Study of the Component Composition of Essential Oil, Morphology, Anatomy and Ploidy Level of Hyssopus officinalis f. cyaneus Alef
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. The Component Composition of the Essential Oil of the Isolated Form of Hyssopus officinalis f. cyaneus
3.2. Comparative Morphological and Anatomical Characteristics during Ex Situ and In Vitro Cultivation
3.3. Ploidy Level Investigation of the Nuclei, Isolated from Leaves In Vitro
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Pirbalouti, A.G.; Bajalan, I.; Malekpoor, F. Chemical compositions and antioxidant activity of essential oils from inflorescences of two landraces of hyssop [Hyssopus officinalis L. subsp. angustifolius (Bieb.)] cultivated in Southwestern, Iran. J. Essent. Oil Bear. Plants 2019, 22, 1074–1081. [Google Scholar] [CrossRef]
- Sharifi-Rad, J.; Quispe, C.; Kumar, M.; Akram, M.; Amin, M.; Iqbal, M.; Koirala, N.; Sytar, O.; Kregiel, D.; Nicola, S.; et al. Hyssopus essential oil: An update of its phytochemistry, biological activities, and safety profile. Oxid. Med. Cell. Longev. 2022, 2022, 8442734. [Google Scholar] [CrossRef] [PubMed]
- Shibko, A.N. Biomorphologycal peculiarities of Hyssopus officinalis L. seeds under the cultivation in the conditions of the Pre-mountain Crimea. Sci. Notes Taurida V.I. Vernadsky Natl. Univ. Ser. Biol. Chem. 2011, 24, 371–377. (In Russian) [Google Scholar]
- Kotyuk, L.A. Features of micromorphological structure of medicinal hyssop. Mod. Phytomorphol. 2016, 10, 59–67. (In Ukrainian) [Google Scholar]
- Kalinichenko, L.V.; Malankina, E.L.; Kozlovskay, L.N. Comparative productivity assessment of common hyssop (Hyssopus officinalis L.) depending on the sample’s variety and origin. Izv. TAA 2013, 5, 171–176. (In Russian) [Google Scholar]
- Rabotyagov, V.D.; Shibko, A.N. Investigations of essential oil component composition of Hyssopus officinalis L. Work. State Nikit. Botan. Gard. 2014, 139, 88–100. (In Russian) [Google Scholar]
- Bespalyko, L.V.; Kharchenko, V.A.; Shevchenko, Y.P.; Ushakova, I.T. Common hyssop (Hyssopus officinalis L.). Veg. Crops Russ. 2016, 2, 60–63. [Google Scholar] [CrossRef] [Green Version]
- Plugatar, Y.V.; Shevchuk, O.M. Results and directions of breeding of aromatic and medicinal plants in the Nikitsky Botanical Gardens. Bull. State Nikitsk. Bot. Gard. 2019, 130, 9–17. [Google Scholar] [CrossRef] [Green Version]
- Chernyavskikh, V.I. Selection and seed production of Hyssopus officinalis L. in the Central Black Soil (Chernozem) region. Taurida Her. Agrar. Sci. 2018, 3, 137–146. (In Russian) [Google Scholar]
- Kizil, S.; Hasimi, N.; Tolan, V.; Kilinc, E.; Karatas, H. Chemical composition, antimicrobial and antioxidant activities of hyssop (Hyssopus officinalis L.) essential oil. Not. Bot. Horti Agrobot. Cluj 2010, 38, 99–103. [Google Scholar]
- Lu, M.; Battinelli, L.; Daniele, C.; Melchioni, C.; Salvatore, G.; Mazzanti, G. Muscle relaxing activity of Hyssopus officinalis essential oil on isolated intestinal preparations. Planta Med. 2002, 68, 213–216. [Google Scholar] [CrossRef] [PubMed]
- Isikov, V.P.; Rabotyagov, V.D.; Khlypenko, L.A.; Logvinenko, I.E.; Logvinenko, L.A.; Kutko, S.P.; Bakova, N.N.; Marko, N.V. Introduction and Breeding of Aromatic and Medicinal Plants (Methodological and Procedural Aspects); NBG-NSC: Yalta, Ukraine, 2009; 110p. (In Russian) [Google Scholar]
- Toma, I.; Toma, C.; Ghiorghita, G. Histo-anatomy and in vitro morphogenesis in Hyssopus officinalis L. (Lamiaceae). Acta Bot. Croat. 2004, 63, 59–68. [Google Scholar]
- Nanova, Z.; Slavova, Y.; Nenkova, D.; Ivanova, I. Microclonal propagation of hyssop (Hyssopus officinalis L.). Bulg. J. Agric. Sci. 2007, 13, 213–219. [Google Scholar]
- Bulavin, I.V.; Ivanova, N.N.; Mitrofanova, I.V. In vitro regeneration of Hyssopus officinalis L. and plant genetic similarity. Dokl. Biol. Sci. 2021, 499, 109–112. [Google Scholar] [CrossRef] [PubMed]
- Kritskaya, T.A.; Kashin, A.S.; Kasatkin, M.Y. Micropropagation and somaclonal variation of Tulipa suaveolens (Liliaceae) in vitro. Ontogenesis 2019, 50, 270–277. [Google Scholar] [CrossRef]
- Parab, A.R.; Lynn, C.B.; Subramaniam, S. Assessment of genetic stability on in vitro and ex vitro plants of Ficus carica var. black jack using ISSR and DAMD markers. Mol. Biol. Rep. 2021, 48, 7223–7231. [Google Scholar] [CrossRef] [PubMed]
- Shevchuk, O.M.; Isikov, V.P.; Logvinenko, L.A. Methodological and Procedural Aspects of Introduction and Breeding of Aromatic and Medicinal Plants; PH “Arial”: Simferopol, Ukraine, 2022; 140p, ISBN 978-5-907587-95-3. (In Russian) [Google Scholar]
- Tkachev, A.V. Study of Volatile Compounds of Plants; Ofset: Novosibirsk, Russia, 2008; 969p. (In Russian) [Google Scholar]
- Adams, R.P. Identification of Essential Oil Compounds by Gas Chromatography/Quadrupole Mass Spectroscopy; Allured Pub. Corp.: Carol Stream, IL, USA, 2007; 804p. [Google Scholar]
- Loureiro, J.; Rodriguez, E.; Doležel, J.; Santos, C. Two new nuclear isolation buffers for plant DNA flow cytometry: A test with 37 species. Ann. Bot. 2007, 100, 875–888. [Google Scholar] [CrossRef] [Green Version]
- Skaptsov, M.V.; Smirnov, S.V.; Kutsev, M.G.; Shmakov, A.I. Problems of standardization in flow cytometry of plants. Turczaninowia 2016, 19, 120–122. (In Russian) [Google Scholar] [CrossRef] [Green Version]
- Raboyagov, V.D.; Paliy, A.E.; Kurdyukova, O.N. Essential Oils of Aromatic Plants; PH “ARIAL”: Simferopol, Ukraine, 2017; 208p. (In Russian) [Google Scholar]
- Acimovic, M.; Pezo, L.; Zeremski, T.; Loncar, B.; Marjanovic Jeromela, A.; Stankovic Jeremic, J.; Cvetkovic, M.; Sikora, V.; Ignjatov, M. Weather conditions influence on hyssop essential oil quality. Processes 2021, 9, 1152. [Google Scholar] [CrossRef]
- Kerrola, K.; Galambosi, B.; Kallio, H. Volatile components and odor intensity of four phenotypes of hyssop (Hyssopus officinalis L.). J. Agric. Food Chem. 1994, 42, 776–781. [Google Scholar] [CrossRef]
- Zawislak, G. Morphological characters of Hyssopus officinalis L. and chemical composition of its essential oil. Mod. Phytomorphol. 2013, 4, 93–95. [Google Scholar] [CrossRef]
- Acimovic, M.; Stankovic, J.; Cvetkovic, M.; Kiprovski, B.; Marjanovic-Jeromela, A.; Rat, M.; Malencic, D. Essential oil analysis of different hyssop genotypes from IFVCNS medicinal plant collection garden. LetopisNaučnihRadova 2019, 43, 38–45. [Google Scholar]
- Zawislak, G. The chemical composition of essential hyssop oil depending on plant growth stage. Acta Sci. Pol. Hortum Cultus 2013, 12, 161–170. [Google Scholar]
- Kotyuk, L.A. Hyssop composition depending on age and plants development phases. Biotechnol. Acta 2015, 8, 55–63. [Google Scholar] [CrossRef]
- Tavakoli, M.; Aghajani, Z. The effects of drought stress on the components of the essential oil of Hyssopus officinalis L. and determining the antioxidative properties of its water extracts. J. Appl. Environ. Biol. Sci. 2016, 6, 31–36. [Google Scholar]
- Salvatore, G.; D’Andrea, A.; Nicoletti, M. A pinocamphone poor oil of Hyssopus officinalis L. var. decumbens from France (Banon). J. Essent. Oil. Res. 1998, 10, 563–567. [Google Scholar] [CrossRef]
- Ahmadi, H.; Babalar, M.; Sarcheshmeh, M.A.A.; Morshedloo, M.R.; Shokrpour, M. Effects of exogenous application of citrulline on prolonged water stress damages in hyssop (Hyssopus officinalis L.): Antioxidant activity, biochemical indices, and essential oils profile. Food Chem. 2020, 333, 127433. [Google Scholar] [CrossRef] [PubMed]
- Figueiredo, A.C.; Barroso, J.G.; Pedro, L.G.; Scheffer, J.J.C. Factors affecting secondary metabolite production in plants: Volatile components and essential oil. Flavour Fragr. J. 2008, 23, 213–226. [Google Scholar] [CrossRef]
- Bulavin, I.; Brailko, V.; Zhdanova, I. In vitro rhizogenesis of the Lavandula angustifolia cultivars. BIO Web Conf. 2020, 24, 00017. [Google Scholar] [CrossRef]
- Mitrofanova, I.V.; Lesnikova-Sedoshenko, N.P.; Chelombit, S.V.; Zhdanova, I.V.; Ivanova, N.N.; Mitrofanova, O.V. The effect of plant growth regulators on the in vitro regeneration capacity in some horticultural crops and rare endangered plant species. Acta Hortic. 2022, 1339, 181–189. [Google Scholar] [CrossRef]
- Bairu, M.W.; Kane, M.E. Physiological and developmental problems encountered by in vitro cultured plants. Plant Growth Regul. 2011, 63, 101–103. [Google Scholar] [CrossRef] [Green Version]
- Matushkina, O.V.; Pronina, I.N.; Tkachev, E.N. Vitrification of the shoots in vitro: Anatomical structure and possible solutions to the problem. Achiev. Sci. Technol. Agric. 2012, 1, 58–60. (In Russian) [Google Scholar]
- Manjula, R.; Jholgiker, P.; Subbaiah, K.V.; Prabhuling, G.; Swamy, G.S.K.; LeninKumar, Y. Morphological abnormality among hardened shoots of banana cv. Rajapuri (AAB) after in vitro multiplication with TDZ and BAP from excised shoot tips. Int. J. Agric. Environ. Biotechnol. 2014, 7, 465–470. [Google Scholar] [CrossRef]
- Lebedev, V.G.; Azarova, A.B.; Shestibratov, K.A.; Demenko, V.I. Manifestation of somaclonal variability in micro-propagated and transgenic plants. Izv. TAA 2012, 2, 153–163. (In Russian) [Google Scholar]
- Ryabushkina, N.A. Clonality and somaclonal variations in plants. Biotechnol. Theory Pract. 2014, 2, 17–27. [Google Scholar] [CrossRef]
- Ochatt, S.J.; Muneaux, E.; Machado, C.; Jacas, L.; Pontécaille, C. The hyperhydricity of in vitro regenerants of grass pea (Lathyrus sativus L.) is linked with an abnormal DNA content. J. Plant Physiol. 2002, 159, 1021–1028. [Google Scholar] [CrossRef]
- Skaptsov, M.V.; Krasnoborodkina, M.A.; Kutsev, M.G.; Smirnov, S.V.; Shmakov, A.I.; Matsyura, A.V. Ploidy level and relative nuclear DNA content in the plant cell and tissue culture in vitro. Biol. Bull. Bogdan Chmelnitskiy Melitopol State Pedagog. Univ. 2016, 6, 33–38. [Google Scholar] [CrossRef] [Green Version]
№ | Compounds | RT | Accession | |||||
---|---|---|---|---|---|---|---|---|
2017 (1) | 2018 (2) | 2019 (3) | 2020 (4) | 2021 (5) | 2022 (6) | |||
Mass Fraction of Components, % | ||||||||
1 | α-thujene | 4.39 | 0.42 ± 0.002 cd* | tr | 0.004 ± 0.001 cd | tr | 0.004 ± 0.001 ab | tr |
2 | α-pinene | 4.56 | 0.71 ± 0.003 de | 0.004 ± 0.001 b | 0.14 ± 0.004 cd | 0.12 ± 0.002 b | 0.22 ± 0.002 de | |
3 | cis-3-hexen-1-ol | 5.00 | tr | tr | 0.004 ± 0.001 a | tr | tr | tr |
4 | sabinene | 5.29 | 2.64 ± 0.007 ab | 0.67 ± 0.009 ab | 0.97 ± 0.001 cd | 0.35 ± 0.005 ab | 0.86 ± 0.005 cd | 0.99 ± 0.016 a |
5 | β-pinene | 5.44 | 8.65 ± 0.001 d | 2.93 ± 0.018 a | 6.45 ± 0.015 ab | 1.02 ± 0.014 ab | 3.30 ± 0.007 a–c | 3.81 ± 0.011 ab |
6 | camphene | 5.50 | 0.21 ± 0.001 a | tr | tr | tr | tr | tr |
7 | β-myrcene | 5.54 | 2.32 ± 0.004 d | 0.99 ± 0.003 d | 0.65 ± 0.14 f | 0.36 ± 0.009 e | 1.17 ± 0.26 f | 0.93 ± 0.003 d |
8 | D-limonene | 6.56 | 1.13 ± 0.002 c | tr | 0.61 ± 0.005 d | 0.33 ± 0.002 c | tr | tr |
9 | β-phellandrene | 6.61 | 3.87 ± 0.003 b | 2.97 ± 0.22 f | 1.04 ± 0.003 b | tr | 4.52 ± 0.74 f | 1.93 ± 0.008 de |
10 | 1,8-cineole | 6.62 | tr | tr | tr | 0.42 ± 0.003 c | tr | tr |
11 | (Z)-ocimene | 6.90 | 1.22 ± 0.001 a | tr | 1.22 ± 0.004 d | tr | tr | 0.47 ± 0.006 cd |
12 | α-phellandrene | 7.08 | 0.12 ± 0.001 a | tr | tr | tr | tr | tr |
13 | cis-sabinene hydrate | 7.56 | 0.22 ± 0.003 ab | 2.10 ± 0.005 b | tr | tr | 0.009 ± 0.002 a | tr |
14 | trans-ocimene | 7.83 | 1.29 ± 0.002 b | tr | tr | tr | tr | tr |
15 | linalool | 8.29 | 4.46 ± 0.004 b | 1.01 ± 0.004 b | 0.54 ± 0.002 ab | 1.24 ± 0.13 f | 1.50 ± 0.48 f | 1.05 ± 0.002 ab |
16 | α-thujone | 8.56 | 0.45 ± 0.003 d | 0.39 ± 0.003 d | 0.009 ± 0.002 b | 0.36 ± 0.001 a | 0.39 ± 0.004 de | 0.42 ± 0.001 a |
17 | β-thujone | 8.87 | 0.23 ± 0.002 b | 0.13 ± 0.001 a | 0.005 ± 0.001 a | 0.17 ± 0.001 a | 0.16 ± 0.003 c | tr |
18 | α-terpinene | 8.89 | 0.008 ± 0.001 ab | 0.10 ± 0.002 e | tr | tr | tr | tr |
19 | p-cymene | 9.06 | 0.005 ± 0.001 cd | 0.26 ± 0.004 a | tr | tr | tr | tr |
20 | trans-pinocarveol | 9.65 | 0.18 ± 0.002 b | 0.008 ± 0.001 a | 0.18 ± 0.002 b | 0.15 ± 0.001 ab | 0.17 ± 0.001 b | tr |
21 | γ-terpinene | 10.007 | 0.11 ± 0.001 a | 0.45 ± 0.003 c | tr | tr | tr | tr |
22 | myrtenyl methyl ether | 10.009 | - | 0.76 ± 0.003 de | 0.38 ± 0.004 d–f | 3.38 ± 0.24 a | tr | 2.38 ± 0.19 b |
23 | pinocamphone | 10.23 | 4.32 ± 0.002 d | 3.95 ± 0.002 d | 18.88 ± 0.046 a | 6.35 ± 0.008 c | 8.19 ± 0.034 b | tr |
24 | isopinocamphone | 10.77 | 50.99 ± 0.003 c | 64.41 ± 0.08 bc | 53.33 ± 0.041 c | 61.35 ± 0.045 b | 62.00 ± 0.035 b | 70.74 ± 0.067 a |
25 | crypton | 10.92 | tr | tr | tr | tr | 0.12 ± 0.003 b | tr |
26 | α-terpinolene | 10.95 | 0.11 ± 0.003 c | 0.14 ± 0.002 b | tr | tr | tr | tr |
27 | α-terpineol | 11.19 | tr | 0.47 ± 0.003 d | 0.24 ± 0.002 d | 1.01 ± 0.003 cd | tr | 1.03 ± 0.28 e |
28 | myrtenal | 11.20 | 0.23 ± 0.002 b | tr | tr | tr | 0.95 ± 0.007 d | tr |
29 | myrtenol | 11.32 | 2.94 ± 0.002 a | 4.69 ± 0.026 c | 3.54 ± 0.059 b | 4.11 ± 0.052 c | 6.16 ± 0.043 d | 5.73 ± 0.052 d |
30 | trans-sabinene hydrate | 11.34 | tr | 0.12 ± 0.001 b | tr | tr | tr | tr |
31 | terpinene-4-ol | 11.93 | 0.19 ± 0.002 c | tr | tr | tr | tr | tr |
32 | cis-p-menth-2-en-1-ol | 12.09 | tr | 0.13 ± 0.001 b | tr | tr | tr | tr |
33 | p-menth-1-en-8-ol | 12.35 | 0.51 ± 0.003 c | tr | tr | tr | tr | tr |
34 | camphor | 12.84 | 0.23 ± 0.001 a | 0.005 ± 0.001 b | tr | tr | tr | tr |
35 | methyl myrtenate | 14.27 | tr | tr | tr | 0.52 ± 0.001 b | 0.54 ± 0.012 a–c | 0.28 ± 0.005 a |
36 | linalyl acetate | 14.58 | 0.74 ± 0.002 c | tr | tr | tr | tr | tr |
37 | myrtenyl acetate | 15.16 | 0.27 ± 0.003 b | 0.004 ± 0.001 d | 2.34 ± 0.014 a | 0.10 ± 0.003 c | 0.17 ± 0.003 c | tr |
38 | lavandulyl acetate | 15.64 | 0.50 ± 0.001 b | tr | tr | tr | tr | tr |
39 | carvone | 15.88 | tr | 0.22 ± 0.002 c | tr | tr | tr | tr |
40 | β-bourbonene | 17.27 | 0.20 ± 0.002 e | 0.98 ± 0.009 a | 0.59 ± 0.008 b | 0.60 ± 0.10 b | 0.30 ± 0.10 d | 0.43 ± 0.006 c |
41 | thymol | 17.32 | tr | 0.006 ± 0.002 c | tr | tr | tr | tr |
42 | methyl eugenol | 17.44 | tr | tr | tr | 0.51 ± 0.11 a | 0.29 ± 0.004 c | 0.44 ± 0.003 b |
43 | carvacrol | 17.61 | tr | 0.46 ± 0.003 a | 0.25 ± 0.003 b | tr | tr | tr |
44 | neryl acetate | 17.91 | 0.14 ± 0.001 b | tr | tr | tr | tr | tr |
45 | α-gurjunene | 18.04 | 0.27 ± 0.001 b | 0.20 ± 0.001 c | 0.13 ± 0.001 cd | 0.34 ± 0.004 a | 0.11 ± 0.001 d | 0.26 ± 0.003 b |
46 | β-caryophyllene | 18.37 | 0.91 ± 0.002 a | 0.90 ± 0.009 a | 0.49 ± 0.005 e | 0.31 ± 0.002 f | 0.71 ± 0.11 c | 0.65 ± 0.007 cd |
47 | geranyl acetate | 18.50 | 0.19 ± 0.001 b | tr | tr | tr | tr | tr |
48 | humulene | 19.41 | 0.16 ± 0.001 ab | 0.17 ± 0.001 ab | 0.005 ± 0.001 e | tr | 0.14 ± 0.007 a–c | tr |
49 | alloaromadendrene | 19.60 | 0.71 ± 0.006 d | 0.91 ± 0.10 b | 0.58 ± 0.004 b–e | 1.42 ± 0.004 a | 0.50 ± 0.004 e | 1.02 ± 0.005 ab |
50 | germacrene D | 20.19 | 2.09 ± 0.002 c | 2.82 ± 0.009 a | 2.83 ± 0.15 a | 2.67 ± 0.002 ab | 2.63 ± 0.10 ab | 2.53 ± 0.14 a–c |
51 | bicyclogermacrene | 20.65 | 2.22 ± 0.002 bc | 2.31 ± 0.13 bc | 1.58 ± 0.004 c | 3.65 ± 0.37 a | 2.57 ± 0.33 b | 2.47 ± 0.008 b |
52 | β-farnesene | 20.98 | 0.39 ± 0.003 d | tr | tr | tr | tr | tr |
53 | γ-cadinene | 21.11 | tr | tr | tr | 0.16 ± 0.12 a | tr | tr |
54 | elemol | 22.06 | 1.10 ± 0.002 de | 2.41 ± 0.005 c | 0.49 ± 0.002 e | 4.52 ± 0.11 a | 1.30 ± 0.009 d–f | 1.49 ± 0.30 cd |
55 | E-nerolidol | 22.33 | tr | tr | tr | 0.11 ± 0.003 c | tr | tr |
56 | linalyl isovalerate | 22.47 | 0.34 ± 0.002 c | tr | tr | tr | tr | tr |
57 | (+)-spathulenol | 22.93 | 0.19 ± 0.003 e | 0.30 ± 0.002 d | 0.20 ± 0.002 e | 0.77 ± 0.006 a | 0.35 ± 0.007 de | - |
58 | caryophyllene oxide | 23.11 | 0.24 ± 0.001 a | 0.14 ± 0.002 bc | tr | tr | 0.19 ± 0.002 b | tr |
59 | globulol | 23.22 | tr | tr | tr | 0.19 ± 0.002 c | tr | tr |
60 | ledol | 23.76 | 0.20 ± 0.002 d | tr | tr | 0.49 ± 0.005 bc | tr | tr |
61 | γ- eudesmol | 24.48 | tr | 0.27 ± 0.004 e | tr | 0.60 ± 0.005 a | 0.13 ± 0.001 f | tr |
62 | tau-cadinol | 24.73 | tr | 0.15 ± 0.001 de | tr | 0.54 ± 0.004 a | tr | tr |
63 | β-eudesmol | 25.06 | tr | 0.33 ± 0.004 c | tr | 0.56 ± 0.004 a | 0.13 ± 0.001 e | tr |
64 | α-eudesmol | 25.15 | tr | tr | tr | 0.45 ± 0.003 d | tr | tr |
65 | trans-bisabolol | 26.46 | 0.89 ± 0.001 b | tr | tr | tr | tr | tr |
66 | viridiflorol | 27.27 | tr | 0.25 ± 0.002 c | tr | tr | tr | tr |
67 | cis-bisabolol | 29.17 | 0.40 ± 0.002 c | tr | tr | tr | tr | tr |
68 | pitol | 39.48 | tr | 0.007 ± 0.002 c | tr | tr | tr | tr |
Grouped components (%) | ||||||||
monoterpenes | 22.92 | 8.55 | 11.12 | 2.06 | 10.01 | 8.35 | ||
sesquiterpenes | 6.95 | 8.29 | 6.25 | 9.15 | 6.96 | 7.36 | ||
Terpenes in total: | 29.87 | 16.84 | 17.37 | 11.21 | 16.97 | 15.71 | ||
alkoholes | 11.26 | 12.38 | 5.23 | 14.74 | 9.83 | 9.30 | ||
aldehydes | 0.23 | tr | tr | tr | tr | tr | ||
ethers | 2.40 | 0.94 | 2.72 | 4.93 | 1.19 | 3.10 | ||
phenols | tr | 0.52 | 0.25 | tr | tr | tr | ||
ketones | 56.20 | 69.15 | 72.35 | 68.23 | 70.86 | 71.16 | ||
Terpenoids in total: | 70.01 | 82.99 | 80.55 | 87.90 | 82.83 | 83.56 | ||
Quantitative content of all identified components, % | 95.60 | 95.34 | 93.54 | 86.84 | 93.93 | 91.30 | ||
Mass fraction of essential oil from the raw weight, % | 0.19 ± 0.001 | 0.21 ± 0.002 | 0.22 ± 0.002 | 0.20 ± 0.001 | 0.20 ± 0.001 | 0.21 ± 0.002 |
Dimensions (µm) | Ex Situ | In Vitro (0.4 BAP) | In Vitro (0.8 BAP) |
---|---|---|---|
Height of the leaf cut along the midrib | 395.34 ± 3.62 a | 266.13 ± 13.96 b | 567.15 ± 7.71 c |
Leaf cut height, side part | 239.21 ± 8.12 a | 112.25 ± 2.82 b | 539.36 ± 5.41 c |
Cell height, upper epidermis | 21.21 ± 2.15 a | 24.27 ± 0.76 b | 30.66 ± 1.47 c |
Cell width, upper epidermis | 27.73 ± 2.55 a | 16.77 ± 1.07 b | 45.18 ± 3.41 c |
Cell height, lower epidermis | 14.32 ± 0.95a | 12.88 ± 0.4a | 24.3 ± 1.02 b |
Cell width, lower epidermis | 17.4 ± 1.24 a | 15.04 ± 1.2 a | 39.78 ± 2.16 b |
Cell height, palisade mesophyll | 50.98 ± 4.79 a | 22.55 ± 0.9 b | 58.8 ± 1.72 c |
Cell width, palisade mesophyll | 22.27 ± 2.74 a | 13.28 ± 1.14 b | 29.17 ± 0.8 c |
Cell height, spongy mesophyll | 22.42 ± 1.11 a | 15.42 ± 0.43 b | 36.1 ± 1.16 c |
Cell width, spongy mesophyll | 19.89 ± 1.14a | 16.75 ± 0.93 b | 38.44 ± 1.95 c |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Plugatar, Y.V.; Bulavin, I.V.; Ivanova, N.N.; Miroshnichenko, N.N.; Saplev, N.M.; Shevchuk, O.M.; Feskov, S.A.; Naumenko, T.S. Study of the Component Composition of Essential Oil, Morphology, Anatomy and Ploidy Level of Hyssopus officinalis f. cyaneus Alef. Horticulturae 2023, 9, 480. https://doi.org/10.3390/horticulturae9040480
Plugatar YV, Bulavin IV, Ivanova NN, Miroshnichenko NN, Saplev NM, Shevchuk OM, Feskov SA, Naumenko TS. Study of the Component Composition of Essential Oil, Morphology, Anatomy and Ploidy Level of Hyssopus officinalis f. cyaneus Alef. Horticulturae. 2023; 9(4):480. https://doi.org/10.3390/horticulturae9040480
Chicago/Turabian StylePlugatar, Yuri Vladimirovich, Iliya Vladimirovich Bulavin, Natalia Nikolaevna Ivanova, Nataliya Nikolaevna Miroshnichenko, Nikita Maximovich Saplev, Oksana Michailovna Shevchuk, Sergey Alexandrovich Feskov, and Tatiana Sergeevna Naumenko. 2023. "Study of the Component Composition of Essential Oil, Morphology, Anatomy and Ploidy Level of Hyssopus officinalis f. cyaneus Alef" Horticulturae 9, no. 4: 480. https://doi.org/10.3390/horticulturae9040480
APA StylePlugatar, Y. V., Bulavin, I. V., Ivanova, N. N., Miroshnichenko, N. N., Saplev, N. M., Shevchuk, O. M., Feskov, S. A., & Naumenko, T. S. (2023). Study of the Component Composition of Essential Oil, Morphology, Anatomy and Ploidy Level of Hyssopus officinalis f. cyaneus Alef. Horticulturae, 9(4), 480. https://doi.org/10.3390/horticulturae9040480