Creeping Bentgrass Nutritional, Morphological, and Putting Green Performance Response to Ca/Mg-Silicate Slag Liming Agent
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chronology of Treatment Applications, Soil Sampling, and Methods of Soil Analysis
2.2. Field Assessment of Putting Green Canopy and Performance
2.3. Laboratory Analysis of Plant Roots and Vegetation
2.4. Statistical Analysis
3. Results and Discussion
3.1. Soil Chemistry, Fertility, and Extractable Si
3.2. Clipping Vigor and Nutrition and Canopy Color and Density
3.3. Silicon Uptake and Leaf Content
3.4. Putting Green Speed and Root Length Density
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Poldervaart, A. Chemistry of the Earth’s crust. Geol. Soc. Am. Spec. Pap. 1955, 62, 119–144. [Google Scholar]
- Coskun, D.; Deshmukh, R.; Sonah, H.; Menzies, J.G.; Reynolds, O.; Ma, J.F.; Kronzucker, H.J.; Belanger, R.R. The controversies of silicon’s role in plant biology. New Phytol. 2019, 221, 67–85. [Google Scholar] [CrossRef] [PubMed]
- Liang, Y.M.; Nikoli’c, M.; Bélanger, R.R.; Gong, H.; Song, A. Silicon in Agriculture: From Theory to Practice; Springer: Dordrecht, The Netherlands, 2015; pp. 138–215. [Google Scholar]
- Sheng, H.; Chen, S. Plant silicon-cell wall complexes: Identification, model of covalent bond formation and biofunction. Plant Physiol. Biochem. 2020, 155, 13–19. [Google Scholar] [CrossRef]
- Soukup, M.; Martinka, M.; Cigán, M.; Ravaszová, F.; Lux, A. New method for visualization of silica phytoliths in Sorghum bicolor roots by fluorescence microscopy revealed silicate concentration-dependent phytolith formation. Planta 2014, 240, 1365–1372. [Google Scholar] [CrossRef]
- Guntzer, F.; Keller, C.; Meunier, J.D. Determining silicon concentration in plant material using Tiron extraction. New Phytol. 2010, 188, 902–906. [Google Scholar] [CrossRef]
- Haynes, R.J. A contemporary overview of silicon availability in agricultural soils. J. Plant Nutr. Soil Sci. 2014, 177, 831–844. [Google Scholar] [CrossRef]
- Redmond, C.T.; Potter, D.A. Silicon fertilization does not enhance creeping bentgrass resistance to cutworms and white grubs. Appl. Turfgrass Sci. 2006, 3, 1–6. [Google Scholar] [CrossRef]
- Uriarte, R.F.; Shew, H.D.; Bowman, D.C. Effect of soluble silica on brown patch and dollar spot of creeping bentgrass. J. Plant Nutr. 2004, 27, 325–339. [Google Scholar] [CrossRef]
- Nanayakkara, U.N.; Uddin, W.; Datnoff, L.E. Application of silicon sources increases silicon accumulation in perennial ryegrass turf on two soil types. Plant Soil 2008, 303, 83–94. [Google Scholar] [CrossRef]
- Zhang, Q.; Fry, J.; Lowe, K.; Tisserat, N. Evaluation of calcium silicate for brown patch and dollar spot suppression on turfgrasses. Crop Sci. 2006, 46, 1635–1643. [Google Scholar] [CrossRef]
- Li, J.; Li, S.; Xu, L.; Puyang, X.; Zheng, Y.; Song, G.; Xu, Y. Exogenous silicon application contributes to wear resistance in Kentucky bluegrass by improving anatomical structure and cell wall components. Eur. J. Hortic. Sci. 2019, 84, 91–98. [Google Scholar] [CrossRef]
- Pruyne, D.P.; Schlossberg, M.J.; Uddin, W. Creeping bentgrass fairway wear resistance by granular topdressing of Ca/Mg-rich liming agents. Agriculture 2020, 10, 43. [Google Scholar] [CrossRef]
- Pruyne, D.P.; Schlossberg, M.J.; Uddin, W. Perennial ryegrass wear resistance and soil amendment by Ca and Mg-silicates. Agronomy 2019, 9, 578. [Google Scholar] [CrossRef]
- Barber, S.A. Liming materials and practices. In Soil Acidity and Liming, 2nd ed.; Agronomy Monographs 12; ASA, CSSA, and SSSA: Madison, WI, USA, 1984; pp. 171–209. [Google Scholar]
- Schlossberg, M.J.; Waltz, F.C., Jr.; Landschoot, P.J.; Park, B. Recent mechanical cultivation of lawns enhances lime application efficacy. Agron. J. 2008, 100, 855–861. [Google Scholar] [CrossRef]
- Soukup, M.; Martinka, M.; Bosnic, D.; Caplovicová, M.; Elbaum, R.; Lux, A. Formation of silica aggregates in sorghum root endodermis is pre-determined by cell wall architecture and development. Ann. Bot. 2017, 120, 739–753. [Google Scholar] [CrossRef] [PubMed]
- McDonald, B.M.; Golembiewski, R.C.; Cook, T.W.; Blankenship, T.M. Effects of mowing and rolling frequency, Primo Maxx, and roller weight on annual bluegrass putting green speed. Appl. Turfgrass Sci. 2013, 10, 1–9. [Google Scholar] [CrossRef]
- Kaur, H.; Gregor, M. A review on Si uptake and transport system. Plants 2019, 8, 81. [Google Scholar] [CrossRef]
- Kido, N.; Yokoyama, R.; Yamamoto, T.; Furukawa, J.; Iwai, H.; Satoh, S.; Nishitani, K. The matrix polysaccharide (1;3,1;4)-b-d-glucan is involved in silicon dependent strengthening of rice cell wall. Plant Cell Physiol. 2015, 56, 268–276. [Google Scholar] [CrossRef]
- Suzuki, S.; Ma, J.F.; Yamamoto, N.; Hattori, T.; Sakamoto, M.; Umezawa, T. Silicon deficiency promotes lignin accumulation in rice. Plant Biotechnol. 2012, 29, 391–394. [Google Scholar] [CrossRef]
- Yamamoto, T.; Nakamura, A.; Iwai, H.; Ishii, T.; Ma, J.F.; Yokoyama, R.; Nishitani, K.; Satoh, S.; Furukawa, J. Effect of silicon deficiency on secondary cell wall synthesis in rice leaf. J. Plant Res. 2012, 125, 771–779. [Google Scholar] [CrossRef]
- Barbosa-Filho, M.P.; Snyder, G.H.; Elliot, C.L.; Datnoff, L.E. Evaluation of soil test procedures for determining rice-available silicon. Commun. Soil Sci. Plant Anal. 2001, 32, 1779–1792. [Google Scholar] [CrossRef]
- Baret, F.; Guyot, G. Potentials and limits of vegetation indices for LAI and APAR assessment. Remote Sens. Environ. 1991, 35, 161–173. [Google Scholar] [CrossRef]
- Karcher, D.E.; Richardson, M.D. Quantifying turfgrass color using digital image analysis. Crop Sci. 2003, 43, 943–951. [Google Scholar] [CrossRef]
- Rana, S.S.; Askew, S.D. Measuring canopy anomaly influence on golf putt kinematics: Errors associated with simulated putt devices. Crop Sci. 2018, 58, 900–910. [Google Scholar] [CrossRef]
- Bouma, T.J.; Nielsen, K.L.; Koutstaal, B. Sample preparation and scanning protocol for computerized analysis of root length and diameter. Plant Soil 2000, 218, 185–196. [Google Scholar] [CrossRef]
- Zhu, Q.; Schlossberg, M.J.; Bryant, R.B. Foliar fertilization-induced injury and recovery of a creeping bentgrass putting green. J. Plant Nutr. 2016, 39, 1589–1596. [Google Scholar] [CrossRef]
- Fleming, B.A.; Crerar, D.A. Silicic acid ionization and calculation of silica solubility at elevated temperature and pH: Application to geothermal fluid processing and reinjection. Geothermics 1982, 11, 15–29. [Google Scholar] [CrossRef]
- Carrow, R.N.; Waddington, D.V.; Rieke, P.E. Turfgrass Soil Fertility and Chemical Problems: Assessment & Management; John Wiley & Sons: Hoboken, NJ, USA, 2001; pp. 71–322. [Google Scholar]
- Schmid, C.J.; Murphy, J.A.; Clarke, B.B.; DaCosta, M.; Ebdon, J.S. Observations on the effect of potassium on winter injury of annual bluegrass in New Jersey in 2015. Crop Forage Turfgrass Manag. 2016, 2, 1–4. [Google Scholar] [CrossRef]
- Jordan, J.E.; White, R.H.; Vietor, D.M.; Hale, T.C.; Thomas, J.C.; Engelke, M.C. Effect of irrigation frequency on turf quality, shoot density, and root length density of five bentgrass cultivars. Crop Sci. 2003, 43, 282–287. [Google Scholar] [CrossRef]
- Beard, J.B. Turfgrass: Science and Culture; Prentice-Hall: Englewood Cliffs, NJ, USA, 1973; pp. 339–340. [Google Scholar]
Source | Liming Agent TRT Means | |||||||
---|---|---|---|---|---|---|---|---|
Dependent Variable, Units | TRT | Time | TRT × Time | n | Control | Ca/Mg-SiO3 | Ca/Mg-CO3 | LSD5% |
p (F > Fcrit) | ||||||||
Clipping yield, kg ha−1 | ns 1 | ** | ** | 40 | 33.5 | 33.2 | 33.5 | – |
Canopy color, DCGI | ns | * | ns | 170 | 0.403 | 0.406 | 0.402 | – |
Canopy density, NDVI | ns | * | ns | 170 | 0.748 | 0.746 | 0.746 | – |
Ball roll distance, m | ns | * | ns | 32 | 2.66 | 2.64 | 2.66 | – |
Leaf Si, mg g−1 | ** | ** | ns | 25 | 4.78 | 6.29 | 5.22 | 0.60 |
Si uptake, g ha−1 | ** | ** | ns | 25 | 156 | 220 | 173 | 33 |
Leaf K, mg g−1 | ns | ** | ns | 25 | 20.0 | 19.8 | 20.0 | – |
Leaf P, mg g−1 | * | * | ns | 25 | 6.5 | 6.5 | 6.3 | 0.2 |
Leaf Ca, mg g−1 | ns | * | ns | 25 | 6.0 | 6.2 | 6.0 | – |
Leaf Mg, mg g−1 | ns | * | ns | 25 | 2.7 | 2.7 | 2.7 | – |
Leaf S, mg g−1 | * | * | ns | 25 | 5.0 | 5.0 | 4.8 | 0.2 |
Leaf Fe, μg g−1 | ns | * | ns | 25 | 594 | 560 | 680 | – |
Leaf Mn, μg g−1 | ns | * | ns | 25 | 73 | 69 | 75 | – |
Leaf Zn, μg g−1 | ns | * | ns | 25 | 41 | 42 | 41 | – |
Leaf B, μg g−1 | ns | * | ns | 25 | 20 | 20 | 20 | – |
5 to 15 cm soil depth | ||||||||
Root length density, cm cm−3 | ns | * | ns | 10 | 4.33 | 3.86 | 4.08 | – |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pruyne, D.T.; Schlossberg, M.J. Creeping Bentgrass Nutritional, Morphological, and Putting Green Performance Response to Ca/Mg-Silicate Slag Liming Agent. Horticulturae 2023, 9, 958. https://doi.org/10.3390/horticulturae9090958
Pruyne DT, Schlossberg MJ. Creeping Bentgrass Nutritional, Morphological, and Putting Green Performance Response to Ca/Mg-Silicate Slag Liming Agent. Horticulturae. 2023; 9(9):958. https://doi.org/10.3390/horticulturae9090958
Chicago/Turabian StylePruyne, Derek T., and Maxim J. Schlossberg. 2023. "Creeping Bentgrass Nutritional, Morphological, and Putting Green Performance Response to Ca/Mg-Silicate Slag Liming Agent" Horticulturae 9, no. 9: 958. https://doi.org/10.3390/horticulturae9090958
APA StylePruyne, D. T., & Schlossberg, M. J. (2023). Creeping Bentgrass Nutritional, Morphological, and Putting Green Performance Response to Ca/Mg-Silicate Slag Liming Agent. Horticulturae, 9(9), 958. https://doi.org/10.3390/horticulturae9090958