Biotransformation of Wastes of Essential Oil Industry by Strains Agaricus bisporus (J.E. Lange) Imbach, Lentinula edodes (Berk.) Pegler, and Pleurotus ostreatus (Jacq.) P. Kumm
Abstract
:1. Introduction
2. Materials and Methods
3. Results
Taxonomic Position | Strain | Synthesized Volatile Fragrance Substances | Smell | Aromatic Product Accumulation, mg/L |
---|---|---|---|---|
Agaricus bisporus (Agaricaceae) | IBK 459 | 3-methylbutanol, 3-octanone, 1-octene-3-one, 3-octanol, 1-octene-3-ol, furfural, benzaldehyde, phenylacetaldehyde, benzyl alcohol | severe mushroom | 70.3–230.0 |
Lentinula edodes (Ompalotaceae) | IBK 55 | lentionine, 1-octene-3-ol, 1-octene-3-one | mushroom | 46.7–101.9 |
Pleurotus ostreatus (Pleurotaceae) | IMV F1300 | 1-octene-3-ol, 1-octene-3-one | mushroom | 95.3–101.5 |
VKM F2008 | 163.0–210.4 |
Strain | Protein | Fat | Fiber | Ash | Potassium | Calcium | Phosphorus |
---|---|---|---|---|---|---|---|
IBK 459 | 35.6 ± 4.7 | 6.7 ± 3.3 | 4.5 ± 1.8 | 6.5 ± 2.1 | 4.2 ± 1.1 | 0.3 ± 0.4 | 1.0 ± 0.1 |
IBK 55 | 20.9 ± 7.1 | 3.9 ± 1.7 | 7.4 ± 1.3 | 5.6 ± 2.1 | 4.2 ± 1.2 | 0.6 ± 0.6 | 0.8 ± 0.2 |
IMV F1300 | 27.7 ± 1.8 | 2.9 ± 1.9 | 7.3 ± 1.2 | 6.2 ± 0.7 | 3.4 ± 0.2 | 0.1 ± 0.1 | 0.8 ± 0.2 |
VKM F2008 | 29.4 ± 3.4 | 5.5 ± 1.6 | 9.5 ± 2.0 | 8.7 ± 1.5 | 3.6 ± 0.2 | 0.2 ± 0.1 | 0.1 ± 0.4 |
Amino Acid | IBK 459 | IBK 55 | IMV F1300 | VKM F2008 |
---|---|---|---|---|
Non-Essential amino acids | ||||
Glycine | 0.92 ± 0.14 | 1.45 ± 0.13 | 1.10 ± 0.10 | 1.19 ± 0.11 |
Proline | 0.76 ± 0.12 | 1.00 ± 0.10 | 1.84 ± 0.17 | 1.93 ± 0.18 |
Alanine | 1.99 ± 0.18 | 1.67 ± 0.15 | 2.01 ± 0.12 | 2.10 ± 0.21 |
Serine | 0.94 ± 0.08 | 1.45 ± 0.12 | 2.24 ± 0.21 | 2.43 ± 0.23 |
Tyrosine | 0.44 ± 0.05 | 0.78 ± 0.07 | 1.75 ± 0.13 | 1.67 ± 0.16 |
Essential amino acids | ||||
Lysine | 1.07 ± 0.10 | 1.34 ± 0.11 | 3.76 ± 0.34 | 3.87 ± 0.35 |
Valine | 2.32 ± 0.20 | 1.45 ± 0.12 | 2.60 ± 0.20 | 2.90 ± 0.25 |
Phenylalanine | 0.85 ± 0.10 | 1.11 ± 0.10 | 2.03 ± 0.18 | 2.10 ± 0.20 |
Methionine | 0.31 ± 0.02 | 0.33 ± 0.03 | 0.32 ± 0.02 | 0.35 ± 0.03 |
Threonine | 1.07 ± 0.09 | 1.34 ± 0.11 | 2.93 ± 0.44 | 3.03 ± 0.60 |
Leucine & Isoleucine | 1.96 ± 0.17 | 3.00 ± 0.31 | 4.85 ± 0.45 | 5.48 ± 0.51 |
Histidine | 0.57 ± 0.04 | 0.56 ± 0.05 | 2.91 ± 0.21 | 2.97 ± 0.25 |
Arginine | 0.78 ± 0.06 | 1.56 ± 0.14 | 5.60 ± 0.06 | 6.07 ± 0.05 |
Sum | 8.93 ± 0.82 | 10.70 ± 1.00 | 25.00 ± 1.89 | 29.77 ± 2.11 |
Substrate | Strain | EE Yield, mg/kg of Substrate | Octene-3-ol Yield, mg/kg of Substrate | Content of Octene-3-ol in EE, % |
---|---|---|---|---|
Pleurotus ostreatus | ||||
SWE | IMV F1300 | 580.0 ± 30.0 | 570.0 ± 30.0 | 98.2 ± 3.1 |
SWE | VKM F2008 | 1450.0 ± 50.0 | 1380.0 ± 50.0 | 95.1 ± 3.4 |
Agaricus bisporus | ||||
SWE | IBK 459 | 490.0 ± 20.0 | 420.0 ± 20.0 | 85.7 ± 4.1 |
Lentinula edodes | ||||
SWE | IBK 55 | 310.0 ± 10.0 | 240.0 ± 10.0 | 73.4 ± 3.2 |
Producer | Protein | Fat | Fiber | Ash | Potassium | Calcium | Phosphorus | Carotene |
---|---|---|---|---|---|---|---|---|
Essential oil rose | 16.0 ± 2.0 | 5.0 ± 0.5 | 40.2 ± 1.0 | 10.0 ± 0.5 | 1.5 ± 0.2 | 1.21 ± 0.20 | 0.25 ± 0.05 | 0.95 ± 0.05 |
Peppermint | 13.6 ± 0.4 | 4.7 ± 0.5 | 22.9 ± 2.0 | 11.1 ± 1.0 | 2.8 ± 0.2 | 1.08 ± 0.03 | 0.22 ± 0.02 | 0.82 ± 0.10 |
Lavender | 11.4 ± 0.4 | 3.5 ± 0.5 | 37.4 ± 2.0 | 9.2 ± 0.2 | 1.2 ± 0.1 | 0.45 ± 0.05 | 0.10 ± 0.01 | 0.80 ± 0.10 |
Clary sage | 11.0 ± 0.5 | 1.6 ± 0.2 | 30.5 ± 2.0 | 11.3 ± 0.3 | 1.9 ± 0.1 | 0.49 ± 0.05 | 0.15 ± 0.01 | 0.60 ± 0.05 |
Substrate | Strain | Protein | Vitamin C | Carotinoids | Tocopherols | Phosphorus | Chlorophyll |
---|---|---|---|---|---|---|---|
LWD | IBK 459 | 23.49 ± 9.21 | 0.010 ± 0.008 | 0.27 ± 0.24 | 0.077 ± 0.015 | 0.61 ± 0.11 | 1.80 ± 0.26 |
SWE | IBK 55 | 16.97 ± 0.95 | 0.043 ± 0.018 | 0.38 ± 0.28 | 0.017 ± 0.006 | 0.80 ± 0.17 | 2.88 ± 1.68 |
MWDE | IMV F1300 | 18.63 ± 6.45 | 0.011 ± 0.004 | 0.31 ± 0.24 | 0.817 ± 0.215 | 0.47 ± 0.05 | 4.29 ± 2.69 |
RWE | VKM F2008 | 22.40 ± 6.57 | 0.410 ± 0.160 | 0.45 ± 0.34 | 0.907 ± 0.315 | 0.41 ± 0.07 | 0.06 ± 0.04 |
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Mashanov, A.I.; Velichko, N.A.; Tashlykova, E.E. Bioconversion of Plant Raw Materials; Krasnoyarsk State Agrarian University: Krasnoyarsk, Russia, 2014; p. 223. (In Russian) [Google Scholar]
- Money, N.P. Fungi and Biotechnology. In The Fungi, 3rd ed.; Watkinson, S.C., Boddy, L., Money, N.P., Eds.; Academic Press: Oxford, UK; Cambridge, MA, USA, 2016; Chapter 12; pp. 401–424. [Google Scholar] [CrossRef]
- Vázquez-Vuelvas, O.F.; Cervantes-Chávez, J.A.; Delgado-Virgen, F.J.; Valdez-Velázquez, L.L.; Osuna-Cisneros, R.J. Fungal bioprocessing of lignocellulosic materials for biorefinery. In Recent Advancement in Microbial Biotechnology: Agricultural and Industrial Approach; Chapter 7; Mandal, S.D., Passari, A.K., Eds.; Academic Press: Oxford, UK; Cambridge, MA, USA, 2021; pp. 171–208. [Google Scholar] [CrossRef]
- Chang, S.T.; Miles, P.G. Agaricus blazei and Grifola frondosa—Two important medicinal mushrooms. In Mushrooms: Cultivation, Nutritional Value, Medicinal Effect, and Environmental Impact, 2nd ed.; CRC Press: Boca Raton, FL, USA, 2004; pp. 373–381. [Google Scholar] [CrossRef]
- Dupont, J.; Dequin, S.; Giraud, T.; Le Tacon, F.; Marsit, S.; Ropars, J.; Richard, F.; Selosse, M. Fungi as a Source of Food. In The Fungal Kingdom; Heitman, J., Howlett, B.J., Crous, P.W., Stukenbrock, E.H., James, T.Y., Gow, N.A.R., Eds.; ASM Press: Washington, DC, USA; John Wiley and Sons: New York, NY, USA, 2017; pp. 1063–1085. [Google Scholar] [CrossRef]
- Grimm, D.; Wösten, H.A.B. Mushroom cultivation in the circular economy. Appl. Microbiol. Biotechnol. 2018, 102, 7795–7803. [Google Scholar] [CrossRef]
- FAOSTAT. Food and Agriculture Organization of the United Nations; Statistics Database: Rome, Italy, 2022; Available online: http://www.fao.org/faostat/en/#dat (accessed on 1 January 2023).
- Royse, D.J.; Baars, J.; Tan, Q. Current overview of mushroom production in the world. In Edible and Medicinal Mushrooms: Technology and Applications; Zied, D.C., Pardo-Giménez, A., Eds.; John Wiley and Sons Ltd.: Hoboken, NJ, USA, 2017; pp. 5–13. [Google Scholar] [CrossRef]
- Gupta, S.; Summuna, B.; Gupta, M.; Annepu, S.K. Edible Mushrooms: Cultivation, Bioactive Molecules, and Health Benefits. In Bioactive Molecules in Food; Reference Series in Phytochemistry; Mérillon, J.M., Ramawat, K., Eds.; Springer International Publishing AG: Cambridge, MA, USA, 2018; pp. 1–33. [Google Scholar] [CrossRef]
- Mishurov, N.P.; Selivanov, V.G.; Devochkina, N.L.; Rubtsov, A.A. High-tech production of edible mushrooms on an industrial basis in the Russian Federation. IOP Conf. Ser. Earth Environ. Sci. 2021, 723, 032080. [Google Scholar] [CrossRef]
- Navarro, C.P.; Savoie, J.M. Selected wild strains of Agaricus bisporus produce high yields of mushrooms at 25 °C. Rev. Iberoam. Micol. 2015, 32, 54–58. [Google Scholar] [CrossRef]
- Savoie, J.-M.; Mata, G. Growing Agaricus bisporus as a Contribution to Sustainable Agricultural Development. In Mushroom Biotechnology: Developments and Applications; Chapter 5; Petre, M., Ed.; Academic Press: Oxford, UK; Cambridge, MA, USA, 2016; pp. 69–91. [Google Scholar] [CrossRef]
- Mata, G.; Medel, R.; Callac, P.; Billette, C.; Garibay-Orijel, R. Primer registro de Agaricus bisporus (Basidiomycota, Agaricaceae) silvestre en Tlaxcala y Veracruz, México. Rev. Mex. Biodivers. 2016, 87, 10–17. [Google Scholar] [CrossRef]
- Werghemmi, W.; Abou Fayssal, S.; Mazouz, H.; Hajjaj, H.; Hajji, L. Olive and green tea leaves extract in Pleurotus ostreatus var. florida culture media: Effect on mycelial linear growth rate, diameter and growth induction index. IOP Conf. Ser. Earth Environ. Sci. 2022, 1090, 012020. [Google Scholar] [CrossRef]
- Elbagory, M.; El-Nahrawy, S.; Omara, A.E.-D.; Eid, E.M.; Bachheti, A.; Kumar, P.; Abou Fayssal, S.; Adelodun, B.; Bachheti, R.K.; Mioč, B.; et al. Sustainable Bioconversion of Wetland Plant Biomass for Pleurotus ostreatus var. florida Cultivation: Studies on Proximate and Biochemical Characterization. Agriculture 2022, 12, 2095. [Google Scholar] [CrossRef]
- Hyde, K.D.; Xu, J.; Rapior, S.; Jeewon, R.; Lumyong, S.; Niego, A.G.; Abeywickrama, P.D.; Aluthmuhandiram, J.V.; Brahamanage, R.S.; Brooks, S.; et al. The Amazing Potential of Fungi: 50 Ways We can Exploit Fungi Industrially. Fungal Divers. 2019, 97, 1–136. [Google Scholar] [CrossRef]
- de Mattos-Shipley, K.; Ford KAlberti, F.; Banks, A.; Bailey, A.; Foster, G. The Good, the Bad and the Tasty: The Many Roles of Mushrooms. Stud. Mycol. 2016, 85, 125–157. [Google Scholar] [CrossRef]
- Semenova, E.F.; Presnyakova, E.V.; Shpichka, A.I.; Presnyakova, V.S. Eremothecium Oil Biotechnology as a Novel Technology for the Modern Essential Oil Production. In Essential Oil Research; Chapter 15; Malik, S., Ed.; Springer: Cham, Switzerland, 2019; pp. 401–435. [Google Scholar] [CrossRef]
- Pashtetsky, V.S.; Nevkrytaya, N.V.; Mishnev, A.V.; Nazarenko, L.G. The Essential oil Industry of Crimea. Yesterday, Today, Tomorrow; IT “Arial”: Simferopol, Russia, 2017; 244p. (In Russian) [Google Scholar]
- Pashtetsky, V.S. (Ed.) Scientific and Innovative Potential for the Development of Production and Processing of Essential and Medicinal Plants of the Eurasian Economic Union; IT “Arial”: Simferopol, Russia, 2021; 428p. (In Russian) [Google Scholar]
- Salmones, D.; Gaitan-Hernandez, R.; Mata, G. Cultivation of Mexican wild strains of Agaricus bisporus, the button mushroom, under different growth conditions in vitro and determination of their productivity. BASE 2018, 22, 45–53. [Google Scholar] [CrossRef]
- Alemu, F. Cultivation of Pleurotus ostreatus mushrooms on Coffea arabica and Ficus sycomorus leaves in Dilla University, Ethiopia. J. Yeast Fungal Res. 2013, 4, 103–108. [Google Scholar]
- Amuneke, E.H.; Dike, K.S.; Ogbulie, J.N. Cultivation of Pleurotus ostreatus: An edible mushroom from agro base waste products. J. Microbiol. Biotech. Res. 2011, 1, 1–14. [Google Scholar]
- Salem, M.F.M.; Salem, K.F.M.; Hanna, E.T.; Nouh, N.E. Effect of Nutrient Sources and Environmental Factors on the Biomass Production of Oyster Mushroom (Pleurotus ostreatus). J. Chem. Biol. Phy. Sci. 2014, 4, 3413–3420. [Google Scholar]
- Pineda-Insuasti, J.A.; Ramos-Sánchez, L.B.; Soto-Arroyave, C.P.; Freitas-Fragata, A.; Pereira-Cruz, L. Growth of Pleurotus ostreatus on non-supplemented agro-industrial wastes. Rev. Téc. Ing. Univ. Zulia. 2015, 38, 41–49. [Google Scholar]
- Pashetsky, V.S.; Timasheva, L.A.; Pekhova, O.A.; Danilova, I.L.; Serebryakova, O.A. Essential Oils and Their Quality; IT “Arial”: Simferopol, Russia, 2021; 212p. (In Russian) [Google Scholar]
- European Pharmacopoeia, 10th ed.; Council of Europe: Strasbourg, France, 2019–2022; Volume I–III, pp. 10.1–10.8.
- Shapovalova, E.N.; Pirogov, A.V. Chromatographic Methods of Analysis; Moscow State University: Moscow, Russia, 2010; 109p. (In Russian) [Google Scholar]
- ISO 6497:2002; Animal Feeding Stuffs. International Standard: Geneva, Switzerland, 2002.
- Starr, C.; McMillan, B. Atoms and Elements. In Human Biology, 11th ed.; Cengage Learning EMEA: London, UK, 2015; p. 16. 608p. [Google Scholar]
- ISO 734-1:2006; Oilseed Meals—Determination of Oil Content—Part 1: Extraction Method 1 with Hexane (or Light Petroleum). International Standard: Geneva, Switzerland, 2006.
- ISO 5983-1:2005; Animal Feeding Stuffs—Determination of Nitrogen Content and Calculation of Crude Protein Content—Part 1: Kjeldahl Method. International Standard: Geneva, Switzerland, 2005.
- ISO 6491:1998; Animal Feeding Stuffs—Determination of Phosphorus Content—Spectrometric Method. International Standard: Geneva, Switzerland, 1998.
- ISO 6869:2000; Animal Feeding Stuffs—Determination of the Contents of Calcium, Copper, Iron, Magnesium, Manganese, Potassium, Sodium, and Zinc—Method Using Atomic Absorption Spectrometry. International Standard: Geneva, Switzerland, 2000.
- State Pharmacopoeia of the Russian Federation, 14th ed.; Ministry of Health of the Russian Federation: Moscow, Russia, 2018; Volume 4, pp. 6284–6292. (In Russian)
- Methods for Measuring the Mass Fraction of Amino Acids by Capillary Electrophoresis Using the “Kapel” Capillary Electrophoresis System; Lumeks: St. Petersburg, Russia, 2014; p. 49. (In Russian)
- Thorp, J.M.; Bowes, R.E. Carbon sources in riverine food webs: New evidence from aminoacid isotope techniques. Ecosystems 2016, 20, 1029–1041. [Google Scholar] [CrossRef]
- Ulyanovsky, N.V.; Kosyakov, D.S.; Bogolitsyn, K.G. Development of express methods of analytical extraction of carotenoids from vegetable raw materials. Chem. Plant Raw Mater. 2012, 4, 147–152. [Google Scholar]
- Karnjanawipagul, P.; Nittayanuntawech, W.; Rojsanga, P.; Suntornsuk, L. Analysis of carotene in carrot by spectrophotometry. Mahidol Univ. J. Pharm. Sci. 2010, 37, 8–16. [Google Scholar]
- Rahiman, R.; Mohd Ali, M.A.; Ab-Rahman, M.S. Carotenoids concentration detection investigation: A review of current status and future trend. Int. J. Biosci. Biochem. Bioinform. 2013, 3, 446–472. [Google Scholar] [CrossRef]
- Semenova, E.F.; Shpichka, A.I.; Moiseeva, I.Y. About essential oils biotechnology on the base of microbial synthesis. Eur. J. Nat. Hist. 2012, 4, 29–31. [Google Scholar]
- World Health Organization (WHO). WHO Library Cataloguing in Publication Data Food and Health in Europe: A New Basis for Action; Robertson, A., Ed.; WHO Regional Publications; European Series; WHO: Geneva, Switzerland, 2005; Volume 96, 525p, Available online: https://www.euro.who.int (accessed on 1 January 2023).
- Uddin, P.K.; O’Sullivan, J.; Pervin, R.; Rahman, M. Antioxidant of Pleurotus ostreatus (Jacq.) P. Kumm. and lymphoid cancer cells. In Cancer (Second Edition): Oxidative Stress and Dietary Antioxidants; Chapter 38; Academic Press: Oxford, UK; Cambridge, MA, USA, 2021; pp. 427–437. [Google Scholar] [CrossRef]
- Paradies, G.; Paradies, V.; Ruggiero, F.M.; Petrosillo, G. Oxidative stress, cardiolipin and mitochondrial dysfunction in nonalcoholic fatty liver disease. World J. Gastroenterol. 2014, 20, 14205–14218. [Google Scholar] [CrossRef]
- Golubev, V.S.; Berkovich, M.I. Healthyfood: Perception, Dynamics, Popularization. Theor. Econ. 2020, 3, 98–104. [Google Scholar]
- Hoa, H.T.; Wang, C.L.; Wang, C.H. The effects of different substrates on the growth, yield, and nutritional composition of two oyster mushrooms (Pleurotus ostreatus and Pleurotus cystidiosus). Mycobiology 2015, 43, 423–434. [Google Scholar] [CrossRef]
- Vetter, J.; Hajdú, C.S.; Gyorfi, J.; Maszlavér, P. Mineral composition of the cultivated mushrooms Agaricus bisporus, Pleurotus ostreatus and Lentinula edodes. Acta Aliment. 2005, 34, 441–451. [Google Scholar] [CrossRef]
- Dedousi, M.; Melanouri, E.M.; Diamantopoulou, P. Carposome productivity of Pleurotus ostreatus and Pleurotus eryngii growing on agro-industrial residues enriched with nitrogen, calcium salts and oils. Carbon Resour. Convers. 2023, 6, 150–165. [Google Scholar] [CrossRef]
- Gülser, C.; Pekşen, A. Using tea waste as a new casing material in mushroom (Agaricus bisporus (L.) Sing.) cultivation. Bioresour. Technol. 2003, 88, 153–156. [Google Scholar] [CrossRef]
- Zervakis, G.I.; Koutrotsios, G.; Katsaris, P. Composted versus raw olive mill waste as substrates for the production of medicinal mushrooms: An assessment of selected cultivation and quality parameters. BioMed Res. Int. 2013, 2013, 546830. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Semenova, E.; Kurakov, A.V.; Nazarov, V.; Presnyakova, V.; Markelova, N.; Karaseva, E.; Kurdyukov, E.E.; Tsokalo, I.; Minkina, T.; Rajput, V.D. Biotransformation of Wastes of Essential Oil Industry by Strains Agaricus bisporus (J.E. Lange) Imbach, Lentinula edodes (Berk.) Pegler, and Pleurotus ostreatus (Jacq.) P. Kumm. Horticulturae 2023, 9, 450. https://doi.org/10.3390/horticulturae9040450
Semenova E, Kurakov AV, Nazarov V, Presnyakova V, Markelova N, Karaseva E, Kurdyukov EE, Tsokalo I, Minkina T, Rajput VD. Biotransformation of Wastes of Essential Oil Industry by Strains Agaricus bisporus (J.E. Lange) Imbach, Lentinula edodes (Berk.) Pegler, and Pleurotus ostreatus (Jacq.) P. Kumm. Horticulturae. 2023; 9(4):450. https://doi.org/10.3390/horticulturae9040450
Chicago/Turabian StyleSemenova, Elena, Alexander V. Kurakov, Vladimir Nazarov, Victoria Presnyakova, Natalia Markelova, Elena Karaseva, Evgeny E. Kurdyukov, Inna Tsokalo, Tatiana Minkina, and Vishnu D. Rajput. 2023. "Biotransformation of Wastes of Essential Oil Industry by Strains Agaricus bisporus (J.E. Lange) Imbach, Lentinula edodes (Berk.) Pegler, and Pleurotus ostreatus (Jacq.) P. Kumm" Horticulturae 9, no. 4: 450. https://doi.org/10.3390/horticulturae9040450
APA StyleSemenova, E., Kurakov, A. V., Nazarov, V., Presnyakova, V., Markelova, N., Karaseva, E., Kurdyukov, E. E., Tsokalo, I., Minkina, T., & Rajput, V. D. (2023). Biotransformation of Wastes of Essential Oil Industry by Strains Agaricus bisporus (J.E. Lange) Imbach, Lentinula edodes (Berk.) Pegler, and Pleurotus ostreatus (Jacq.) P. Kumm. Horticulturae, 9(4), 450. https://doi.org/10.3390/horticulturae9040450