 2001, 24, 177–190. [Google Scholar] [CrossRef]
- Scaife, A.; Schloemer, S. The Diurnal Pattern of Nitrate Uptake and Reduction by Spinach (Spinacia oleracea L.). Ann. Bot. 1994, 73, 337–343. [Google Scholar] [CrossRef]
- Solis-Toapanta, E.; Retana-Cordero, M.; Gómez, C. Effects of daily light integral on growth and nitrate content of basil grown for indoor gardening. Acta Hortic. 2022, 165–170. [Google Scholar] [CrossRef]
- Balliu, A.; Sallaku, G.; Rewald, B. AMF Inoculation Enhances Growth and Improves the Nutrient Uptake Rates of Transplanted, Salt-Stressed Tomato Seedlings. Sustainability 2015, 7, 15967–15981. [Google Scholar] [CrossRef][Green Version]
- Dapoigny, L.; De Tourdonnet, S.; Roger-estrade, J.; Dapoigny, L.; Fleury, A. Effect of nitrogen nutrition on growth and nitrate accumulation in lettuce (Lactuca sativa L.), under various conditions of radiation and temperature. Agronomy 2000, 20, 843–855. [Google Scholar] [CrossRef][Green Version]
- Loudet, O.; Chaillou, S.; Krapp, A.; Daniel-Vedele, F. Quantitative Trait Loci Analysis of Water and Anion Contents in Interaction With Nitrogen Availability in Arabidopsis thaliana. Genetics 2003, 163, 711–722. [Google Scholar] [CrossRef]
- Gräf, M.; Stangl, R.; Hood-Nowotny, R.; Kodym, A. Urban farming in indoor settings: Nitrate limits compliance check of leafy green vegetables under LED lighting. Eur. J. Hortic. Sci. 2020, 85, 321–328. [Google Scholar] [CrossRef]
- Bian, Z.; Cheng, R.; Wang, Y.; Yang, Q.; Lu, C. Effect of green light on nitrate reduction and edible quality of hydroponically grown lettuce (Lactuca sativa L.) under short-term continuous light from red and blue light-emitting diodes. Environ. Exp. Bot. 2018, 153, 63–71. [Google Scholar] [CrossRef][Green Version]
- Chen, X.-L.; Li, Y.-L.; Wang, L.-C.; Guo, W.-Z. Red and blue wavelengths affect the morphology, energy use efficiency and nutritional content of lettuce (Lactuca sativa L.). Sci. Rep. 2021, 11, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Huang, L.; Zhang, H.; Zhang, H.; Deng, X.W.; Wei, N. HY5 regulates nitrite reductase 1 (NIR1) and ammonium transporter1;2 (AMT1;2) in Arabidopsis seedlings. Plant Sci. 2015, 238, 330–339. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Jonassen, E.M.; Sévin, D.C.; Lillo, C. The bZIP transcription factors HY5 and HYH are positive regulators of the main nitrate reductase gene in Arabidopsis leaves, NIA2, but negative regulators of the nitrate uptake gene NRT1.1. J. Plant Physiol. 2009, 166, 2071–2076. [Google Scholar] [CrossRef]
- Jonassen, E.M.; Lea, U.S.; Lillo, C. HY5 and HYH are positive regulators of nitrate reductase in seedlings and rosette stage plants. Planta 2007, 227, 559–564. [Google Scholar] [CrossRef] [PubMed]
- Signore, A.; Bell, L.; Santamaria, P.; Wagstaff, C.; Van Labeke, M.-C. Red Light Is Effective in Reducing Nitrate Concentration in Rocket by Increasing Nitrate Reductase Activity, and Contributes to Increased Total Glucosinolates Content. Front. Plant Sci. 2020, 11, 604. [Google Scholar] [CrossRef] [PubMed]
- Song, J.; Huang, H.; Hao, Y.; Song, S.; Zhang, Y.; Su, W.; Liu, H. Nutritional quality, mineral and antioxidant content in lettuce affected by interaction of light intensity and nutrient solution concentration. Sci. Rep. 2020, 10, 1–9. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Cakmak, I.; Kirkby, E.A. Role of magnesium in carbon partitioning and alleviating pho- tooxidative damage. Physiol. Plant. 2008, 133, 692–704. [Google Scholar] [CrossRef][Green Version]
- Marschner, H.; Cakmak, I. High Light Intensity Enhances Chlorosis and Necrosis in Leaves of Zinc, Potassium, and Magnesium Deficient Bean (Phaseolus vulgaris) Plants. J. Plant Physiol. 1989, 134, 308–315. [Google Scholar] [CrossRef]
- Murage, E.N.; Sato, Y.; Masuda, M. Relationship between dark period and leaf chlorosis, potassium, magnesium and calcium content of young eggplants. Sci. Hortic. 1996, 66, 9–16. [Google Scholar] [CrossRef]
- Tewari, R.K.; Kumar, P.; Sharma, P.N. Oxidative Stress and Antioxidant Responses in Young Leaves of Mulberry Plants Grown under Nitrogen, Phosphorus or Potassium Deficiency. J. Integr. Plant Biol. 2007, 49, 313–322. [Google Scholar] [CrossRef]
- Wong, C.C. Mineral composition and nutritive value of tropical forage legumes as affected by shade. Mardi Res. Bull. 1990, 18, 135–143. [Google Scholar]
- Cakmak, I.; Marschner, H. Magnesium Deficiency and High Light Intensity Enhance Activities of Superoxide Dismutase, Ascorbate Peroxidase, and Glutathione Reductase in Bean Leaves. Plant Physiol. 1992, 98, 1222–1227. [Google Scholar] [CrossRef][Green Version]
- Díaz-Pérez, J.C. Bell Pepper (Capsicum annum L.) Crop as Affected by Shade Level: Microenvironment, Plant Growth, Leaf Gas Exchange, and Leaf Mineral Nutrient Concentration. Hortscience 2013, 48, 175–182. [Google Scholar] [CrossRef][Green Version]
- McEwen, L.C.; Dietz, D.R. Shade Effects on Chemical Composition of Herbage in the Black Hills. J. Range Manag. 1965, 18, 184. [Google Scholar] [CrossRef]
- Steiman, S.; Idol, T.; Bittenbender, H.; Gautz, L. Shade coffee in Hawai’i—Exploring some aspects of quality, growth, yield, and nutrition. Sci. Hortic. 2011, 128, 152–158. [Google Scholar] [CrossRef]
- Jarrell, W.M.; Beverly, R.B. Tue dilution effect in plant nutrition studies. Adv. Agron. 1981, 34, 197–222. [Google Scholar]
- Marles, R.J. Mineral nutrient composition of vegetables, fruits and grains: The context of reports of apparent historical declines. J. Food Compos. Anal. 2017, 56, 93–103. [Google Scholar] [CrossRef]
- McGrath, S.P. The effects of increasing yields on the macro- and microelement concentrations and offtakes in the grain of winter wheat. J. Sci. Food Agric. 1985, 36, 1073–1083. [Google Scholar] [CrossRef]
- Campanha, M.M.; Henrique, R.; Santos, S.; de Freitas, G.B.; Emilia, H.; Martinez, P.; Lages, S.; Garcia, R.; Santos, R.H.S.; De Freitas, G.B.; et al. Growth and yield of coffee plants in agroforestry and monoculture systems in Minas Gerais, Brazil. Agrofor. Syst. 2004, 63, 75–82. [Google Scholar] [CrossRef]
- Belkhodja, R.; Morales, F.; Sanz, M.; Abadía, A.; Abadia, J. Iron deficiency in peach trees: Effects on leaf chlorophyll and nutrient concentrations in flowers and leaves. Plant Soil 1998, 203, 257–268. [Google Scholar] [CrossRef][Green Version]
- Gaudillère, J.; Moing, A. Photosynthesis of peach leaves: Light adaptation, limiting factors and sugar content. Acta Hortic. 1992, 315, 103–110. [Google Scholar] [CrossRef]
- Wilson, J.R.; Hill, K.; Cameron, D.M.; Shelton, H.M. Tue growth of Paspalum notatum under the shade of a Eucalyptus grandis plantation canopy or in füll sun. Trop. Grassl. 1990, 24, 24–28. [Google Scholar]
- El-Gizawy, A.; Gomaa, H.; El-Habbasha, K.; Mohamed, S. Effect of different shading levels on tomato plants 1. Growth, flowering and chemical composition. Acta Hortic. 1993, 323, 341–348. [Google Scholar] [CrossRef]
- Gent, M.P. Density and Duration of Shade Affect Water and Nutrient Use in Greenhouse Tomato. J. Am. Soc. Hortic. Sci. 2008, 133, 619–627. [Google Scholar] [CrossRef][Green Version]
- Sams, C.; Kopsell, D.; Morrow, R. Light quality impacts on growth, flowering, mineral uptake and petal pigmentation of marigold. Acta Hortic. 2016, 1134, 139–146. [Google Scholar] [CrossRef]
- Chapin, F.S.; Kedrowski, R.A. Seasonal Changes in Nitrogen and Phosphorus Fractions and Autumn Retranslocation in Evergreen and Deciduous Taiga Trees. Ecology 1983, 64, 376–391. [Google Scholar] [CrossRef]
- Williams, R. The Effects of Phosphorus Supply on The Rates of Intake of Phosphorus and Nitrogen and Upon Certain Aspects of Phosphorus Metabolism in Gramineous Plants. Aust. J. Biol. Sci. 1948, 1, 333. [Google Scholar] [CrossRef][Green Version]
- Leigh, R.A.; Johnston, A.E. The effects of fertilizers and drought on the concentrations of potassium in the dry matter and tissue water of field-grown spring barley. J. Agric. Sci. 1983, 101, 741–748. [Google Scholar] [CrossRef]
- Leigh, R.A. Potassium homeostasis and membrane transport. J. Plant Nutr. Soil Sci. 2001, 164, 193–198. [Google Scholar] [CrossRef]
Treatment | Daylight Integral [mol·m−2·day−1] | Share of Spectral Ranges on Total Radiation (%) | |||||
---|---|---|---|---|---|---|---|
401–450 nm | 451–500 nm | 501–550 nm | 551–600 nm | 601–650 nm | 651–700 nm | ||
FTb | 4.68 | 7.8 | 10.6 | 22.8 | 23.9 | 27.7 | 6.8 |
FT + B | 5.07 | 15.3 | 13.0 | 20.1 | 21.1 | 24.4 | 6.1 |
FTg | 6.51 | 7.8 | 10.6 | 22.8 | 23.9 | 27.7 | 6.8 |
FT + G | 6.30 | 7.4 | 11.0 | 26.1 | 22.7 | 26.2 | 6.6 |
FTr | 9.06 | 7.8 | 10.6 | 22.8 | 23.9 | 27.7 | 6.8 |
FT + R | 8.61 | 7.3 | 9.9 | 21.2 | 22.3 | 32.8 | 6.5 |
Treatment | Daylight Integral [mol·m−2·day−1] | Share of Spectral Ranges on Total Radiation (%) | |||||
---|---|---|---|---|---|---|---|
401–450 nm | 451–500 nm | 501–550 nm | 551–600 nm | 601–650 nm | 651–700 nm | ||
FTh | 6.51 | 7.8 | 10.6 | 22.8 | 23.9 | 27.7 | 6.8 |
FT + H | 4.69 | 8.1 | 11.1 | 20.7 | 23.6 | 30.5 | 7.7 |
FTp1 | 4.68 | 7.8 | 10.6 | 22.8 | 23.9 | 27.7 | 6.8 |
FT + P1 | 2.67 | 9.7 | 12.4 | 20.1 | 20.7 | 29.5 | 9.5 |
FTp2 | 9.06 | 7.8 | 10.6 | 22.8 | 23.9 | 27.7 | 6.8 |
FT + P2 | 3.62 | 9.7 | 12.4 | 20.1 | 20.7 | 29.5 | 9.5 |
Treatment | Transparency (%) | Share of Spectral Ranges on Total Radiation (%) | |||||
---|---|---|---|---|---|---|---|
401–450 nm | 451–500 nm | 501–550 nm | 551–600 nm | 601–650 nm | 651–700 nm | ||
NL | 100 | 1.8 | 15.6 | 17.1 | 18.9 | 19.0 | 18.8 |
NL + H | 77.9 | 11.0 | 16.3 | 14.1 | 15.2 | 21.6 | 21.9 |
NL + P | 53.9 | 13.4 | 18.2 | 13.2 | 10.8 | 16.7 | 28.1 |
NL | NL + B | NL + G | NL + R | |
---|---|---|---|---|
Nitrate [mg·g−1 DM] | 16.72 b | 24.16 a | 11.70 c | 13.30 bc |
P [mg·g−1 DM] | 7.86 ab | 7.84 ab | 7.56 b | 7.94 a |
K [mg·g−1 DM] | 38.90 b | 41.66 a | 40.53 ab | 42.55 a |
Mg [mg·g−1 DM]) | 7.84 a | 6.73 ab | 6.50 b | 6.60 b |
Ca [mg·g−1 DM] | 26.26 | 23.73 | 24.63 | 24.58 |
Fe [mg·g−1 DM] | 0.12 | 0.13 | 0.14 | 0.16 |
Fresh matter [g/plant] | 32.18 ab | 33.97 a | 28.79 c | 30.62 bc |
Dry matter [g/plant] | 4.38 a | 4.26 a | 3.50 b | 3.48 b |
Water content [%] | 86.57 c | 87.96 ab | 87.39 bc | 88.74 a |
NL | NL + H | NL + P | |
---|---|---|---|
Nitrate [mg·g−1 DM] | 16.72 a | 10.97 b | 10.14 b |
P [mg·g−1 DM] | 7.86 | 7.79 | 7.41 |
K [mg·g−1 DM] | 38.9 | 39.85 | 40.1 |
Mg [mg·g−1 DM]) | 7.48 a | 6.65 b | 6.31 b |
Ca [mg·g−1 DM] | 26.26 | 27.54 | 25.76 |
Fe [mg·g−1 DM] | 0.12 b | 0.14 a | 0.15 a |
Fresh matter [g/plant] | 32.18 a | 21.68 b | 18.19 c |
Dry matter [g/plant] | 4.38 a | 2.83 b | 2.46 b |
Water content [%] | 86.57 ab | 87.19 a | 86.43 b |
FTb | FT + B | FTg | FT + G | FTr | FT + R | |
---|---|---|---|---|---|---|
Daylight integral [mol·m−2·day−1] | 4.68 | 5.07 | 6.51 | 6.30 | 9.06 | 8.61 |
Nitrate [mg·g−1 DM] | 21.07 | 18.52 | 21.80 | 18.53 | 27.10 a | 15.66 b |
P [mg·g−1 DM] | 7.93 | 7.90 | 8.08 | 7.69 | 7.41 a | 5.87 b |
K [mg·g−1 DM] | 37.56 | 37.59 | 38.67 | 37.66 | 40.90 a | 35.41 b |
Mg [mg·g−1 DM]) | 6.99 b | 7.70 a | 8.46 b | 9.42 a | 7.77 | 8.47 |
Ca [mg·g−1 DM] | 25.09 | 26.21 | 25.13 b | 27.48 a | 22.46 | 24.43 |
Fe [mg·g−1 DM] | 0.14 | 0.15 | 0.13 | 0.13 | 0.13 | 0.14 |
Fresh matter [g/plant] | 21.29 b | 28.83 a | 32.57 | 34.51 | 43.15 a | 37.80 b |
Dry matter [g/plant] | 2.78 b | 3.86 a | 4.16 | 4.87 | 5.03 | 5.28 |
Water content [%] | 86.95 | 86.59 | 87.24 a | 85.86 b | 88.35 a | 85.95 b |
FTh | FT + H | FTp1 | FT + P1 | FTp2 | FT + P2 | |
---|---|---|---|---|---|---|
Daylight integral [mol·m−2·day−1] | 6.51 | 4.69 | 4.68 | 2.67 | 9.06 | 3.62 |
Nitrate [mg·g−1 DM] | 21.80 | 20.13 | 21.07 | 20.40 | 27.10 | 30.28 |
P [mg·g−1 DM] | 8.08 | 7.98 | 7.93 | 7.99 | 7.41 | 7.70 |
K [mg·g−1 DM] | 38.67 | 37.65 | 37.56 | 37.38 | 40.90 | 41.23 |
Mg [mg·g−1 DM]) | 8.46 | 8.44 | 6.99 | 7.35 | 7.77 a | 7.00 b |
Ca [mg·g−1 DM] | 25.13 | 25.60 | 25.09 | 26.98 | 22.46 b | 27.84 a |
Fe [mg·g−1 DM] | 0.13 | 0.12 | 0.14 | 0.15 | 0.13 b | 0.15 a |
Fresh matter [g/plant] | 32.57 | 30.47 | 21.29 a | 18.45 b | 43.15 a | 19.40 b |
Dry matter [g/plant] | 4.16 | 3.86 | 2.78 a | 2.47 b | 5.03 a | 2.10 b |
Water content [%] | 87.24 | 87.29 | 86.95 | 86.50 | 88.35 | 89.17 |
Partial Correlation Coefficients | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
DLI | Share of Spectral Ranges | Ratio between Spectral Ranges | ||||||||||
401–450 | 451–500 | 501–550 | 551–600 | 601–650 | 651–700 | B:R | BR:G | B:G | R:G | R:FR | ||
Nitrate | 0.30 | 0.18 | 0.01 | −0.20 | 0.02 | 0.03 | 0.39 | 0.30 | 0.45 | 0.45 | −0.03 | −0.68 |
P | −0.03 | −0.02 | 0.01 | 0.08 | 0.28 | −0.10 | −0.08 | −0.15 | −0.48 | 0.00 | 0.05 | 0.34 |
K | 0.21 | 0.20 | 0.15 | −0.05 | 0.02 | −0.27 | 0.26 | 0.16 | −0.15 | 0.08 | −0.08 | −0.25 |
Mg | 0.36 | 0.00 | −0.02 | −0.13 | −0.05 | 0.17 | −0.24 | −0.14 | 0.37 | 0.12 | −0.04 | −0.07 |
Ca | −0.39 | 0.20 | −0.09 | −0.29 | −0.16 | −0.10 | −0.04 | −0.12 | 0.03 | −0.03 | 0.22 | 0.16 |
Fe | −0.31 | 0.29 | 0.46 | 0.14 | −0.51 | −0.06 | −0.30 | 0.27 | −0.13 | 0.10 | 0.15 | −0.04 |
FM | 0.75 | 0.37 | 0.32 | 0.08 | −0.14 | −0.34 | 0.16 | 0.22 | 0.45 | 0.41 | −0.27 | −0.32 |
DM | 0.64 | −0.31 | −0.22 | 0.02 | −0.06 | 0.04 | −0.20 | −0.15 | −0.14 | −0.22 | −0.12 | 0.13 |
Water content | 0.14 | −0.40 | −0.35 | −0.09 | 0.53 | 0.15 | −0.41 | −0.31 | −0.21 | −0.42 | −0.22 | 0.73 |
Nitrate | P | K | Mg | Ca | Fe | |
---|---|---|---|---|---|---|
Dry matter [g/plant] | 0.02 | −0.51 | −0.26 | 0.65 | −0.37 | −0.37 |
Water content [%] | 0.23 | 0.09 | 0.49 | 0.16 | 0.04 | 0.02 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Paschko, K.; Grabovac, N.; Pinker, I.; Böhme, M.H. Effect of Light Intensity and Spectra on Inorganic Constituents in Vietnamese Coriander (Persicaria odorata (Lour.) Soják). Horticulturae 2023, 9, 548. https://doi.org/10.3390/horticulturae9050548
Paschko K, Grabovac N, Pinker I, Böhme MH. Effect of Light Intensity and Spectra on Inorganic Constituents in Vietnamese Coriander (Persicaria odorata (Lour.) Soják). Horticulturae. 2023; 9(5):548. https://doi.org/10.3390/horticulturae9050548
Chicago/Turabian StylePaschko, Kerstin, Nikolina Grabovac, Ina Pinker, and Michael Henry Böhme. 2023. "Effect of Light Intensity and Spectra on Inorganic Constituents in Vietnamese Coriander (Persicaria odorata (Lour.) Soják)" Horticulturae 9, no. 5: 548. https://doi.org/10.3390/horticulturae9050548
APA StylePaschko, K., Grabovac, N., Pinker, I., & Böhme, M. H. (2023). Effect of Light Intensity and Spectra on Inorganic Constituents in Vietnamese Coriander (Persicaria odorata (Lour.) Soják). Horticulturae, 9(5), 548. https://doi.org/10.3390/horticulturae9050548