AquaCrop Model Performance in Yield, Biomass, and Water Requirement Simulations of Common Bean Grown under Different Irrigation Treatments and Sowing Periods
Abstract
:1. Introduction
2. Materials and Methods
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Vukovic, A.; Vujadinovic, M.; Rendulic, S.; Djurdjevic, V.; Ruml, M.; Babic, V.; Popovic, D. Global Warming Impact on Climate Change in Serbia for the Period 1961–2100. Therm. Sci. 2018, 2018, 2267–2280. [Google Scholar] [CrossRef]
- Mandic, M.V.; Vimic, A.V.; RankovicVasic, Z.; Ðurovic, D.; COsic, M.; Sotonica, D.; Nikolic, D.; Ðurdevic, V. Observed Changes in Climate Conditions and Weather-Related Risks in Fruit and Grape Production in Serbia. Atmosphere 2022, 13, 948. [Google Scholar] [CrossRef]
- Stricevic, R.J.; Lipovac, A.D.; Prodanovic, S.A.; Ristovski, M.A.; Petrovic Obradovic, O.T.; Durovic, N.L.J.; Durovic, D.B. Vulnerability of Agriculture to Climate Change in Serbia—Farmers’ Assessment of Impacts and Damages. J. Agric. Sci. 2020, 65, 263–281. [Google Scholar] [CrossRef]
- Nistor, M.M.; Ronchetti, F.; Corsini, A.; Cheval, S.; Dumitrescu, A.; Rai, P.K.; Petrea, D.; Dezsi, Ş. Crop Evapotranspiration Variation under Climate Change in Southeast Europe during 1991–2050. Carpathian J. Earth Environ. Sci. 2017, 12, 571–582. [Google Scholar]
- Boogaard, H.L.; van Diepen, C.A.; Rotter, R.P.; Cabrera, J.M.C.A.; van Laar, H.H. User’s Guide for the WOFOST 7.1 Crop Growth Simulation Model and WOFOST Control Center 1.5; Technical Document 52; DLO-Winand Staring Centre: Wageningen, The Netherlands, 1998. [Google Scholar]
- Raes, D.; Steduto, P.; Hsiao, T.C.; Fereres, E. AquaCrop—The FAO Crop Model to Simulate Yield Response to Water: II. Main Algorithms and Software Description. Agron. J. 2009, 101, 438–477. [Google Scholar] [CrossRef]
- Hoogenboom, G.; Porter, C.H.; Boote, K.J.; Shelia, V.; Wilkens, P.W.; Singh, U.; White, J.W.; Asseng, S.; Lizaso, J.I.; Moreno, L.P.; et al. The DSSAT crop modeling ecosystem. In Advances in Crop Modeling for a Sustainable Agriculture; Boote, K.J., Ed.; Burleigh Dodds Science Publishing: Cambridge, UK, 2019; pp. 173–216. [Google Scholar] [CrossRef]
- Wang, X.; Kemanian, A.; Williams, J.R. Special features of the EPIC and APEX modeling package and procedures for parameterization, calibration, validation, and applications. In Methods of Introducing System Models into Agricultural Research; Ahuja, L.R., Ma, L., Eds.; Advances in Agricultural Systems Modeling 2; Wiley: Hoboken, NJ, USA, 2011; pp. 177–208. [Google Scholar]
- Kroes, J.G.; van Dam, J.C.; Bartholomeus, R.P.; Groenendijk, P.; Heinen, M.; Hendriks, R.F.A.; Mulder, H.M.; Supit, I.; van Walsum, P.E.V. SWAP Version 4; Theory Description and User Manual; Report 2780; Wageningen Environmental Research: Wageningen, The Netherlands, 2017; Available online: https://library.wur.nl/WebQuery/wurpubs/fulltext/416321 (accessed on 27 January 2023).
- Todorovic, M.; Albrizio, R.; Zivotic, L.; Abi Saab, M.T.; Stöckle, C.; Steduto, P. Assessment of AquaCrop, Cropsyst, and WOFOST Models in the Simulation of Sunflower Growth under Different Water Regimes. Agron. J. 2009, 101, 509–521. [Google Scholar] [CrossRef]
- Jones, J.W.; Hoogenboom, G.; Porter, C.H.; Boote, K.J.; Batchelor, W.D.; Hunt, L.A.; Wilkens, P.W.; Singh, U.; Gijsman, A.J.; Ritchie, J.T. The DSSAT cropping system model. Eur. J. Agron. 2003, 18, 235–265. [Google Scholar] [CrossRef]
- Oliveira, E.C.D.; Costa, J.M.N.D.; Paula Júnior, T.J.D.; Ferreira, W.P.M.; Justino, F.B.; Neves, L.D.O. The performance of the CROPGRO model for bean (Phaseolus vulgaris L.) yield simulation. Acta Sci. Agron. 2012, 34, 239–246. [Google Scholar] [CrossRef]
- Mompremier, R.; Her, Y.; Hoogenboom, G.; Migliaccio, K.; Muñoz-Carpena, R.; Brym, Z.; Colbert, R.W.; Jeune, W. Modeling the Response of Dry Bean Yield to Irrigation Water Availability Controlled by Watershed Hydrology. Agric. Water Manag. 2021, 243, 106429. [Google Scholar] [CrossRef]
- Coelho, A.P.; Faria, R.T.; de Lemos, L.B.; Cazuza Neto, A. Application of the CSM-CROPGRO-Dry Bean Model to Optimize Irrigation as a Function of Sowing Date in Common Bean Cultivars. Field. Crop. Res. 2023, 293, 108840. [Google Scholar] [CrossRef]
- Stricevic, R.; Cosic, M.; Djurovic, N.; Pejic, B.; Maksimovic, L. Assessment of the FAO AquaCrop Model in the Simulation of Rainfed and Supplementally Irrigated Maize, Sugar Beet and Sunflower. Agric. Water Manag. 2011, 98, 1615–1621. [Google Scholar] [CrossRef]
- Katerji, N.; Campi, P.; Mastrorilli, M. Productivity, Evapotranspiration, and Water Use Efficiency of Corn and Tomato Crops Simulated by AquaCrop under Contrasting Water Stress Conditions in the Mediterranean Region. Agric. Water Manag. 2013, 130, 14–26. [Google Scholar] [CrossRef]
- Linker, R.; Ioslovich, I.; Sylaios, G.; Plauborg, F.; Battilani, A. Optimal Model-Based Deficit Irrigation Scheduling Using AquaCrop: A Simulation Study with Cotton, Potato and Tomato. Agric. Water Manag. 2016, 163, 236–243. [Google Scholar] [CrossRef]
- Ćosić, M.; Stričević, R.; Djurović, N.; Moravčević, D.; Pavlović, M.; Todorović, M. Predicting Biomass and Yield of Sweet Pepper Grown with and without Plastic Film Mulching under Different Water Supply and Weather Conditions. Agric. Water Manag. 2017, 188, 91–100. [Google Scholar] [CrossRef]
- Cheng, M.; Wang, H.; Fan, J.; Xiang, Y.; Liu, X.; Liao, Z.; Abdelghany, A.E.; Zhang, F.; Li, Z. Evaluation of AquaCrop Model for Greenhouse Cherry Tomato with Plastic Film Mulch under Various Water and Nitrogen Supplies. Agric. Water Manag. 2022, 274, 107949. [Google Scholar] [CrossRef]
- Marta, A.D.; Chirico, G.B.; Bolognesi, S.F.; Mancini, M.; D’Urso, G.; Orlandini, S.; De Michele, C.; Altobelli, F. Integrating Sentinel-2 Imagery with AquaCrop for Dynamic Assessment of Tomato Water Requirements in Southern Italy. Agronomy 2019, 9, 404. [Google Scholar] [CrossRef]
- Abi Saab, M.T.; El Alam, R.; Jomaa, I.; Skaf, S.; Fahed, S.; Albrizio, R.; Todorovic, M. Coupling remote sensing data and AquaCrop model for simulation of winter wheat growth under rainfed and irrigated conditions in a Mediterranean environment. Agronomy 2021, 11, 2265. [Google Scholar] [CrossRef]
- Han, C.; Zhang, B.; Chen, H.; Liu, Y.; Wei, Z. Novel approach of upscaling the FAO AquaCrop model into regional scale by using distributed crop parameters derived from remote sensing data. Agric. Water Manag. 2020, 240, 106288. [Google Scholar] [CrossRef]
- Jin, X.; Li, Z.; Feng, H.; Ren, Z.; Li, S. Estimation of maize yield by assimilating biomass and canopy cover derived from hyperspectral data into the AquaCrop model. Agric. Water Manag. 2020, 227, 105846. [Google Scholar] [CrossRef]
- Corbari, C.; Ben Charfi, I.; Mancini, M. Optimizing Irrigation Water Use Efficiency for Tomato and Maize Fields across Italy Combining Remote Sensing Data and the AquaCrop Model. Hydrology 2021, 8, 39. [Google Scholar] [CrossRef]
- Espadafor, M.; Couto, L.; Resende, M.; Henderson, D.W.; Garcia-Vila, M.; Fereres, E. Simulation of the Responses of Dry Beans (Phaseolus vulgaris L.) to Irrigation. Trans. ASABE 2017, 60, 1983–1994. [Google Scholar] [CrossRef]
- Olivera, M.S.N.T.; Manrique, C.O.B.; Masjuan, M.S.Y.G.; Alega, I.A.M.G. Evaluation of AquaCrop model in crop dry bean growth simulation. Rev. Cienc. Técnicas Agropecu. 2016, 25, 23–30. [Google Scholar] [CrossRef]
- Costa, M.S.; Mantovani, E.C.; Aleman, C.C.; Cunha, F.F. Using AquaCrop for crop bean according to different depth irrigation. In Proceedings of the IV Inovagri International Meeting, XXVI National Congress on Irrigation and Drainage and III Brazilian Symposium on Salinity, Fortaleza, Brazil, 2–6 October 2017. [Google Scholar]
- Magalhães, I.D.; Lyra, G.B.; de Souza, J.L.; Teodoro, I.; da Rocha, A.E.Q.; Cavalcante, C.A., Jr.; Lyra, G.B.; Ferreira, R.A., Jr.; de Carvalho, A.L.; Ferraz, R.L.; et al. Performance of the AquaCrop Model for Bean (Phaseolus vulgaris L.) under Irrigation Condition. Aust. J. Crop Sci. 2019, 13, 1188–1196. [Google Scholar] [CrossRef]
- Araya, A.; Habtu, S.; Hadgu, K.M.; Kebede, A.; Dejene, T. Test of AquaCrop Model in Simulating Biomass and Yield of Water Deficient and Irrigated Barley (Hordeum vulgare). Agric. Water Manag. 2010, 97, 1838–1846. [Google Scholar] [CrossRef]
- Abrha, B.; Delbecque, N.; Raes, D.; Tsegay, A.; Todorovic, M.; Heng, L.; Vanutrecht, E.; Geerts, S.; Garcia-Vila, M.; Deckers, S. Sowing Strategies for Barley (Hordeum vulgare L.) Based on Modelled Yield Response to Water with AquaCrop. Exp. Agric. 2012, 48, 252–271. [Google Scholar] [CrossRef]
- Araya, A.; Kisekka, I.; Holman, J. Evaluating Deficit Irrigation Management Strategies for Grain Sorghum Using AquaCrop. Irrig. Sci. 2016, 34, 465–481. [Google Scholar] [CrossRef]
- Garcia-Vila, M.; Morillo-Velarde, R.; Fereres, E. Modeling Sugar Beet Responses to Irrigation with AquaCrop for Optimizing Water Allocation. Water 2019, 11, 1918. [Google Scholar] [CrossRef]
- Abi Saab, M.T.; Albrizio, R.; Nangia, V.; Karam, F.; Rouphael, Y. Developing scenarios to assess sunflower and soybean yield under different sowing dates and water regimes in the Bekaa valley (Lebanon): Simulations with AquaCrop. Int. J. Plant Prod. 2014, 8, 457–482. [Google Scholar]
- Stricevic, R.J.; Stojakovic, N.; Vujadinovic-Mandic, M.; Todorovic, M. Impact of Climate Change on Yield, Irrigation Requirements and Water Productivity of Maize Cultivated under the Moderate Continental Climate of Bosnia and Herzegovina. J. Agric. Sci. 2018, 156, 618–627. [Google Scholar] [CrossRef]
- Steduto, P.; Hsiao, T.C.; Fereres, E.; Raes, D. Crop Yield Response to Water. Irrigation and Drainage Paper; No. 66; FAO: Rome, Italy, 2012; pp. 16–49. [Google Scholar]
- Lipovac, A.; Bezdan, A.; Moravčević, D.; Djurović, N.; Ćosić, M.; Benka, P.; Stričević, R. Correlation between Ground Measurements and UAV Sensed Vegetation Indices for Yield Prediction of Common Bean Grown under Different Irrigation Treatments and Sowing Periods. Water 2022, 14, 3786. [Google Scholar] [CrossRef]
- Willmott, C.J. Some Comments on the Evaluation of Model Performance. Bull. Am. Meteorol. Soc. 1982, 63, 1309–1313. [Google Scholar] [CrossRef]
- Stajković-Srbinović, O.; Delić, D.; Kuzmanović, Đ.; Rasulić, N.; Tomić, Z. Common bean (Phaseolus vulgaris L.) growth promotion as affected by co-inoculation with rhizobium and rhizobacteria. In Proceedings of the 4th International Congress New Perspectives and Challenges of Sustainable Livestock Production, Belgrade, Serbia, 7–9 October 2015; pp. 803–810. [Google Scholar]
- Alishiri, R.; Paknejad, F.; Aghayari, F. Simulation of Sugarbeet Growth under Different Water Regimes and Nitrogen Levels by AquaCrop. Int. J. Biosci. 2014, 4, 1–9. [Google Scholar] [CrossRef]
- Martínez-Romero, A.; López-Urrea, R.; Montoya, F.; Pardo, J.J.; Domínguez, A. Optimization of Irrigation Scheduling for Barley Crop, Combining AquaCrop and MOPECO Models to Simulate Various Water-Deficit Regimes. Agric. Water Manag. 2021, 258, 107219. [Google Scholar] [CrossRef]
- Li, F.; Yu, D.; Zhao, Y. Irrigation Scheduling Optimization for Cotton Based on the AquaCrop Model. Water Resour. Manag. 2019, 33, 39–55. [Google Scholar] [CrossRef]
- Huang, M.; Wang, C.; Qi, W.; Zhang, Z.; Xu, H. Modelling the Integrated Strategies of Deficit Irrigation, Nitrogen Fertilization, and Biochar Addition for Winter Wheat by AquaCrop Based on a Two-Year Field Study. Field Crop. Res. 2022, 282, 108510. [Google Scholar] [CrossRef]
Year | Treatment | Sowing Date | Length of Emergency/Leaf Development/Flowering/Pod Formation/Pod Maturation (Days) | Harvesting Date | Tm (°C) | Precipitation (mm) | Irrigation Depth (mm) |
---|---|---|---|---|---|---|---|
2019 | F-I | 22 April | 16/29/9/25/15 | 25 July | 25.22 | 430 | 0 |
R-I | 0 | ||||||
S-I | 0 | ||||||
F-II | 7 June | 10/25/15/25/22 | 12 September | 30.17 | 239 | 150 | |
R-II | 117 | ||||||
S-II | 84 | ||||||
F-III | 3 July | 7/26/12/26/21 | 3 October | 28.12 | 171 | 249 | |
R-III | 180 | ||||||
S-III | 129 | ||||||
2020 | F-I | 15 April | 12/38/15/20/16 | 25 July | 18.11 | 247 | 228 |
R-I | 162 | ||||||
S-I | 126 | ||||||
F-II | 28 May | 9/33/16/19/21 | 3 September | 22.00 | 314 | 141 | |
R-II | 90 | ||||||
S-II | 75 |
Year/Sowing Period | I | II | III | Average |
---|---|---|---|---|
2019 | 978 | 1300 | 1144 | 1141 |
2020 | 932 | 1226 | - | 1111 |
Parameter | Default | Calibrated |
---|---|---|
Canopy decline (CDC), % per day | 0.881 | 1.104 |
Canopy expansion (CGC), % per day | 11.8 | 9.7 |
Maximum canopy cover (CCx), % | 99 | 95 |
GDD from DAP to emergence | 59 | 98 |
GDD from DAP to maximum canopy | 752 | 605 |
GDD from DAP to senescence | 903 | 945 |
GDD to maturity | 1298 | 1140 |
GDD from DAP to flowering | 556 | 592 |
Flowering duration, GDD | 233 | 206 |
Length building up harvest index (HI) | 668 | 496 |
Maximum effective rooting depth, m | 1.7 | 0.6 |
DGG from DAP to maximum root depth | 888 | 449 |
Adjusted harvest index | 40 | 50 |
Harvest index (Hlo), % | 90 | 75 |
Treatment | Measured | Simulated | Deviation | Measured | Simulated | Deviation |
---|---|---|---|---|---|---|
Yield (Mg ha−1) | % | Biomass (Mg ha−1) | % | |||
I-F | 4.42 | 4.75 | −7.4 | 8.6 | 9.49 | −14.9 |
II-F | 4.18 | 4.13 | 1.2 | 7.85 | 8.07 | −2.8 |
II-R | 3.92 | 3.71 | 5.4 | 7.77 | 7.48 | 3.7 |
II-S | 3.5 | 3.25 | 7.1 | 7.24 | 6.82 | 5.8 |
Variable | Calibration Dataset | Validation Dataset | ||
---|---|---|---|---|
Yield | Biomass | Yield | Biomass | |
RMSE (Mg·ha−1) | 0.276 | 0.91 | 0.466 | 0.737 |
NRMSE (%) | 6.89 | 11.64 | 12.09 | 9.87 |
MBE | −0.046 | 0.186 | 0.103 | 0.546 |
d | 0.902 | 0.894 | 0.396 | 0.903 |
R2 | 0.98 | 0.988 | 0.152 | 0.507 |
Year | Treatment | Measured | Simulated | Deviation | Measured | Simulated | Deviation |
---|---|---|---|---|---|---|---|
Yield (Mg ha−1) | % | Biomass (Mg ha−1) | % | ||||
2019 | I-F | 4.21 | 3.65 | 13.3 | 7.84 | 7.52 | 4.1 |
II-F | 3.84 | 3.95 | −2.9 | 7.44 | 7.73 | −3.9 | |
III-F | 4.19 | 4.19 | −0.05 | 8.07 | 8.14 | −0.9 | |
II-R | 3.75 | 3.92 | −4.4 | 7.01 | 7.70 | −9.8 | |
III-R | 3.76 | 4.18 | −11.1 | 7.4 | 8.11 | −9.6 | |
II-S | 3.27 | 3.79 | −16.0 | 6.64 | 7.58 | −14.2 | |
III-S | 3.47 | 4.14 | −19.3 | 7.05 | 8.05 | −14.1 | |
2020 | I-R | 4.26 | 4.62 | −8.4 | 8.03 | 9.37 | −16.7 |
I-S | 3.96 | 3.20 | 19.2 | 7.72 | 7.92 | −2.5 |
Irrigation Treatment | Applied In | SD | Simulated In | SD |
---|---|---|---|---|
F | 206 | 54 | 221 | 9 |
R | 137 | 41 | 169 | 24 |
S | 104 | 28 | 137 | 17 |
Treatment | Measured | Simulated | Deviation |
---|---|---|---|
I_F_2019 | 4.21 | 4.08 | 3.0 |
II_F_2019 | 3.84 | 4.13 | −7.6 |
II_R_2019 | 3.75 | 4.10 | −9.3 |
II_S_2019 | 3.27 | 4.10 | −25.3 |
III_F_2019 | 4.19 | 4.22 | −0.8 |
III_R_2019 | 3.76 | 4.20 | −11.6 |
III_S_2019 | 3.47 | 4.10 | −18.2 |
I_F_2020 | 4.42 | 4.75 | −7.5 |
I_R_2020 | 4.26 | 4.72 | −10.7 |
I_S_2020 | 3.96 | 4.53 | −14.3 |
II_F_2020 | 4.18 | 4.20 | −0.6 |
II_R_2020 | 3.92 | 4.72 | −20.3 |
II_S_2020 | 3.5 | 4.17 | −19.0 |
Variables | Yield (Y) (Mg ha−1) | Biomass (B) (Mg ha−1) | Irrigation Norms (In) (mm) | Growing Cycle (GC) (Days) |
---|---|---|---|---|
RMSE (Mg·ha−1) | 0.161 | 0.33 | 15.06 | 10.5 |
NRMSE (%) | 4.124 | 4.31 | 7.73 | 13.42 |
MBE | 0.406 | 0.94 | 30.8 | −8.8 |
d | 0.64 | 0.78 | −28.68 | −11 |
R2 | 0.56 | 0.73 | 0.66 | 0.84 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Stričević, R.; Lipovac, A.; Djurović, N.; Sotonica, D.; Ćosić, M. AquaCrop Model Performance in Yield, Biomass, and Water Requirement Simulations of Common Bean Grown under Different Irrigation Treatments and Sowing Periods. Horticulturae 2023, 9, 507. https://doi.org/10.3390/horticulturae9040507
Stričević R, Lipovac A, Djurović N, Sotonica D, Ćosić M. AquaCrop Model Performance in Yield, Biomass, and Water Requirement Simulations of Common Bean Grown under Different Irrigation Treatments and Sowing Periods. Horticulturae. 2023; 9(4):507. https://doi.org/10.3390/horticulturae9040507
Chicago/Turabian StyleStričević, Ružica, Aleksa Lipovac, Nevenka Djurović, Dunja Sotonica, and Marija Ćosić. 2023. "AquaCrop Model Performance in Yield, Biomass, and Water Requirement Simulations of Common Bean Grown under Different Irrigation Treatments and Sowing Periods" Horticulturae 9, no. 4: 507. https://doi.org/10.3390/horticulturae9040507
APA StyleStričević, R., Lipovac, A., Djurović, N., Sotonica, D., & Ćosić, M. (2023). AquaCrop Model Performance in Yield, Biomass, and Water Requirement Simulations of Common Bean Grown under Different Irrigation Treatments and Sowing Periods. Horticulturae, 9(4), 507. https://doi.org/10.3390/horticulturae9040507