Efficiency of Using Superabsorbent Polymers in Reducing Mineral Fertilizer Rates Applied in Autumn Royal Vineyards
Abstract
:1. Introduction
2. Materials and Methods
2.1. Design and Procedures Used in the Experiment
- (T1) 60 units N + 100 units K/Fed
- (T2) 45 units N + 75 units K/Fed
- (T3) 45 units N + 75 units K + 35 kg polymer/Fed (50 g/vine)
- (T4) 45 units N + 75 units K + 53 kg polymer/Fed (75 g/vine)
- (T5) 45 units N + 75 units K + 70 kg polymer/Fed (100 g/vine)
- (T6) 30 units N + 50 units K/Fed
- (T7) 30 units N + 50 units K + 35 kg polymer/Fed (50 g/vine)
- (T8) 30 units N + 50 units K + 53 kg polymer/Fed (75 g/vine)
- (T9) 30 units N + 50 units K + 70 kg polymer/Fed (100 g/vine)
2.2. Examined Parameters
2.2.1. Bud Behavior Measurements
2.2.2. Yield Components
2.2.3. The Features of Berries
2.2.4. Morphological Properties of Vegetative Growth
- Average leaf area (cm2): The leaves were measured with a CI-203-Laser Area-meter, produced by CID, Inc., Vancouver, WA, USA, utilizing the apical fifth and sixth leaves.
- Number of leaves/shoots
- Average shoots length (cm).
- Average shoot diameter (cm).
- Wood ripening coefficient was taken in mid-October and, referring to Bouard (1966) [15], calculated by dividing the length of the matured portion of the shoot by the entire length of the shoot.
2.2.5. Properties of Leaves and Shoots
- N, P and K content in the leaf petioles: Vine leaf blades opposite cluster leaves were collected at full bloom and petioles were collected to determine nutrient status. Leaf blades and petioles were separated, rinsed in distilled water, dried at 65 °C for 48 h and ground to pass through a 425 μm sieve. Nitrogen was determined via combustion analysis, and P and K concentrations were measured using inductively coupled plasma-optical emission spectrometry (ICP-OES) after microwave digestion in HNO3 [16].
- The total chlorophyll content of leaves was determined in the fifth and seventh leaves, and measured at full bloom using a nondestructive Minolta—SPAD 502 [17].
- The total carbohydrate (%) content in shoots: shoot samples were collected at winter pruning (through the first week of January) and total carbohydrate content was determined by referring to Smith et al. (1956) [18].
2.2.6. Soil Analysis
- a.
- Soil chemical analysis:
- b.
- Soil physical analysis.
2.2.7. Economic Evaluation
2.2.8. Statistical Analysis
3. Results and Discussion
3.1. Plant Behavior
3.1.1. Bud Behavior
3.1.2. Yield Components
3.1.3. Physical and Chemical Properties of Berries
3.1.4. The Parameters of Vegetative Growth
3.1.5. Leaf Mineral Composition
3.1.6. Total Chlorophyll in Leaves and Cane Total Carbohydrate Content
3.1.7. Soil Properties
Soil Physical Properties
Soil Chemical Properties
3.1.8. Economical Evaluation
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Hussein, H.A. Biological fertilizers and their role in plant growth. Int. Res. J. Adv. Sci. 2021, 2, 17–20. [Google Scholar]
- Samuel, A.D.; Bungau, S.; Fodor, I.K.; Tit, D.M.; Blidar, C.F.; David, A.T.; Melinte, C.E. Effects of Liming and Fertilization on the Dehydrogenase and Catalase Activities. Rev. Chim. 2019, 70, 3464–3468. [Google Scholar] [CrossRef]
- Chen, W.; Teng, Y.; Li, Z.G.; Liu, W.X.; Ren, W.J.; Luo, Y.M. Mechanisms by which organic fertilizer and effective microbes mitigate peanut continuous cropping yield constraints in a red soil of south China. Appl. Soil Ecol. 2018, 128, 23–24. [Google Scholar] [CrossRef]
- Elhaggar, S.M.; Ali, B.E.; Ahmed, S.M.; Hamdy, M.M. Solubility of some natural rocks during composting. In Proceedings of the 2nd International Conference of Organic Agriculture, Nasr City, Cairo, Egypt, 25–27 March 2004; pp. 105–116. [Google Scholar]
- Bungau, S.; Behl, T.; Aleya, L.; Bourgeade, P.; Aloui-Sossé, B.; Purza, A.L.; Abid, A.; Samuel, A.D. Expatiating the impact of anthropogenic aspects and climatic factors on long-term soil monitoring and management. Environ. Sci. Pollut. Res. 2021, 28, 30528–30550. [Google Scholar] [CrossRef]
- Dahama, A.K. Organic Farming for Sustainable Agriculture; Agro Botanical Publishers: New Delhi, India, 1999; p. 258. [Google Scholar]
- Behl, T.; Kaur, I.; Sehgal, A.; Singh, S.; Sharma, N.; Bhati, S.; Al-Harrasi, A.; Bungau, S. The dichotomy of nanotechnology as the cutting edge of agriculture: Nano-farming as an asset versus nanotoxicity. Chemosphere 2022, 288 Pt 2, 132533. [Google Scholar] [CrossRef] [PubMed]
- Ostrand, M.S.; Desutter, T.M.; Daigh, A.M.; Limb, R.F.; Steele, D.D. Superabsorbent polymer characteristics, properties, and applications. Agrosyst. Geosci. Environ. 2020, 3, e20074. [Google Scholar] [CrossRef]
- Martin, C.A.; Ruter, J.M.; Roberson, R.W.; Sharp, W.P. Element absorption and hydration potential of polyacrylamide gels. Comm. Soil. Sci. Plant Anal. 1997, 24, 539–548. [Google Scholar] [CrossRef]
- Islam, M.R.; Hu, Y.; Mao, S.; Jia, P.; Eneji, A.E.; Xue, X. Effects of water-saving superabsorbent polymer on antioxidant enzyme activities and lipid peroxidation in corn (Zea mays L.) under drought stress. J. Sci. Food Agric. 2011, 91, 813–819. [Google Scholar] [CrossRef]
- Zohourian, M.M.; Kabiri, K. Impact of Soil Amended Superabsorbent Polymers on the Efficiency of Irrigation. Iran. Polym. J. 2008, 17, 451–477. [Google Scholar]
- Ahmed, T.M. Effect of water on retentivity of some water holding substances and their effects on the water retentivity of a sandy soil. Report 1992.
- Association of Official Agricultural Chemists. Official Methods of Analysis; AOAC: Washington, DC, USA, 1985. [Google Scholar]
- Yildiz, F.; Dikmen, D. The extraction of anthocyanin from black grapes and black grape skins. Doga Derigisi 1990, 14, 57–66. [Google Scholar]
- Jones, J.B.; Case, V.W. Sampling, handling, and analyzing plant tissue samples. In Soil Testing and Plant Analysis, 3rd ed.; Westerman, R.L., Ed.; Soil Science Society of America: Madison, WI, USA, 1990; pp. 389–427. [Google Scholar]
- Jackson, M.L. Soil Chemical Analysis; Printice-Hall Inc.: Bergen, NJ, USA, 1967. [Google Scholar]
- Wood, C.W.; Reeves, D.W.; Himelrick, D.G. Relationships between chlorophyll meter readings and leaf chlorophyll concentration, N status and crop yield: A review. Proc. Agron. Soc. N. Z. 1992, 23, 1–9. [Google Scholar]
- Smith, F.; Gilles, M.A.; Hamilton, J.K.; Gedess, P.A. Colorimetric methods for determination of sugar and related substances. Anal. Chem. 1956, 28, 350–356. [Google Scholar]
- Cottenic, A.; Verloo, M.; Krekens, L.; Velghe, G.; Bcamerlynch, R. Chemical Analysis of Plant and Soil; State University Gent: Gent, Belgium, 1982. [Google Scholar]
- El-sayed, M.E.A.; Hazman, M.; Gamal, A.A.; Almas, L.; McFarland, M.; Shams El Din, A.; Burian, S. Biochar Reduces the Adverse Effect of Saline Water on Soil Properties and Wheat Production Profitability. Agriculture 2021, 11, 1112. [Google Scholar] [CrossRef]
- Blake, G.R.; Hartage, K.H. Bulk Density. Methods of Soil Analysis, Part 1, Physical and Mineralogical Methods; Klutepp, A., Ed.; American Society of Agronomy: Madison, MI, USA, 1986; pp. 365–375. [Google Scholar]
- Klute, A. Methods of Analysis Part 1, Soil Physical Properties; ASA: Madison, MI, USA; SSSA: Madison, MI, USA, 1986. [Google Scholar]
- Hazman, M.Y.; El-Sayed, M.E.; Kabil, F.F.; Helmy, N.A.; Almas, L.; McFarland, M.; Shams El Din, A.; Burian, S. Effect of Biochar Application to Fertile Soil on Tomato Crop Production under Saline Irrigation Regime. Agronomy 2022, 12, 1596. [Google Scholar] [CrossRef]
- Snedecor, G.W.; Cochran, W.G. Statistical Methods, 7th ed.; The Iowa State University Press: Ames, IA, USA, 1980; p. 50. [Google Scholar]
- Girgis, V.H.; Eshennawy, S.I.; El-Mogy, M.M. Studies on the optimum N: K ratio required for Thompson Seedless grapevines. J. Agri. Sci. Mansura Univ. 1998, 23, 5633–5640. [Google Scholar]
- Banej Shafie, S. Effect of Superabsorbent on increment of soil water, fertilizer efficiency, growth and establishment of Panicum plant. In Final Report of Iran Agriculture Ministry Research; Iran Agriculture Ministry: Tehran, Iran, 2000. (In Farsi) [Google Scholar]
- Abd El-Moity, T.H.; Abd El-Zaher, M.H.; Rabie, A.M. Effect of some organic and biological treatments on Flame Seedless grapevine. Egypt. J. Appl. Sci. 2006, 21, 581–620. [Google Scholar]
- El-Hady, O.A.; Tayel, M.Y.; Lofty, A.A. Super gel as a soil conditioner: Its effect on plant growth, enzymes activity, water use efficiency and nutrient uptake. Acta Hort. 2006, 119, 257–265. [Google Scholar] [CrossRef]
- Hadas, A.; Russo, D. Water uptake by seeds as affected by water stress, capillary conductivity, and seed-soil water contact. Experimental study. Agron. J. 1974, 66, 643–647. [Google Scholar] [CrossRef]
- Farag, A.A.; Eltaweel, A.A.; Abd-Elrahman, S.H.; Ali, A.A.; Ahmed, M.S.M. Irrigation regime and soil conditioner to improve soil properties and pomegranate production in newly reclaimed sandy soil. Asian J. Soil Sci. Plant Nutr. 2017, 1, 1–18. [Google Scholar] [CrossRef]
- Kassim, F.S.; El-Koly, M.F.; Hosny, S.S. Evaluation of Super Absorbent Polymer application on yield, and water use efficiency of Grand Nain banana plant. Middle East J. Agric. Res. 2017, 6, 188–198. [Google Scholar]
- Abd El-Razek, E.; Treutter, D.; Saleh, M.M.S.; El-Shammaa, M.; Fouad, A.A.; Abdel-Hamid, N. Effect of nitrogen and potassium fertilization on productivity and fruit quality of Crimson Seedless grape. Agric. Biol. J. N. Am. 2011, 2, 330–340. [Google Scholar] [CrossRef]
- Ola, A.A.; Ali Mervat, A.; El-Gendy Rafaat, S.S. Defining the fertilization rates for Superior Seedless grape cultivar grafted on three rootstocks. J. Biol. Chem. Environ. Sci. 2016, 11, 563–592. [Google Scholar]
- Abedi-Koupai, J.; Sohrab, F. Effect of evaluation of super absorbent application on water retention capacity and water potential in three soil textures. J. Sci. Technol. Polym. 2004, 17, 163–173. [Google Scholar]
- Ekebafe, L.; Ogbeifun, O.D.E.; Okieimen, F.E. Polymer applications in agriculture. Biokemistri 2011, 23, 81–89. [Google Scholar]
- Ayman, A.M.A. Effect of Soil Conditioner Application on Growth and Productivity of the Pomegranate Trees cv. Manfaloty under Different Irrigation Levels in Sandy Soil. Ph.D. Thesis, Zagazig University, Zagazig, Egypt, 2015. [Google Scholar]
- El-Shanhorey, N.A.; Mohamed, M.K.; Yacout, M.A.; Mostafa, M.M. Effect of irrigation and polyacrylamide on the production of tuberose plants in sandy soil. Alex. J. Agric. Res. 2010, 55, 33–42. [Google Scholar]
- Ge, X.; Yang, Z.; Zhou, B.; Cao, Y.; Xiao, W.; Wang, X.; Li, M. Biochar Fertilization Significantly Increases Nutrient Levels in Plants and Soil but Has No Effect on Biomass of Pinus massoniana (Lamb.) and Cunninghamia lanceolata (Lamb.) Hook Saplings During the First Growing Season. Forests 2019, 10, 612. [Google Scholar] [CrossRef] [Green Version]
- Li, J.Y.; Guo, Q.X.; Zhang, J.X.; Korpelainen, H.; Li, C.Y. Effects of nitrogen and phosphorus supply on growth and physiological traits of two Larix species. Environ. Exp. Bot. 2016, 130, 206–215. [Google Scholar] [CrossRef]
- Yang, L.J.; Yang, K.J. Biological function of Klebsiella variicola and its effect on the rhizosphere soil of maize seedlings. PeerJ 2020, 8, 9894–9899. [Google Scholar] [CrossRef]
- Zeng, S.; Jacobs, D.F.; Sloan, J.L.; Xue, L.; Li, Y.; Chu, S.S. Split fertilizer application affects growth, biomass allocation, and fertilizer uptake efficiency of hybrid Eucalyptus. New For. 2013, 44, 703–718. [Google Scholar] [CrossRef]
- Uddin, M.B.; Mukul, S.A.; Hossain, M.K. Effects of Organic Manure on Seedling Growth and Nodulation Capabilities of Five Popular Leguminous Agroforestry Tree Components of Bangladesh. J. For. Environ. Sci. 2012, 28, 212–219. [Google Scholar] [CrossRef] [Green Version]
- Adamis, Z.; Anderson, D.; Attanoos, R.I.; Chakrabarti, T.; Henderson, C.; Huertas, F.G.; Nordberg, G.; Soliman, S.A.; Taskien, H.; Williams, R.B. Bentonite, Kaolin, and Selected Clay Minerals. In Environmental Health Criteria 231; World Health Organization: Geneva, Switzerland, 2005; ISBN 9241572310. [Google Scholar]
- Sitthaphanit, S.; Richard, W.; Limpinuntan, V. Effect of clay amendments on nitrogen leaching and forms in a sandy soil. In Proceedings of the 19th World Congress of Soil Science, Brisbane, Australia, 1–6 August 2010. [Google Scholar]
- Altarawneh, A.A.A. Impact of Soil Amended Superabsorbent Polymers on the Efficiency of Irrigation Measures in Jordanian Agriculture. Ph.D. Thesis, Technische Universität Braunschweig, Braunschweig, Germany, 2012. [Google Scholar]
- Czaban, J.; Siebielec, G.; Czyż, F.; Niedźwiecki, J. Effects of bentonite addition on sandy soil chemistry in a long-term plot experiment (i); effect on organic carbon and total nitrogen. Pol. J. Environ. Stud. 2013, 22, 1661–1667. [Google Scholar]
- Liu, F.C.; Ma, H.L.; Xing, S.J.; Du, Z.Y.; Ma, B.Y.; Jing, D.W. Effects of super-absorbent polymer on dry matter accumulation and nutrient uptake of Pinus pinaster container seedlings. J. For. Res. 2013, 18, 220–227. [Google Scholar] [CrossRef]
- Xiao, M.; Li, Y.; Lu, B. Response of Net Photosynthetic Rate to Environmental Factors under Water Level Regulation in Paddy Field. Pol. J. Environ. Stud. 2019, 28, 1433–1442. [Google Scholar] [CrossRef] [PubMed]
- Yang, W.; Li, P.F.; Guo, S.W.; Song, R.Q.; Yu, J. Co-application of soil super absorbent polymer and foliar fulvic acid to increase tolerance to water deficit maize: Photosynthesis, water parameters, and proline. Chil. J. Agric. Res. 2019, 79, 435–446. [Google Scholar] [CrossRef] [Green Version]
- Salah, E.M.E. Using of Some Soil Conditionerst Enhance Efficiency of Water Used Olive Orchard. Ph.D. Thesis, Cairo University, Cairo, Egypt, 2020. [Google Scholar]
- Ikpe, F.N.; Powell, J.M. Nutrient cycling practices and changes in soil properties in the crop livestock farming systems of western Niger Republic of West Africa. Nutr. Cycl. Agroecosyst. 2002, 62, 37–45. [Google Scholar] [CrossRef]
- Dahri, S.H.; Mangrio, M.A.; Shaikh, I.A.; Dahri, S.A.; Steenbergen, F.V. Effect of Different Forms of Super Absorbent Polymers on Soil Physical & Chemical Properties in Orchard field. In World Academics Journal of Research Paper; Engineering Sciences: Santa Barbara, CA, USA, 2019; Volume 6, pp. 12–20. [Google Scholar]
- Abrishama, E.S.; Mohammad, J.; Ali, T.; Ahmad, R.; Mohammad, A.Z.; Salman, Z.T.E.; Habib, Y.; Davood, G.; Mohammad, T. Effects of a super absorbent polymer on soil properties and plant growth for use in land reclamation. Arid. Land Res. Manag. 2018, 32, 407–420. [Google Scholar] [CrossRef] [Green Version]
- Lejcuś, K.; Śpitalniak, M.; Dąbrowska, J. Swelling Behaviour of Superabsorbent Polymers for Soil Amendment under Different Loads. Polym. J. 2018, 10, 271. [Google Scholar] [CrossRef]
- Parvathy, P.C.; Jyothi, A. Rheological and thermal properties of saponified cassava starch-g-poly (acrylamide) superabsorbent polymers varying in grafting parameters and absorbency. J. Appl. Polym. Sci. 2014, 131, 40368. [Google Scholar] [CrossRef]
Soil Characteristics | Value | Soil Characteristics | Value |
---|---|---|---|
Particle size distribution%: | Soil chemical properties: | ||
Sand | 85.20 | pH (1:2.5) Soil extract susp. | 8.1 |
Silt | 8.63 | CaCO3% | 17.5 |
Clay | 6.17 | OM% | 0.66 |
Textural class | Loamy sand | ECe (dS/m) | 2.03 |
Soil physical properties: | Soluble cations and anions (soil paste, meq L−1) | ||
BD (g.cm−3) | 1.68 | Ca2+ | 8.88 |
TP (%) | 38.00 | Mg2+ | 7.65 |
FC (%) | 12.60 | Na+ | 12.80 |
WP (%) | 4.38 | K+ | 0.91 |
AW (%) | 8.22 | HCO3− | 11.80 |
WHC (%) | 28.10 | Cl− | 14.90 |
HC (cm/s) | 1.9 × 10−3 | SO42− | 3.60 |
Superabsorbent Polymers (SAPs) | Major Components | |
---|---|---|
A | Aqua keep | Polyacrylic acid |
Arasoubu S-107 | Polyacrylic acid | |
Aron T-121 | Polyacrylic acid | |
B | Bargas 700 | Polyacrylic acid |
1 | Sanwet H-5000D | Polyacrylic acid |
Composites | ||
B1 SAP-20% | Bentonite + SAP-20% | |
2 | K1 A SAP-20% | Kaolinite + SAP-20% |
3 | B2 | - |
4 | K2 | - |
5 | N15 | - |
6 | N20 | - |
pH | 7.12 |
Bulk density (g/cm3) | 0.67 |
Real density (g/cm3) | 1.72 |
Total porosity (%) | 61.0 |
Water holding capacity (WHC) cm3/g−1 | 60.0 |
Treatment | Yield (kg/Vine) | Number of Clusters | Cluster Weight (g) | |||
---|---|---|---|---|---|---|
2020 | 2021 | 2020 | 2021 | 2020 | 2021 | |
T1 | 22.11 | 22.57 | 35.01 | 35.21 | 631.4 | 640.9 |
T2 | 17.12 | 18.41 | 29.60 | 31.13 | 578.3 | 591.4 |
T3 | 19.24 | 20.61 | 32.07 | 33.44 | 600.0 | 616.3 |
T4 | 21.46 | 22.70 | 34.54 | 35.75 | 621.2 | 634.9 |
T5 | 23.81 | 24.57 | 36.48 | 36.91 | 652.8 | 665.8 |
T6 | 9.70 | 10.83 | 19.72 | 21.89 | 491.7 | 494.8 |
T7 | 11.39 | 12.50 | 22.19 | 24.20 | 513.4 | 516.7 |
T8 | 13.19 | 14.36 | 24.66 | 26.51 | 534.9 | 541.6 |
T9 | 15.10 | 16.33 | 27.13 | 28.82 | 556.6 | 566.5 |
New LSD at 5% | 1.63 | 1.65 | 0.27 | 0.29 | 20.7 | 21.8 |
Treatment | Berry Weight (g) | Berry Size (cm3) | TSS (%) | Acidity (%) | TSS/Acid Ratio | Anthocyanin (mg/100 g FW) | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
2020 | 2021 | 2020 | 2021 | 2020 | 2021 | 2020 | 2021 | 2020 | 2021 | 2020 | 2021 | |
T1 | 6.57 | 6.60 | 6.27 | 6.30 | 18.0 | 18.20 | 0.53 | 0.53 | 33.96 | 34.34 | 52.93 | 54.81 |
T2 | 6.44 | 4.45 | 6.12 | 6.14 | 17.20 | 17.50 | 0.59 | 0.57 | 29.15 | 30.70 | 50.36 | 53.62 |
T3 | 6.47 | 6.49 | 6.17 | 6.18 | 17.40 | 17.70 | 0.57 | 0.56 | 30.53 | 31.61 | 61.21 | 61.74 |
T4 | 6.51 | 6.56 | 6.21 | 6.23 | 17.80 | 17.90 | 0.56 | 0.54 | 31.79 | 33.15 | 65.33 | 66.51 |
T5 | 6.65 | 6.67 | 6.32 | 6.35 | 18.80 | 19.00 | 0.48 | 0.45 | 39.17 | 42.22 | 68.90 | 70.23 |
T6 | 6.24 | 6.27 | 5.96 | 5.98 | 16.10 | 16.10 | 0.68 | 0.66 | 23.68 | 24.39 | 42.19 | 42.62 |
T7 | 6.30 | 6.31 | 6.00 | 6.07 | 16.30 | 16.40 | 0.65 | 0.64 | 25.08 | 25.63 | 46.22 | 47.13 |
T8 | 6.33 | 6.35 | 6.20 | 6.23 | 16.50 | 16.70 | 0.63 | 0.61 | 26.19 | 27.38 | 48.30 | 49.82 |
T9 | 6.39 | 6.41 | 6.25 | 6.26 | 16.90 | 17.0 | 0.61 | 0.59 | 27.70 | 28.81 | 51.63 | 53.84 |
New LSD at 5% | 0.02 | 0.03 | 0.02 | 0.03 | 0.18 | 0.20 | 0.01 | 0.02 | 1.24 | 1.23 | 2.12 | 2.12 |
Treatment | Leaf Area cm2 | No. of Leaves/ Shoot | Shoot Length cm | Coefficient of Wood Ripening | Shoot Diameter cm | |||||
---|---|---|---|---|---|---|---|---|---|---|
2020 | 2021 | 2020 | 2021 | 2020 | 2021 | 2020 | 2021 | 2020 | 2021 | |
T1 | 212.8 | 214.5 | 30.1 | 31.1 | 186.7 | 191.4 | 1.38 | 1.43 | 0.85 | 0.86 |
T2 | 207.5 | 208.1 | 28.2 | 28.4 | 179.3 | 180.6 | 1.28 | 1.30 | 0.78 | 0.79 |
T3 | 209.8 | 210.3 | 27.5 | 27.3 | 173.1 | 174.3 | 1.33 | 1.35 | 0.80 | 0.81 |
T4 | 211.3 | 212.8 | 29.3 | 31.2 | 185.4 | 193.1 | 1.35 | 1.38 | 0.83 | 0.83 |
T5 | 215.7 | 218.9 | 30.9 | 31.4 | 188.6 | 196.2 | 1.43 | 1.46 | 0.88 | 0.91 |
T6 | 192.5 | 194.8 | 25.8 | 26.0 | 160.8 | 162.1 | 1.12 | 1.14 | 0.75 | 0.76 |
T7 | 196.7 | 198.3 | 26.1 | 26.3 | 163.2 | 164.0 | 1.15 | 1.16 | 0.74 | 0.74 |
T8 | 202.5 | 202.8 | 26.6 | 26.8 | 166.4 | 167.2 | 1.18 | 1.19 | 0.76 | 0.77 |
T9 | 205.7 | 206.9 | 27.0 | 27.1 | 168.2 | 168.9 | 1.23 | 1.25 | 0.77 | 0.79 |
New LSD at 5% | 1.5 | 2.4 | 0.5 | 0.3 | 1.8 | 1.9 | 0.03 | 0.03 | 0.01 | 0.02 |
Treatment | N% | P% | K% | |||
---|---|---|---|---|---|---|
2020 | 2021 | 2020 | 2.21 | 2020 | 2021 | |
T1 | 2.81 | 2.87 | 0.52 | 0.52 | 2.78 | 2.79 |
T2 | 2.57 | 2.59 | 0.36 | 0.37 | 2.54 | 2.54 |
T3 | 2.61 | 2.63 | 0.39 | 0.39 | 2.6 | 2.59 |
T4 | 2.68 | 2.69 | 0.41 | 0.42 | 2.63 | 2.63 |
T5 | 2.92 | 2.94 | 0.55 | 0.56 | 2.88 | 2.90 |
T6 | 2.43 | 2.45 | 0.28 | 0.29 | 2.32 | 2.33 |
T7 | 2.48 | 2.48 | 0.30 | 0.30 | 2.35 | 2.38 |
T8 | 2.50 | 2.51 | 0.31 | 0.32 | 2.42 | 2.44 |
T9 | 2.53 | 2.53 | 0.34 | 0.34 | 2.45 | 2.47 |
New LSD at 5% | 0.02 | 0.02 | 0.01 | 0.02 | 0.02 | 0.03 |
Treatment | Bulk Density (g/cm3) | HC (cm/s) | FC (%) | WP (%) | AW (%) | |||||
---|---|---|---|---|---|---|---|---|---|---|
2020 | 2021 | 2020 | 2021 | 2020 | 2021 | 2020 | 2021 | 2020 | 2021 | |
T1 | 1.65 | 1.67 | 3.20 | 3.31 | 14.2 | 14.4 | 4.08 | 4.09 | 8.73 | 8.74 |
T2 | 1.54 | 1.65 | 3.18 | 3.26 | 13.5 | 13.6 | 4.03 | 4.05 | 8.96 | 8.98 |
T3 | 1.51 | 1.63 | 3.24 | 3.33 | 13.6 | 13.8 | 4.18 | 4.26 | 9.61 | 9.64 |
T4 | 1.54 | 1.66 | 3.37 | 3.46 | 14.6 | 14.7 | 4.25 | 4.31 | 10.31 | 10.36 |
T5 | 1.55 | 1.69 | 3.43 | 3.51 | 14.6 | 14.9 | 4.37 | 4.45 | 10.57 | 10.59 |
T6 | 1.50 | 1.53 | 2.87 | 2.96 | 12.2 | 12.5 | 3.72 | 3.84 | 8.48 | 8.49 |
T7 | 1.51 | 1.55 | 2.91 | 3.02 | 12.5 | 12.7 | 3.79 | 3.96 | 8.52 | 8.55 |
T8 | 1.54 | 1.57 | 2.97 | 3.03 | 12.8 | 12.9 | 3.87 | 4.06 | 8.51 | 8.63 |
T9 | 1.56 | 1.59 | 3.11 | 3.19 | 13.1 | 13.3 | 3.96 | 3.98 | 8.68 | 8.69 |
Treatment | C/N | pH (1:2.5) | ECe (ds/m) | N ppm | K ppm | P ppm | OM% | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
2020 | 2021 | 2020 | 2021 | 2020 | 2021 | 2020 | 2021 | 2020 | 2021 | 2020 | 2021 | 2020 | 2021 | |
T1 | 1.06 | 1.08 | 7.79 | 8.01 | 1.69 | 1.72 | 91 | 92 | 280 | 276 | 45 | 45 | 1.15 | 1.13 |
T2 | 1.05 | 1.06 | 7.88 | 7.94 | 1.65 | 1.66 | 88 | 88 | 260 | 263 | 42 | 43 | 1.12 | 1.11 |
T3 | 1.18 | 1.21 | 7.90 | 7.98 | 1.63 | 1.64 | 89 | 91 | 267 | 270 | 45 | 47 | 1.23 | 1.25 |
T4 | 1.23 | 1.27 | 7.92 | 8.03 | 1.58 | 1.60 | 91 | 93 | 275 | 278 | 48 | 51 | 1.28 | 1.29 |
T5 | 1.28 | 1.29 | 7.96 | 8.05 | 1.55 | 1.58 | 93 | 96 | 300 | 301 | 50 | 54 | 1.31 | 1.34 |
T6 | 1.00 | 1.02 | 7.76 | 7.83 | 1.49 | 1.52 | 70 | 71 | 250 | 248 | 30 | 31 | 1.04 | 1.04 |
T7 | 1.02 | 1.03 | 7.81 | 7.86 | 1.46 | 1.49 | 72 | 75 | 255 | 251 | 33 | 35 | 1.07 | 1.09 |
T8 | 1.03 | 1.05 | 7.84 | 7.89 | 1.42 | 1.44 | 75 | 79 | 262 | 258 | 35 | 38 | 1.09 | 1.11 |
T9 | 1.10 | 1.13 | 7.86 | 7.91 | 1.40 | 1.41 | 75 | 82 | 263 | 260 | 38 | 41 | 1.11 | 1.13 |
Treatment | Total Yield (Ton/Fed) | Gross Income (1000 EGP Fed−1) | Fixed Operation (1000 EGP Fed−1) | SAP Cost (EGP Fed−1) | Fertilizer Cost (1000 LE Fed−1) | Total Cost (1000 EGP Fed−1) | Average Net Return (1000 EGP Fed−1) | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
2020 | 2021 | 2020 | 2021 | 2020 | 2021 | 2020 | 2021 | 2020 | 2021 | 2020 | 2021 | 2020 | 2021 | |
T1 | 15.5 | 15.8 | 123.8 | 110.6 | 22.5 | 24.1 | 0 | 0 | 4.1 | 5.0 | 26.5 | 29.1 | 97.2 | 81.4 |
T2 | 12.0 | 12.9 | 95.9 | 90.2 | 22.5 | 24.1 | 0 | 0 | 3.0 | 3.8 | 25.5 | 27.9 | 70.3 | 62.2 |
T3 | 13.5 | 14.4 | 107.7 | 101.0 | 22.5 | 24.1 | 280 | 0 | 3.0 | 3.8 | 25.7 | 27.9 | 81.9 | 73.0 |
T4 | 15.0 | 15.9 | 120.2 | 111.2 | 22.5 | 24.1 | 420 | 0 | 3.0 | 3.8 | 25.9 | 27.9 | 93.2 | 83.3 |
T5 | 16.7 | 17.9 | 133.3 | 120.4 | 22.5 | 24.1 | 560 | 0 | 3.0 | 3.8 | 26.0 | 27.9 | 10.7 | 92.4 |
T6 | 6.8 | 7.6 | 54.3 | 53.1 | 22.5 | 24.1 | 0 | 0 | 2.0 | 2.5 | 24.4 | 26.6 | 29.8 | 26.4 |
T7 | 8.0 | 8.8 | 63.8 | 61.3 | 22.5 | 24.1 | 280 | 0 | 2.0 | 2.5 | 24.7 | 26.6 | 39.0 | 34.5 |
T8 | 9.2 | 10.1 | 73.8 | 70.4 | 22.5 | 24.1 | 420 | 0 | 2.0 | 2.5 | 24.9 | 26.6 | 48.9 | 43.7 |
T9 | 10.6 | 11.4 | 84.6 | 80.0 | 22.5 | 24.1 | 560 | 0 | 2.0 | 2.5 | 25.0 | 26.6 | 59.5 | 53.3 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ali, M.A.; Farag, S.G.; Sillanpää, M.; Al-Farraj, S.; El-Sayed, M.E.A. Efficiency of Using Superabsorbent Polymers in Reducing Mineral Fertilizer Rates Applied in Autumn Royal Vineyards. Horticulturae 2023, 9, 451. https://doi.org/10.3390/horticulturae9040451
Ali MA, Farag SG, Sillanpää M, Al-Farraj S, El-Sayed MEA. Efficiency of Using Superabsorbent Polymers in Reducing Mineral Fertilizer Rates Applied in Autumn Royal Vineyards. Horticulturae. 2023; 9(4):451. https://doi.org/10.3390/horticulturae9040451
Chicago/Turabian StyleAli, Mervat A., Samir G. Farag, Mika Sillanpää, Saleh Al-Farraj, and Mohamed E. A. El-Sayed. 2023. "Efficiency of Using Superabsorbent Polymers in Reducing Mineral Fertilizer Rates Applied in Autumn Royal Vineyards" Horticulturae 9, no. 4: 451. https://doi.org/10.3390/horticulturae9040451
APA StyleAli, M. A., Farag, S. G., Sillanpää, M., Al-Farraj, S., & El-Sayed, M. E. A. (2023). Efficiency of Using Superabsorbent Polymers in Reducing Mineral Fertilizer Rates Applied in Autumn Royal Vineyards. Horticulturae, 9(4), 451. https://doi.org/10.3390/horticulturae9040451