Impact of Sodium Hypochlorite Applied as Nutrient Solution Disinfectant on Growth, Nutritional Status, Yield, and Consumer Safety of Tomato (Solanum lycopersicum L.) Fruit Produced in a Soilless Cultivation
Abstract
:1. Introduction
2. Results and Discussion
2.1. Chloride Concentrations in the Drainage Solution
2.2. Growth of Plant and Gas Exchange
2.3. Fruit Yield and Fruit Mineral Composition
2.4. Chlorates and Perchlorates in the Nutrient Solution
2.4.1. Stability of Chlorate and Perchlorate Residues in the Nutrient Solution
2.4.2. Detection of Chlorate Residues in the Nutrient Solution
2.5. Chlorates and Perchlorates in Tomato Fruit
3. Conclusions
4. Materials and Methods
4.1. Experimental Design, Biological Material and Cropping Conditions
4.1.1. Greenhouse Cultivation
4.1.2. Disinfection Methodology
4.1.3. Sample Collection
4.2. Gas Exchange Measurements
4.3. Plant Mineral Status
4.4. Estimation of Total Fruit Production
4.5. Residue Determinations
4.5.1. Chemicals and Reagents
4.5.2. Investigation of the Stability of Chlorates and Perchlorates in the NS Samples
4.5.3. Extraction Procedure of Tomato Fruit Samples
4.5.4. Chromatographic Analysis of Fruit Samples—Instrumentation
4.5.5. Method Performance
4.6. Statistical Analysis
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Jan, S.; Rashid, Z.; Ahngar, T.A.; Iqbal, S.; Naikoo, M.A.; Majeed, S.; Bhat, T.A.; Gull, R.; Nazir, I. Hydroponics–A Review. Int. J. Curr. Microbiol. App. Sci. 2020, 9, 1779–1787. [Google Scholar] [CrossRef]
- Gruda, N.; Savvas, D.; Colla, G.; Rouphael, Y. Impacts of genetic material and current technologies on product quality of selected greenhouse vegetables–A review. Eur. J. Hortic. Sci. 2018, 83, 319–328. [Google Scholar] [CrossRef]
- Critten, D.L.; Bailey, B.J. A review of greenhouse engineering developments during the 1990s. Agric. For. Meteorol. 2002, 112, 1–22. [Google Scholar] [CrossRef]
- Stewart-Wade, S.M. Plant pathogens in recycled irrigation water in commercial plant nurseries and greenhouses: Their detection and management. Irrig. Sci. 2011, 29, 267–297. [Google Scholar] [CrossRef]
- Martínez, F.; Castillo, S.; Carmona, E.; Avilés, M. Dissemination of Phytophthora cactorum, cause of crown rot in strawberry, in open and closed soilless growing systems and the potential for control using slow sand filtration. Sci. Hortic. 2010, 125, 756–760. [Google Scholar] [CrossRef]
- Zheng, Y.; Cayanan, D.F.; Dixon, M. Control of pathogens in irrigation water using chlorine without injury to plants. Comb. Proc. Int. Plant Propag. Soc. 2008, 58, 248–258. Available online: http://admin.ipps.org/uploads/58_051.pdf (accessed on 20 December 2022).
- Dannehl, D.; Schuch, I.; Gao, Y.; Cordiner, S.; Schmidt, U. Effects of hypochlorite as a disinfectant for hydroponic systems on accumulations of chlorate and phytochemical compounds in tomatoes. Eur. Food Res. Technol. 2016, 242, 345–353. [Google Scholar] [CrossRef]
- Savvas, D.; Gruda, N. Application of soilless culture technologies in the modern greenhouse industry—A review. Eur. J. Hortic. Sci. 2018, 83, 280–293. [Google Scholar] [CrossRef]
- FAO; IFAD; UNICEF; WFP; WHO. The State of Food Security and Nutrition in the World 2022. Repurposing Food and Agricultural Policies to Make Healthy Diets More Affordable; FAO: Rome, Italy, 2022. [Google Scholar] [CrossRef]
- MIT. Mission 2014: Feeding the World. Available online: http://12.000.scripts.mit.edu/mission2014/solutions/hydroponics (accessed on 21 November 2022).
- Bank, W. The Road to a Greener Future. Available online: https://blogs.worldbank.org/climatechange/road-greener-future (accessed on 21 November 2022).
- World Food Programme. How2grow. Available online: https://innovation.wfp.org/project/h2grow-hydroponics (accessed on 21 November 2022).
- Giro, A.; Ciappellano, S.; Ferrante, A. Vegetable production using a simplified hydroponics system inside city of Dead (Cairo). In Advances in Horticultural Science; Mancuso, S., Ed.; Department of Agri-Food Production and Environmental Sciences, University of Florence: Florence, Italy, 2016; pp. 23–29. [Google Scholar]
- Mordor Intelligence. Hydroponic Market–Growth, Trends, COVID-19 Impact and Forecasts (2022–2027). Available online: https://www.mordorintelligence.com/industry-reports/hydroponics-market (accessed on 30 October 2022).
- Eden Green Technology. How Hydroponics & Vertical Farming Can Improve Food Safety and Protect Our Food Supply. Available online: https://www.edengreen.com/blog-collection/how-hydroponics-and-vertical-farming-can-improve-food-safety (accessed on 30 October 2022).
- Riggio, G.M.; Wang, Q.; Kniel, K.E.; Gibson, K.E. Microgreens—A review of food safety considerations along the farm to fork continuum. Int. J. Food Microbiol. 2019, 290, 76–85. [Google Scholar] [CrossRef]
- Sawyer, T. Food safety and E. coli in aquaponic and hydroponic systems. Horticulturae 2021, 7, 36. [Google Scholar] [CrossRef]
- Wang, Y.-J.; Deering, A.J.; Kim, H.-J. The occurrence of shiga toxin-producing E. coli in aquaponic and hydroponic systems. Horticulturae 2020, 6, 1. [Google Scholar] [CrossRef] [Green Version]
- Ilic, S.; LeJeune, J.; Lewis Ivey, M.L.; Miller, S. Delphi expert elicitation to prioritize food safety management practices in greenhouse production of tomatoes in the United States. Food Control 2017, 78, 108–115. [Google Scholar] [CrossRef] [Green Version]
- Clark, G.A.; Smajstrla, A.G. Treating irrigation systems with chlorine. Foliage Dig. 1992, 15, 3–5. [Google Scholar]
- Postma, J.; Van Os, E.; Bonants, P.J.M. 10-Pathogen detection and management strategies in soilless plant growing systems. In Soilless Culture; Raviv, M., Lieth, J.H., Eds.; Elsevier: Amsterdam, The Netherlands, 2008; pp. 425–457. [Google Scholar] [CrossRef]
- Cayanan, D.F.; Zheng, Y.; Zhang, P.; Graham, T.; Dixon, M.; Chong, C.; Llewellyn, J. Sensitivity of five container-grown nursery species to chlorine in overhead irrigation water. HortScience 2008, 43, 1882–1887. [Google Scholar] [CrossRef]
- Cayanan, D.F.; Dixon, M.; Zheng, Y.; Llewellyn, J. Response of container-grown nursery plants to chlorine used to disin-fest irrigation water. HortScience 2009, 44, 164–167. [Google Scholar] [CrossRef] [Green Version]
- Hong, C.X.; Richardson, P.A.; Kong, P.; Bush, E.A. Efficacy of chlorine on multiple species of Phytophthora in recycled nursery irrigation water. Plant Dis. 2003, 87, 1183–1189. [Google Scholar] [CrossRef] [Green Version]
- Price TV, F.P. Behaviour of fungicides in recirculating nutrient film hydroponic systems. In Proceedings of the 6th in-Ternational Congress on Soilless Culture, Lunteren, The Netherlands, 28 April–5 May 1984; pp. 511–522. [Google Scholar]
- Poncet, C.; Offroy, M.; Bonnet, G.; Brun, R. Disinfection of recycling water in rose cultures. Acta Hortic. 2001, 547, 121–127. [Google Scholar] [CrossRef]
- Rosner, A.; Lachman, O.; Pearlsman, M.; Feigelson, L.; Maslenin, L.; Antignus, Y. Characterisation of cucumber leaf spot virus isolated from recycled irrigation water of soil-less cucumber cultures. Ann. Appl. Biol. 2006, 149, 313–316. [Google Scholar] [CrossRef]
- Stanton, J.M.; O’Donnell, W.E. Hatching, motility, and infectivity of root-knot nematode (Meloidogyne javanica) following exposure to sodium hypochlorite. Aust. J. Exp. Agric. 1994, 34, 105–108. [Google Scholar] [CrossRef]
- Bull, R.J.; Gerba, C.; Trussell, R.R. Evaluation of the health risks associated with disinfection. Crit. Rev. Environ. Control 1990, 20, 77–113. [Google Scholar] [CrossRef]
- Kaufmann-Horlacher, I. Chlorat-Rüchstände in Pflanzlichen Lebensmitteln-Ein Update. CVUA, Stuttgart. 2014. Available online: https://www.ua-bw.de/pub/beitrag.asp?subid=1&Thema_ID=5&ID=2008 (accessed on 1 December 2022).
- European Commission. Chlorate. Available online: https://ec.europa.eu/food/plants/pesticides/maximum-residue-levels/chlorate_en (accessed on 30 October 2022).
- Regulation 2020/749. Commission Regulation (EU) 2020/749 of 4 June 2020 Amending Annex III to Regulation (EC) No 396/2005 of the European Parliament and of the Council as Regards Maximum Residue Levels for Chlorate in or on Certain Products. Available online: http://data.europa.eu/eli/reg/2020/749/oj (accessed on 30 October 2022).
- BfR Recommendations for the Health Assessment of Chlorate Residues in Food, BfR Opinion No. 028/2014; The German Federal Institute for Risk Assessment: Berlin, Germany, 2014.
- EFSA. Trilateral Meeting on Perchlorate Risk Assessment; Report of the Meeting on 12 February 2014; European Food Safety Authority: Parma, Italy, 2014. [Google Scholar]
- World Health Organization. Joint FAO/WHO Expert Committee on Food Additives. Meeting (67th: 2006: Geneva, Switzerland) & International Programme on Chemical Safety. Safety Evaluation of Certain Food Additives and Contaminants/Prepared by the Sixty-Eighth Meeting of the Joint FAO/WHO Expert Committee on Food Additives (JEFCA). 2008. Available online: https://apps.who.int/iris/handle/10665/43823 (accessed on 30 October 2022).
- Rodríguez-Ortega, W.M.; Martínez, V.; Nieves, M.; Simón, I.; Lidón, V.; Fernandez-Zapata, J.C.; Martinez-Nicolas, J.J.; Cámara-Zapata, J.M.; García-Sánchez, F. Agricultural and physiological responses of tomato plants grown in different soilless culture systems with saline water under greenhouse conditions. Sci. Rep. 2019, 9, 6733. [Google Scholar] [CrossRef] [Green Version]
- Razifard, H.; Ramos, A.; Della Valle, A.L.; Bodary, C.; Goetz, E.; Manser, E.J.; Li, X.; Zhang, L.; Visa, S.; Tieman, D.; et al. Genomic evidence for complex domestication history of the cultivated tomato in latin america. Mol. Biol. Evol. 2020, 37, 1118–1132. [Google Scholar] [CrossRef]
- FAOSTAT. Crops and Livestock Products. Available online: https://www.fao.org/faostat/en/#data/QCL (accessed on 30 October 2022).
- De Hayr, R.; Bodman, K.; Forsberg, L. Bromine and chlorine disinfestation of nursery water supplies. Comb. Proc. Int. Plant Propag. Soc. 1994, 44, 60–66. [Google Scholar]
- Schreuder, M.D.J.; Brewer, C.A. Persistent effects of short-term, high exposure to chlorine gas on physiology and growth of Pinus ponderosa and Pseudotsuga menziesii. Ann. Bot. 2001, 88, 197–206. [Google Scholar] [CrossRef] [Green Version]
- Ehret, D.; Alsanius, B.; Wohanka, W.; Menzies, J.; Utkhede, R. Disinfestation of recirculating nutrient solutions in greenhouse horticulture. Agron. EDP Sci. 2001, 21, 323–339. [Google Scholar] [CrossRef] [Green Version]
- Lonigro, A.; Montemurro, N.; Laera, G. Effects of residual disinfectant on soil and lettuce crop irrigated with chlorinated water. Sci. Total Environ. 2017, 584–585, 595–602. [Google Scholar] [CrossRef] [PubMed]
- Environmental Protection Agency (USA). Guidelines for Water Reuse. 2012. Available online: https://www.epa.gov/sites/default/files/2019-08/documents/2012-guidelines-water-reuse.pdf (accessed on 17 December 2022).
- Wege, S.; Gilliham, M.; Henderson, S.W. Chloride: Not simply a ‘cheap osmoticum’, but a beneficial plant macronutrient. J. Exp. Bot. 2017, 68, 3057–3069. [Google Scholar] [CrossRef] [Green Version]
- Neocleous, D.; Nikolaou, G.; Ntatsi, G.; Savvas, D. Nitrate supply limitations in tomato crops grown in a chloride-amended recirculating nutrient solution. Agric. Water Manag. 2021, 258, 107163. [Google Scholar] [CrossRef]
- Franco-Navarro, J.D.; Brumós, J.; Rosales, M.A.; Cubero-Font, P.; Talón, M.; Colmenero-Flores, J.M. Chloride regulates leaf cell size and water relations in tobacco plants. J. Exp. Bot. 2015, 67, 873–891. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Agathokleous, E.; Kitao, M.; Calabrese, E.J. Hormesis: A compelling platform for sophisticated plant science. Trends Plant Sci. 2019, 24, 318–327. [Google Scholar] [CrossRef] [PubMed]
- Erofeeva, E.A. Hormesis in plants: Its common occurrence across stresses. Curr. Opin. Toxicol. 2022, 30, 100333. [Google Scholar] [CrossRef]
- Geilfus, C.-M. Chloride: From Nutrient to Toxicant. Plant Cell Physiol. 2018, 59, 877–886. [Google Scholar] [CrossRef]
- Bové, J.M.; Bové, C.; Whatley, F.R.; Arnon, D.I. Chloride requirement for oxygen evolution in photosynthesis. Z. Für Nat.-B 1963, 18, 683–688. [Google Scholar] [CrossRef]
- Colmenero-Flores, J.M.; Franco-Navarro, J.D.; Cubero-Font, P.; Peinado-Torrubia, P.; Rosales, M.A. Chloride as a bene-ficial macronutrient in higher plants: New roles and regulation. Int. J. Mol. 2019, 20, 4686. [Google Scholar] [CrossRef] [Green Version]
- Geilfus, C.-M. Review on the significance of chlorine for crop yield and quality. Plant Sci. 2018, 270, 114–122. [Google Scholar] [CrossRef] [PubMed]
- Raven, J.A. Chloride: Essential micronutrient and multifunctional beneficial ion. J. Exp. Bot. 2017, 68, 359–367. [Google Scholar] [CrossRef]
- Henderson, S.W.; Baumann, U.; Blackmore, D.H.; Walker, A.R.; Walker, R.R.; Gilliham, M. Shoot chloride exclusion and salt tolerance in grapevine is associated with differential ion transporter expression in roots. BMC Plant Biol. 2014, 14, 273. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Teakle, N.L.; Tyerman, S.D. Mechanisms of Cl- transport contributing to salt tolerance. Plant Cell Environ. 2010, 33, 566–589. [Google Scholar] [CrossRef] [PubMed]
- Sanchez, D.H.; Pieckenstain, F.L.; Escaray, F.; Erban, A.; Kraemer, U.T.E.; Udvardi, M.K.; Kopka, J. Comparative ionomics and metabolomics in extremophile and glycophytic Lotus species under salt stress challenge the metabolic pre-adaptation hypothesis. Plant Cell Environ. 2011, 34, 605–617. [Google Scholar] [CrossRef]
- Brumos, J.; Talon, M.; Bouhlai, R.; Colmenero-Flores, J.M. Cl- homeostasis in includer and excluder citrus rootstocks: Transport mechanisms and identification of candidate genes. Plant Cell Environ. 2010, 33, 2012–2027. [Google Scholar] [CrossRef]
- Xu, G.; Magen, H.; Tarchitzky, J.; Kafkafi, U. Advances in chloride nutrition of plants. In Advances in Agronomy, Sparks, D.L., Ed.; Academic Press: Cambridge, MA, USA, 1999; Volume 68, pp. 97–150. [Google Scholar] [CrossRef]
- Gruda, N. Do Soilless Culture Systems Have an Influence on Product Quality of Vegetables? Available online: https://edoc.hu-berlin.de/handle/18452/10085 (accessed on 30 October 2022).
- Schnitzler, W.H.; Gruda, N. Hydroponics and product quality. In Hydroponic Production of Vegetables and Ornamentals; Savvas, D., Passam, H.C., Eds.; Embryo Publications: Athens, Greece, 2002; pp. 373–414. [Google Scholar]
- Leonardi, C.; Martorana, M.; Giuffrida, F.; Fogliano, V.; Pernice, R. Tomato fruit quality in relation to the content of sodium chloride in the nutrient solution. Acta Hortic. 2004, 659, 769–774. [Google Scholar] [CrossRef]
- European Commission. Guidance Document on Analytical Quality Control and Method Validation Procedures for Pesticide Residues and Analysis in Food and Feed; European Commission: Brussels, Belgium, 2019; SANTE/12682/2019. [Google Scholar]
- Goodburn, C.; Wallace, C.A. The microbiological efficacy of decontamination methodologies for fresh produce: A review. Food Control 2013, 32, 418–427. [Google Scholar] [CrossRef]
- Ramos, B.; Miller, F.A.; Brandão, T.R.S.; Teixeira, P.; Silva, C.L.M. Fresh fruits and vegetables—An overview on applied methodologies to improve its quality and safety. Innov. Food Sci. Emerg. 2013, 20, 1–15. [Google Scholar] [CrossRef]
- Joshi, K.; Mahendran, R.; Alagusundaram, K.; Norton, T.; Tiwari, B.K. Novel disinfectants for fresh produce. Trends Food Sci. Technol. 2013, 34, 54–61. [Google Scholar] [CrossRef]
- Leonel, L.P.; Tonetti, A.L. Wastewater reuse for crop irrigation: Crop yield, soil and human health implications based on giardiasis epidemiology. Sci. Total Environ. 2021, 775, 145833. [Google Scholar] [CrossRef]
- Garrido, Y.; Marín, A.; Tudela, J.A.; Truchado, P.; Allende, A.; Gil, M.I. Chlorate accumulation in commercial lettuce cultivated in open field and irrigated with reclaimed water. Food Control 2020, 114, 107283. [Google Scholar] [CrossRef]
- López-Gálvez, F.; Gil, M.I.; Meireles, A.; Truchado, P.; Allende, A. Demonstration tests of irrigation water disinfection with chlorine dioxide in open field cultivation of baby spinach. J. Sci. Food Agric. 2018, 98, 2973–2980. [Google Scholar] [CrossRef]
- Bartz, J.A. Potential for postharvest disease in tomato fruit infiltrated with chlorinated water and chlorination of asparagus hydrocooling water for the control of post-harvest decay organisms. Plant Dis. 1988, 72, 9–13. [Google Scholar] [CrossRef]
- Goodin, P.L. Chlorine for sick tomatoes (Erwinia carotovora). Agric. Res 1977, 26, 8–10. [Google Scholar]
- Winston, J.R.; Johnson, H.B.; Harvey, E.M. Using chemicals to stop spoilage. In Yearbook of Agriculture; USDA Printing Office: Washington, DC, USA, 1953; pp. 842–843. [Google Scholar]
- Combrink, J.C.; Visagie, T.R. Chlorination of dump tank water to reduce postharvest rot in apples. Deciduous Fruit Grow. 1982, 32, 61–63. [Google Scholar]
- Rabin, J. Pack tomatoes for higher profits-chlorinating packing shed wash water improves quality. Am. Veg. Grow. 1986, 34, 12. [Google Scholar]
- Suslow, T. Chlorination in the production and postharvest handling of fresh fruits and vegetables. In Use of Chlorine-Based Sanitizers and Disinfectants in the Food Manufacturing Industry; University of California-Davis: Davis, CA, USA, 2000; Available online: https://www.siphidaho.org/env/pdf/Chlorination_of_fruits_and_veggies.PDF (accessed on 20 December 2022).
- Savvas, D.; Adamidis, K. Automated management of nutrient solutions based on target electrical conductivity, pH, and nutrient concentration ratios. J. Plant Nut. 1999, 22, 1415–1432. [Google Scholar] [CrossRef]
- Savvas, D.; Gianquinto, G.P.; Tüzel, Y.; Gruda, N. Soilless Culture. In Good Agricultural Practices for Greenhouse Vegetable Crops. Principles for Mediterranean Climate Areas; Food and Agriculture Organization of the United Nations, Plant Production and Protection Paper 217: Rome, Italy, 2013; pp. 303–354. Available online: http://www.fao.org/3/a-i3284e.pdf (accessed on 20 December 2022).
- Navarrete, M.; Jeannequin, B. Effect of frequency of axillary bud pruning on vegetative growth and fruit yield in greenhouse tomato crops. Sci. Hortic. 2000, 86, 197–210. [Google Scholar] [CrossRef]
- Kalozoumis, P.; Vourdas, C.; Ntatsi, G.; Savvas, D. Can Biostimulants Increase Resilience of Hydroponically-Grown Tomato to Combined Water and Nutrient Stress? Horticulturae 2021, 7, 297. [Google Scholar] [CrossRef]
- Lykogianni, M.; Bempelou, E.; Ntatsi, G.; Karavidas, I.; Ropokis, A.; Aliferis, K.A.; Savvas, D. Spinosad residues in hydroponically grown tomato fruits. Acta Hortic. 2021, 1320, 197–204. [Google Scholar] [CrossRef]
- Garnier, E.; Shipley, B.; Roumet, C.; Laurent, G. A standardized protocol for the determination of specific leaf area and leaf dry matter content. Funct. Ecol. 2001, 15, 688–695. [Google Scholar] [CrossRef]
- He, Y.; Zhu, Z.; Yang, J.; Ni, X.; Zhu, B. Grafting increases the salt tolerance of tomato by improvement of photosynthesis and enhancement of antioxidant enzymes activity. Environ. Experim. Bot. 2009, 66, 270–278. [Google Scholar] [CrossRef]
- Medrano, H.; Tomás, M.; Martorell, S.; Flexas, J.; Hernández, E.; Rosselló, J.; Pou, A.; Escalona, J.M.; Bota, J. From leaf to whole-plant water use efficiency (WUE) in complex canopies: Limitations of leaf WUE as a selection target. Crop J. 2015, 3, 220–228. [Google Scholar] [CrossRef] [Green Version]
- Murphy, J.; Riley, J.P. A modified single solution method for the determination of phosphate in natural waters. Anal. Chim. Acta 1962, 27, 31–36. [Google Scholar] [CrossRef]
- Regulation 543/2011. EN 15.6.2011 Official Journal of the European Union L 157/109. Brussels: European Union. Available online: https://eur-lex.europa.eu/legal-content/GA/TXT/?uri=CELEX%3A32011R0543 (accessed on 30 October 2022).
- Anastassiades, M.; Kolberg, D.I.; Eichhorn, E.; Benkenstein, A.; Lukačević, S.; Mack, D.; Wildgrube, C.; Sigalov, I.; Dörk, D.; Barth, A. Quick Method for the Analysis of Numerous Highly Polar Pesticides in Foods of Plant Origin via LC-MS/MS Involving Simultaneous Extraction with Methanol (QuPPe-Method); Version 9.2.; CVUA: Stuttgart, Germany, 2015. [Google Scholar]
- de Mendiburu, F. Agricolae: Statistical Procedures for Agricultural Research. R Package Version 1.3-3. Available online: https://CRAN.R-project.org/package=agricolae (accessed on 15 August 2022).
- Kim, H.Y. Statistical notes for clinical researchers: Assessing normal distribution (2) using skewness and kurtosis. Restor. Dent. Endod. 2013, 38, 52–54. [Google Scholar] [CrossRef]
- Bewick, V.; Cheek, L.; Ball, J. Statistics review 9: One-way analysis of variance. Crit. Care 2004, 8, 130. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Time Point | Chlorine (mg L−1) | Cloride (mg L−1) |
---|---|---|
30 DAFA (11 July 2019) | Control | 6.30 ± 0.25 b |
2.5 | 7.29 ± 0.87 b | |
5.0 | 7.49 ± 0.53 ab | |
7.5 | 9.05 ± 0.25 a | |
Significance | * | |
37 DAFA (18 July 2019) | Control | 8.45 ± 0.55 |
2.5 | 7.93 ± 0.77 | |
5.0 | 8.27 ± 0.19 | |
7.5 | 7.64 ± 0.51 | |
Significance | NS | |
48 DAFA (29 July 2019) | Control | 9.42 ± 1.24 |
2.5 | 9.28 ± 0.72 | |
5.0 | 9.04 ± 0.28 | |
7.5 | 8.12 ± 0.09 | |
Significance | NS |
Time Point | Treatments | fw (g) | dw (g) | DMC (%) | SLA (m2 kg−1 dw) | Leaf Area (cm2) |
---|---|---|---|---|---|---|
(11-6-2019) 0 DAFA | control | 61.84 ± 9.62 | 7.07 ± 0.59 | 11.80 ± 0.97 | 13.15 ± 0.88 | 935.75 ± 126.45 |
2.5 | 53.40 ± 2.81 | 5.80 ± 0.27 | 10.88 ± 0.19 | 14.62 ± 0.58 | 846.00 ± 41.45 | |
5.0 | 51.75 ± 3.86 | 5.89 ± 0.66 | 11.28 ± 0.55 | 14.90 ± 1.19 | 854.25 ± 38.60 | |
7.5 | 56.42 ± 5.02 | 5.93 ± 0.46 | 10.56 ± 0.37 | 10.96 ± 3.14 | 678.00 ± 204.32 | |
significance | NS | NS | NS | NS | NS | |
(12-7-2019) 31 DAFA | control | 28.46 ± 2.62 | 3.90 ± 0.28 | 13.77 ± 0.29 | 8.60 ± 0.50 | 330.99 ± 10.49 |
2.5 | 30.32 ± 2.89 | 4.13 ± 0.63 | 13.40 ± 0.79 | 8.22 ± 1.09 | 321.74 ± 20.43 | |
5.0 | 32.30 ± 4.13 | 4.32 ± 0.42 | 13.52 ± 0.59 | 8.485 ± 0.35 | 368.51 ± 47.08 | |
7.5 | 36.78 ± 7.69 | 4.67 ± 1.09 | 12.57 ± 0.48 | 10.48 ± 1.24 | 452.68 ± 59.25 | |
significance | NS | NS | NS | NS | NS | |
(24-7-2019) 43 DAFA | control | 13.95 ± 0.99 | 2.27 ± 0.22 | 16.15 ± 0.44 | 10.43 ± 0.54 | 233.11 ± 12.03 |
2.5 | 17.01 ± 2.64 | 2.65 ± 0.54 | 15.20 ± 0.82 | 11.32 ± 1.25 | 281.17 ± 35.27 | |
5.0 | 19.39 ± 7.26 | 3.03 ± 1.21 | 15.27 ± 0.48 | 9.14 ± 1.71 | 230.91 ± 50.83 | |
7.5 | 23.53 ± 4.76 | 3.73 ± 0.79 | 15.62 ± 0.81 | 8.06 ± 3.49 | 221.26 ± 75.65 | |
significance | NS | NS | NS | NS | NS |
Time Point | Treatments | Net Photosynthetic Rate | Stomatal Conductance | Intercellular CO2 Concentration | Transpiration Rate | Water Use Efficiency |
---|---|---|---|---|---|---|
(μmol CO2 m−2 s−1) | (mmol H2O m−2 s−1) | (μmol CO2 m−2 s−1) | (mmol H2O m−2 s−1) | (μmol CO2 m−2 s−1/ mmol H2O m−2 s−1) | ||
(11-6-2019) 0 DAFA | control | 20.94 ± 1.33 | 0.54 ± 0.12 | 286.70 ± 11.84 | 5.30 ± 0.54 | 4.04 ± 0.39 |
2.5 | 23.64 ± 1.05 | 0.69 ± 0.08 | 295.79 ± 6.73 | 5.84 ± 0.41 | 4.14 ± 0.36 | |
5.0 | 20.08 ± 1.64 | 0.49 ± 0.16 | 263.06 ± 27.22 | 4.35 ± 0.97 | 5.23 ± 0.94 | |
7.5 | 18.22 ± 4.35 | 0.52 ± 0.16 | 257.63 ± 43.74 | 4.69 ± 1.36 | 4.95 ± 1.24 | |
Significance | NS | NS | NS | NS | NS | |
(12-7-2019) 31 DAFA | control | 11.19 ± 1.41 | 0.13 ± 0.00 | 223.06 ± 19.71 | 1.74 ± 0.04 | 6.44 ± 0.81 |
2.5 | 9.10 ± 2.96 | 0.10 ± 0.01 | 228.59 ± 33.64 | 1.34 ± 0.09 | 6.49 ± 1.67 | |
5.0 | 6.62 ± 0.18 | 0.07 ± 0.02 | 168.89 ± 62.38 | 1.06 ± 0.31 | 8.28 ± 2.37 | |
7.5 | 8.39 ± 1.20 | 0.15 ± 0.03 | 273.95 ± 8.09 | 1.92 ± 0.30 | 4.40 ± 0.26 | |
Significance | NS | NS | NS | NS | NS | |
(24-7-2019) 43 DAFA | control | 6.45 ± 2.63 | 0.18 ± 0.13 | 279.08 ± 12.12 | 2.07 ± 0.95 | 3.25 ± 0.24 |
2.5 | 8.11 ± 2.18 | 0.22 ± 0.09 | 296.99 ± 20.00 | 2.72 ± 0.73 | 3.03 ± 0.47 | |
5.0 | 6.25 ± 1.35 | 0.13 ± 0.02 | 298.64 ± 12.62 | 2.26 ± 0.25 | 2.75 ± 0.45 | |
7.5 | 6.51 ± 2.42 | 0.23 ± 0.07 | 324.69 ± 6.79 | 3.06 ± 0.80 | 2.03 ± 0.43 | |
Significance | NS | NS | NS | NS | NS |
Time Point | Treatments | P | K | Cl | Ca | Mg |
---|---|---|---|---|---|---|
31 DAFA (12 July 2019) | control | 3.98 ± 0.18 | 87.25 ± 3.30 | 2.90 ± 0.10 | 0.18 ± 0.03 | 1.45 ± 0.02 b |
2.5 | 3.55 ± 0.73 | 98.00 ± 4.14 | 3.51 ± 0.12 | 0.19 ± 0.01 | 1.80 ± 0.03 a | |
5.0 | 4.10 ± 0.32 | 95.25 ± 5.15 | 3.21 ± 0.39 | 0.21 ± 0.01 | 1.65 ± 0.11 ab | |
7.5 | 3.74 ± 0.21 | 86.50 ± 4.66 | 2.88 ± 0.25 | 0.19 ± 0.01 | 1.52 ± 0.05 b | |
Significance | NS | NS | NS | NS | * | |
43 DAFA (24 July 2019) | control | 3.16 ± 0.04 | 43.50 ± 3.28 | 2.53 ± 0.07 b | 0.19 ± 0.02 | 1.54 ± 0.11 |
2.5 | 3.30 ± 0.47 | 46.00 ± 4.69 | 2.49 ± 0.05 b | 0.16 ± 0.00 | 1.66 ± 0.05 | |
5.0 | 3.65 ± 0.37 | 47.25 ± 2.56 | 2.72 ± 0.08 b | 0.17 ± 0.01 | 1.59 ± 0.13 | |
7.5 | 2.43 ± 0.18 | 41.50 ± 2.53 | 3.11 ± 0.13 a | 0.16 ± 0.00 | 1.53 ± 0.03 | |
Significance | NS | NS | ** | NS | NS |
Storage Period (Days) | Chlorate Residue Levels (mg L−1) in Samples Stored under Freezer Conditions | % Mean Recovery of Chlorate Residues Compared to Day 0 3 | ||
---|---|---|---|---|
Level (% Ammonia) | 2.5 | 5 | 2.5 | 5 |
Mean ± SD 2 | Mean ± SD 2 | |||
0 1 | 0.45 ± 0.07 | 1.45 ± 0.07 | - | - |
1 | 0.3 ± 0.00 | 0.9 ± 0.00 | 75.3 | 62.4 |
4 | 0.55 ± 0.07 | 1.65 ± 0.07 | 115.2 | 114 |
6 | 0.7 ± 0.14 | 2.05 ± 0.21 | 123.1 | 130.9 |
8 | 0.35 ± 0.07 | 1.45 ± 0.07 | 61.8 | 87.9 |
11 | 0.55 ± 0.07 | 1.4 ± 0.14 | 103.7 | 89.2 |
21 | 0.55 ± 0.07 | 1.4 ± 0.00 | 108.3 | 95.2 |
22 | 0.35 ± 0.07 | 1.1 ± 0.14 | 71 | 71.4 |
28 | 0.55 ± 0.07 | 1.5 ± 0.14 | 120.3 | 101.9 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lykogianni, M.; Bempelou, E.; Karavidas, I.; Anagnostopoulos, C.; Aliferis, K.A.; Savvas, D. Impact of Sodium Hypochlorite Applied as Nutrient Solution Disinfectant on Growth, Nutritional Status, Yield, and Consumer Safety of Tomato (Solanum lycopersicum L.) Fruit Produced in a Soilless Cultivation. Horticulturae 2023, 9, 352. https://doi.org/10.3390/horticulturae9030352
Lykogianni M, Bempelou E, Karavidas I, Anagnostopoulos C, Aliferis KA, Savvas D. Impact of Sodium Hypochlorite Applied as Nutrient Solution Disinfectant on Growth, Nutritional Status, Yield, and Consumer Safety of Tomato (Solanum lycopersicum L.) Fruit Produced in a Soilless Cultivation. Horticulturae. 2023; 9(3):352. https://doi.org/10.3390/horticulturae9030352
Chicago/Turabian StyleLykogianni, Maira, Eleftheria Bempelou, Ioannis Karavidas, Christos Anagnostopoulos, Konstantinos A. Aliferis, and Dimitrios Savvas. 2023. "Impact of Sodium Hypochlorite Applied as Nutrient Solution Disinfectant on Growth, Nutritional Status, Yield, and Consumer Safety of Tomato (Solanum lycopersicum L.) Fruit Produced in a Soilless Cultivation" Horticulturae 9, no. 3: 352. https://doi.org/10.3390/horticulturae9030352
APA StyleLykogianni, M., Bempelou, E., Karavidas, I., Anagnostopoulos, C., Aliferis, K. A., & Savvas, D. (2023). Impact of Sodium Hypochlorite Applied as Nutrient Solution Disinfectant on Growth, Nutritional Status, Yield, and Consumer Safety of Tomato (Solanum lycopersicum L.) Fruit Produced in a Soilless Cultivation. Horticulturae, 9(3), 352. https://doi.org/10.3390/horticulturae9030352