Profile of Bioactive Compounds in Orange Juice Related to the Combination of Different Scion/Rootstocks, Packaging and Storage
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Area Characterization
2.2. Plant Material and Crop Management
2.3. Treatments and Experimental Design
2.4. Fruit Harvesting and Sample Preparation
- TL is lethal rate;
- Tobs is observed temperature;
- Tref is reference temperature;
- Z is interval of temperature (causes a variation of 10 times in the speed of destruction).
2.5. The Content of Ascorbic Acid (AA) and Dehydroascorbic Acid (DHA) in Juices
2.6. Profile of Phenolic Compounds
2.7. Statistical Analysis
3. Results and Discussion
3.1. Ascorbic Acid (AA) and Dehydroascorbic Acid (DHAA) Concentration of Orange Juice According to Rootstock, Storage Time, and Packaging
3.2. Phenolic Compound Concentration of Orange Juice According to Rootstock, Storage Time, and Packaging
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Domingues, A.R.; Marcolini, C.D.M.; Gonçalves, C.H.S.; Gonçalves, L.S.A.; Roberto, S.R.; Carlos, E.F. Fruit ripening development of ‘Valência’ orange trees grafted on different ‘Trifoliata’ hybrid rootstocks. Horticulturae 2021, 7, 3. [Google Scholar] [CrossRef]
- Citrusbr. Associação Nacional dos Exportadores de Sucos Cítricos. 2020. Available online: http://www.citrusbr.com/mercadoexterno/?me=01> (accessed on 2 September 2021).
- Lu, X.; Zhao, C.; Shi, H.; Liao, Y.; Xu, F.; Du, H.; Xiao, H.; Zheng, J. Nutrients and bioactives in citrus fruits: Different citrus varieties, fruit parts, and growth stages. Crit. Ver. Food Sci. Nutr. 2021, 4, 1–24. [Google Scholar] [CrossRef] [PubMed]
- Tietel, Z.; Srivastava, S.; Fait, A.; Tel-Zur, N.; Carmi, N.; Raveh, E. Impact of scion/rootstock reciprocal effects on metabolomics of fruit juice and phloem sap in grafted Citrus reticulata. PLoS ONE 2020, 15, e0227192. [Google Scholar] [CrossRef] [PubMed]
- Carvalho, E.V.; Cifuentes-Arenas, J.C.; Raiol-Junior, L.L.; Stuchi, E.S.; Girardi, E.A.; Lopes, S.A. Modeling seasonal flushing and shoot growth on different citrus scion-rootstock combinations. Sci. Hortic. 2021, 288, 110358. [Google Scholar] [CrossRef]
- Carvalho, L.M.; Carvalho, H.W.L.; Barros, I.; Martins, C.R.; Soares Filho, W.S.; Girard, E.A.; Passos, O.S. New scion-rootstock combinations for diversification of sweet orange orchards in tropical hardsetting soils. Sci. Hortic. 2019, 243, 169–176. [Google Scholar] [CrossRef]
- Hamedani, M.; Rabiel, V.; Moradi, H.; Ghanbari, A.; Azimi, R.M. Determination of storage duration and temperature effects on fruit quality parameters of blood orange (Citrus sinensis cv. Torocco). Biharean Biol. 2012, 6, 10–13. Available online: http://biozoojournals.ro/bihbiol/cont/v6n1/bb.111129.Ghambari.pdf (accessed on 10 October 2020).
- Latado, R.R. Laranja Mombuca é Rica em Licopeno Potente Agente Antioxidante Natural Que Ajuda Prevenir o Câncer. 2021. Available online: https://www.agricultura.sp.gov.br/noticias/laranja-mombuca-e-rica-em-licopeno-potente-agente-antioxidante-natural-que-ajuda-prevenir-o-cancer (accessed on 20 November 2021).
- Pio, R.M.; Figueiredo, J.O.; Stuchi, E.S.; Cardoso, S.A.B. Variedade de Copas. In Citros; Mattos Júnior, D., Pio, R.M., De Negri, J.D., Pompeu Júnior, J., Eds.; Instituto Agronômico e Fundag: Campinas, Brazil, 2005; 929p. [Google Scholar]
- Oliveira, R.P.; Scivitaro, W.B. Lue Gim Gong: Laranja Tipo Valência Mais Tardia e Tolerante Ao Frio e Cancro Cítrico; Embrapa Clima Temperado: Pelotas, Brazil, 2008; Available online: http://www.infoteca.cnptia.embrapa.br/infoteca/handle/doc/746632 (accessed on 14 September 2021).
- Oliveira, R.P.; Scivitaro, W.B.; Gomes da Rocha, P.S. Cultivares de Laranjeira Resistentes ao Cancro Cítrico; Embrapa Clima Temperado: Pelotas, Brazil, 2008; 31p, Available online: https://www.infoteca.cnptia.embrapa.br/bitstream/doc/746885/1/documento249.pdf (accessed on 12 January 2020).
- Bowman, K.D.; Joubert, J. Citrus rootstocks. In The Genus Citrus; Talon, M., Caruso, M., Gmitter, F.G., Jr., Eds.; Elsevier: Amsterdam, The Netherlands, 2020; pp. 105–127. [Google Scholar]
- Balfagón, D.; Rambla, J.L.; Granell, A.; Arbona, V.; Gómez-Cadenas, A. Grafting improves tolerance to combined drought and heat stresses by modifying metabolism in citrus scion. Environ. Exp. Bot. 2022, 195, 104793. [Google Scholar] [CrossRef]
- Rasool, A.; Mansoor, S.; Bhat, K.M.; Hassan, G.I.; Baba, T.R.; Alyemeni, M.N.; Alsahli, A.A.; El-Serehy, H.Á.; Paray, B.A.; Ahmad, P. Mechanisms underlying graft union formation and rootstock scion interaction in horticultural plants. Front. Plant Sci. 2020, 11, 1778. [Google Scholar] [CrossRef]
- Hu, Z.; Wang, F.; Yu, H.; Zhang, M.; Jiang, D.; Huang, T.; Xiang, J.; Zhu, S.; Zhao, X. Effects of scion-rootstock interaction on citrus fruit quality related to differentially expressed small RNAs. Sci. Hortic. 2022, 298, 110974. [Google Scholar] [CrossRef]
- Curk, F.; Olitrautt, F.; Garcia-Lor, A.; Luro, F.; Navarro, L.; Ollitraut, P. Phylogenetic origin of limes and lemons revealed by cytoplasmic and nuclear markers. Ann. Bot. 2016, 117, 565–583. [Google Scholar] [CrossRef] [Green Version]
- Oliveira, C.R.M.; Mello-Farias, P.C.; Oliveira, D.S.C.; Chaves, A.L.S.; Herter, F.G. Water availability effect on gas exchanges and on phenology of ‘Cabula’ orange. Acta Hortic. 2017, 1150, 133–138. [Google Scholar] [CrossRef]
- Fadel, A.L.; Mourão Filho, F.A.A.; Stuchi, E.S.; Wulff, N.A.; Couto, H.T.Z. Citrus sudden death-associated vírus (CSDaV) and citrus tristeza vírus (CTV) in eleven rootstocks for ‘Valência‘ sweet orange. Rev. Bras. Frutic. 2018, 40, e-788. [Google Scholar] [CrossRef] [Green Version]
- Ribeiro, R.V.; Núñez, E.E.; Júnior, J.P.; Mourão Filho, F.A.A. Citrus rootstocks for improving the horticultural performance and physiological responses under constraining environments. Improv. Crops Era Clim. Changes 2014, 1, 1–37. [Google Scholar] [CrossRef]
- Saini, R.K.; Ranjit, A.; Sharma, K.; Prassad, P.; Shang, X.; Gowda, K.G.M.; Keum, Y.S. Bioactive compound of Citrus fruits: A review of composition and health benefits of carontenoids, flavonoids, limonoids, and terpenes. Antioxidants 2022, 11, 239. [Google Scholar] [CrossRef] [PubMed]
- Zou, Z.; Xi, W.; Hu, Y.; Nie, C.; Zhou, Z. Antioxidant activity of Citrus fruits. Food Chem. 2016, 196, 885–896. [Google Scholar] [CrossRef]
- Zhang, M.; Zhu, S.Y.; Yang, W.J.; Huang, Q.R.; Ho, C.T. The biological fate and bioefficacy of citrus flavonoids: Bioavailability, biotransformation, and delivery systems. Food Funct. 2021, 12, 3307–3323. [Google Scholar] [CrossRef] [PubMed]
- Wibowo, S.; Grauwet, T.; Santiago, J.S.; Tomic, J.; Vervoort, L.; Hendrickx, M.; Van Loey, A. Quality changes of pasteurised orange juice during storage: A kinetic study of specific parameters and their relation to colour instability. Food Chem. 2015, 187, 140–151. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nakilcioglu-tas, E.; Ötles, S. Kinetic modelling of vitamin C losses in fresh citrus juices under different storage conditions. An. Acad. Bras. Cienc. 2020, 92, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Cunha, A.R.; Martins, D. Classificação climática para os municípios de Botucatu e São Manuel, SP. Irriga 2009, 14, 1–11. [Google Scholar] [CrossRef]
- Santos, H.G.; Jacomine, P.K.T.; Anjos, L.H.C.; Oliveira, V.A.; Lumbreras, J.F.; Coelho, M.R.; de Almeida, J.A.; Cunha, T.J.F.; de Oliveira, J.B. Sistema Brasileiro de Classificação de Solos, 3rd ed.; Embrapa: Brasília, Brazil, 2013; 353p, Available online: https://www.embrapa.br/solos/sibcs (accessed on 11 February 2021).
- Soil Survey Staff. Soil Taxonomy: A Basic System of Soil Classification for Making and Interpreting Soil Surveys, 2nd ed.; USDA, NRCS: Washington, DC, USA, 1999. Available online: https://www.nrcs.usda.gov/wps/portal/nrcs/main/soils/survey/class/taxonomy/ (accessed on 27 July 2021).
- Peña, W.E.L.; Massaguer, P.R.; Teixeira, L.Q. Microbial modeling of Alicyclobacillus acidoterrestris CRA7152 growth in orange juice with nisin addition. J. Food Prot. 2006, 69, 7. [Google Scholar] [CrossRef]
- Spínola, V.; Mendes, B.; Câmara, J.S.; Castilho, P.C. An improved and fast UHPLC-PDA methodology for determination of L-ascorbic and dehydroascorbic acids in fruits and vegetables. Evaluation of degradation rate during storage. Anal. Bioanal. Chem. 2012, 403, 1049–1058. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Natividade, M.M.P.; Corrêa, L.C.; Souza, S.V.C.; Pereira, G.E.; Lima, L.C.O. Simultaneous analysis of 25 phenolic compounds in grape juice for HPLC: Method validation and characterization of São Francisco Valley samples. Microchem. J. 2013, 110, 665–674. [Google Scholar] [CrossRef] [Green Version]
- Rencher, A.C.; Christensen, W.F. Methods of Multivariate Analysis, 3rd ed.; John Wiley & Sons: New York, NY, USA, 2012; 758p. [Google Scholar] [CrossRef]
- Loannidi, E.; Kalamaki, M.S.; Enginner, C.; Pateraki, I.; Alexandrou, D.; Mellidou, I.; Giovannonni, J.; Kanellis, A.K. Expression profiling of ascorbic acid-related genes during tomato fruit development and ripening and in response to stress conditions. J. Exp. Bot. 2009, 60, 663–678. [Google Scholar] [CrossRef] [Green Version]
- Castillo-Velarde, E.R. Vitamin C in health and disease. Rev. Fac. Med. Hum. 2019, 19, 95–100. [Google Scholar] [CrossRef]
- Castle, W.S. A career perspective on Citrus rootstocks, their development, and commercialization. Hortscience 2010, 45, 11–15. [Google Scholar] [CrossRef] [Green Version]
- Pompeu Júnior, J.; Blumer, S. Citrumelos como porta-enxertos para laranja ‘Valência’. Pesqui. Agropecu. Bras. 2011, 46, 105–107. [Google Scholar] [CrossRef]
- Lee, S.K.; Kader, A.A. Preharvest and postharvest factors influencing vitamin C content of horticultural crops. Postharvest Biol. Technol. 2020, 20, 207–220. [Google Scholar] [CrossRef] [Green Version]
- Stinco, C.M.; Fernández-Vásquez, R.; Hernanz, D.; Heredia, F.J.; Meléndez-Martínez, A.J.; Vicario, I.M. Industrial orange juice debittering: Impact on bioactive compounds and nutritional value. J. Food Eng. 2013, 116, 155–161. [Google Scholar] [CrossRef]
- Beber, P.M.; Álvares, V.d.S.; Kusdra, J.F. Qualidade industrial e maturação de frutos de laranjeiras-doce em Rio Branco, Acre. Citrus Res. Technol. 2018, 39, e1030. [Google Scholar] [CrossRef] [Green Version]
- Sapei, L.; Hwa, L. Study on the kinetics of vitamin C degradation in fresh orange juices. Procedia Chem. 2014, 9, 62–68. [Google Scholar] [CrossRef] [Green Version]
- Cruz, R.M.S.; Vieira, M.C.; Silva, C.L.M.; Effect of heat and thermosonication treatments on watercress (Nasturticum officinale) vitamin C degradation kinetics. Innov. Food Sci. Emerg. Technol. 2008, 9, 483–488. [Google Scholar] [CrossRef]
- Bacigalupi, C.; Lemaistre, M.H.; Boutroy, N.; Bunel, C.; Peyron, S.; Guillard, V. Changes in nutritional and sensory properties of orange juice packed in PET bottles: An experimental and modelling approach. Food Chem. 2013, 141, 3827–3838. [Google Scholar] [CrossRef]
- Klimczak, I.; Malecka, M.; Szlachta, M.; Gliszcynska-Świglo, A. Effect of storage on the content of polyphenols, vitamin C and the antioxidant activity of orange juices. J. Food Compos. Anal. 2007, 20, 313–322. [Google Scholar] [CrossRef]
- Teixeira, M.; Monteiro, M. Degradação da vitamina C em suco de fruta. Aliment. e Nutr. 2006, 17, 219–227. Available online: https://www.academia.edu/63811880/Degrada%C3%A7%C3%A3o_da_vitamina_C_em_suco_de_fruta (accessed on 8 September 2022).
- Laorko, A.; Tongchitpackdee, S.; Youravong, W. Storage quality of pineapple juice non-thermally pasteurized and clarified by microfiltration. J. Food Eng. 2013, 116, 554–561. [Google Scholar] [CrossRef]
- Caro, A.D.; Piga, A.; Vacca, V.; Agabbio, M. Changes of flavonoids, vitamin C and antioxidant capacity in minimally processed citrus segments and juices during storage. Food Chem. 2004, 84, 99–105. [Google Scholar] [CrossRef]
- Lago-Vanzela, E.S. Influência de reações químicas e enzimáticas sobre a cor e o aroma de vinhos. In Uvas e Vinhos: Química, Bioquímica e Microbiologia, 1st ed.; Silva, R., Lago-Vanzela, E.S., Baffi, M.A., Eds.; Editora Senac, Editora Unesp: São Paulo, Brazil, 2015; pp. 107–132. Available online: https://editoraunesp.com.br/catalogo/9788539305643,uvas-e-vinhos (accessed on 20 December 2021).
- La Peña, M.; Morales, D.E.; Salvia-Trujillo, L.; Rojas-Graü, M.A.; Martín-Belloso, O. Changes on phenolic and carotenoid composition of high intensity pulsed electric field and thermally treated fruit juice-soymilk beverages during refrigerated storage. Food Chem. 2011, 129, 982–990. [Google Scholar] [CrossRef] [PubMed]
- Bastos, D.C.; Ferreira, E.A.; Passos, O.S.; Sá, J.F.; Ataíde, E.M.; Calgaro, M. Cultivares copa e porta-enxertos para a citricultura brasileira. Inf. Agrop. 2014, 35, 36–45. Available online: https://www.embrapa.br/busca-de-publicacoes/-/publicacao/1007492/cultivares-copa-e-porta-enxertos-para-a-citricultura-brasileira (accessed on 30 March 2022).
- Palacios, C.; Serra, D.; Torres, P. Papel Ecológico Dos Metabólitos Secundários Frente ao Estresse Abiótico. In Botânica No Inverno; Lopez, A.M., Nagai, A., Furlan, C.M., Eds.; Instituto de Biociências da Universidade de São Paulo: São Paulo, Brazil, 2013; pp. 52–59. Available online: https://www.academia.edu/42993539/Papel_ecol%C3%B3gico_dos_metab%C3%B3litos_secund%C3%A1rios_frente_ao_estresse_abi%C3%B3tico_1 (accessed on 2 August 2020).
- Giuffré, A.M.; Zappia, C.; Capocasale, M. Physicochemical stability of blood orange juice during frozen storage. Int. J. Food Prop. 2017, 20, 1930–1943. [Google Scholar] [CrossRef]
- Agcam, E.; Akydlddz, A.; Evrendilek, G.; Akdemir, E. Comparison of phenolic compounds of orange juice processed by pulsed electric fields (PEF) and conventional thermal pasteurisation. Food Chem. 2014, 143, 354–361. [Google Scholar] [CrossRef]
- Boerjan, W.; Ralph, J.; Baucher, M. Lignin biosynthesis. Ann. Rev. Plant Biol. 2003, 54, 519–546. [Google Scholar] [CrossRef] [PubMed]
SM | R | LGG | VDS | ||||||
---|---|---|---|---|---|---|---|---|---|
DF | AA | DHAA | AA | DHAA | AA | DHAA | AA | DHAA | |
Block | 0.228 ns | 2.552 ns | 4.663 ns | 0.659 ns | 12.102 ns | 3.642 ns | 1.441 ns | 0.027 ns | |
R | 1 | 1414.012 ** | 329.793 ** | 15.067 ns | 173.077 ** | 805.399 ** | 1072.488 ** | 51.630 * | 637.588 ** |
S | 2 | 1324.995 ** | 294.266 ** | 2745.036 ** | 45.851 ** | 5833.517 ** | 213.374 ** | 4512.925 ** | 256.593 ** |
R x S | 2 | 0.245 ns | 14.201 ** | 0.103 ns | 2.397 ns | 61.421 ** | 48.364 ** | 518.471 ** | 24.911 ** |
CV (%) | 2.13 | 3.76 | 1.33 | 3.23 | 1.57 | 2.45 | 0.93 | 2.72 | |
CV (%) | 2.36 | 2.73 | 2.5 | 3.05 | 1.41 | 2.71 | 1.87 | 2.46 | |
Mean | 375.35 | 155.58 | 368.32 | 428.96 | 326.35 | 189.65 | 280.6 | 242.31 |
Rubi | ||||
---|---|---|---|---|
AA (mg/L) | ||||
RL | SC | 0 | 35 | 35D |
363.83 a * | 372.80 a | 595.47 a | 253.33 b | 356.14 b |
DHAA (mg/L) | ||||
RL | SC | 0 | 35 | 35D |
386.06 b | 471.87 a | 458.59 a | 439.58 a | 388.71 b |
Sanguínea de Mombuca | ||||
AA (mg/L) | ||||
RL | SC | 0 | 35 | 35D |
304.21 b | 446.37 a | 527.61 a | 296.35 b | 302.07 b |
DHAA (mg/L) | ||||
RL | SC | |||
0 | 101.94 Bb * | 147.12 Ac | ||
35 | 151.38 Ab | 216.28 Aa | ||
35D | 138.28 Ab | 178.46 Ab | ||
Lue Gin Gong | ||||
AA (mg/L) | DHAA (mg/L) | |||
RL | SC | RL | SC | |
0 | 516.74 Aa * | 463.41 Ba | 137.66 Bb | 299.11 Ab |
35 | 244.34 Ac | 194.70 Bc | 184.82 Ba | 319.07 Aa |
35D | 320.72 Ab | 218.18 Bb | 139.10 Bb | 181.09 Ac |
Valencia Delta Seedless | ||||
AA (mg/L) | DHAA (mg/L) | |||
RL | SC | RL | SC | |
0 | 460.31 Aa * | 410.04 Ba | 266.89 Ba | 299.11 Ab |
35 | 98.32 Bc | 201.07 Ac | 213.99 Ba | 319.07 Aa |
35D | 296.49 Ab | 217.35 Bb | 168.54 Bb | 226.27 Ac |
Sanguínea de Mombuca | ||||||||
---|---|---|---|---|---|---|---|---|
FV | GL | Hesperidin | Naringerin | Cafffeic Acid | Chlorogenic Acid | p-Coumaric | Ferulic Acid | Sinaptic Acid |
Block | 2 | 5.295 ns | 0.47 ns | 61.00 ** | 0.717 ns | 1.00 ns | 0.33 ns | 2.71 ns |
RS | 1 | 1357.05 ** | 27.84 * | 7921.00 ** | 167.84 ** | 90.75 ** | 12.00 ns | 43.75 * |
S | 2 | 3628.31 ** | 2238.00 ** | 569.71 ** | 492.23 ** | 650.67 ** | 470.86 ** | 132.72 ** |
RS x S | 2 | 56.87 ** | 23.23 ** | 208.00 ** | 2.08 ns | 32.00 ** | 3.43 ns | 108.14 ** |
CV (%) | 0.36 | 3.48 | 0.51 | 3.3 | 4.58 | 4.56 | 1.53 | |
CV (%) | 1.61 | 2.04 | 1.36 | 3.41 | 2.8 | 2.46 | 2.78 | |
Mean | 46.82 | 0.3 | 0.5 | 0.81 | 0.18 | 0.18 | 0.82 | |
Rubi | ||||||||
Block | 2 | 0.21 ns | 21.00 * | 7.00 ns | 10.34 ns | 1.00 ns | 19.00 * | 0.18 ns |
RS | 1 | 6637.85 ** | 484.00 ** | 240.25 ** | 26.23 * | 6.25 ns | 484.00 ** | 6.49 ns |
S | 2 | 21,648.56 ** | 468.12 ** | 403.15 ** | 1549.72 ** | 522.47 ** | 490.75 ** | 409.30 ** |
RS x S | 2 | 98.210 ** | 1.65 ns | 37.25 ** | 8.56 ** | 0.12 ns | 4.75 * | 214.25 ** |
CV (%) | 0.26 | 0.65 | 0.84 | 2.04 | 2.58 | 1.26 | 3.49 | |
CV (%) | 0.51 | 3.31 | 2.27 | 2.32 | 3.76 | 2.51 | 3.73 | |
Mean | 40.17 | 0.36 | 0.56 | 0.9 | 0.18 | 0.19 | 0.82 | |
Lue Gin Gong | ||||||||
Block | 2 | 0.10 ns | 0.08 ns | 3.86 ns | 2.71 ns | 1.00 ns | 0.11 ns | 3.00 ns |
RS | 1 | 34.83 * | 9.31 ns | 96.57 ** | 57.14 ** | 42.25 * | 25.00 * | 32.00 ** |
S | 2 | 20.356.46 ** | 271.05 ** | 0.273 ns | 43.19 ** | 76.00 ** | 7.54 ** | 2.17 ns |
RS x S | 2 | 77.03 ** | 18.85 ** | 17.55 ** | 78.23 ** | 4.00 ns | 1.39 ns | 0.66 ns |
CV (%) | 0.87 | 1.76 | 1.01 | 1.29 | 2.17 | 4.7 | 0.26 | |
CV (%) | 0.67 | 2.65 | 1.25 | 1.36 | 1.09 | 3.99 | 0.69 | |
Mean | 67.71 | 0.48 | 0.63 | 0.97 | 0.22 | 0.15 | 1.85 | |
Valência Delta Seedless | ||||||||
Block | 2 | 3.75 ns | 1.00 ns | 4.33 ns | 0.01 ns | 0.33 ns | 1.00 ns | 0.16 ns |
RS | 1 | 0.02 ns | 2.15 ns | 75.00 ** | 2.81 ns | 6.75 ns | 1.00 ns | 565.12 ** |
S | 2 | 15,922.90 ** | 340.98 ** | 7.72 ** | 73.32 ** | 6.32 * | 1.00 ns | 13.23 ** |
RS x S | 2 | 135.27 ** | 0.12 ns | 2.91 ns | 0.95 ns | 3.12 ns | 1.00 ns | 5.05 * |
CV (%) | 0.71 | 4.12 | 0.57 | 4.52 | 3.7 | 1.58 | 1.33 | |
CV (%) | 1.01 | 3.29 | 1.87 | 1.35 | 3.78 | 1.58 | 0.95 | |
Mean | 79.49 | 0.55 | 0.71 | 0.99 | 0.22 | 0.15 | 2.01 |
Rubi | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|
Hesperidin | Caffeic Acid | Chlorogenic Acid | Ferulic Acid | Sinaptic Acid | ||||||
RL | SC | RL | SC | RL | SC | RL | SC | RL | SC | |
0 | 54.51 aB * | 57.41 aA | 0.69 aA | 0.66 aB | 0.62 cA | 0.55 cB | 0.22 aB | 0.25 aA | 0.76 bA | 0.30 bB |
35 | 31.77 bB | 35.47 bA | 0.42 cB | 0.52 cA | 0.90 bA | 0.83 bB | 0.15 bB | 0.17 cA | 0.89 aB | 1.04 aA |
35D | 31.11 cB | 33.74 cA | 0.52 bB | 0.56 bA | 1.25 aA | 1.26 aA | 0.16 bB | 0.18 bA | 0.87 aB | 1.07 aA |
Naringerin | p-Coumaric | |||||||||
RL | SC | 0 | 35 | 35D | RL | SC | 0 | 35 | 35D | |
0.35 b | 0.38 a | 0.48 a | 0.33 b | 0.28 c | 0.19 a | 0.18 a | 0.26 a | 0.14 b | 0.15 b | |
Sanguinea de Mombuca | ||||||||||
Hesperidin | Naringerin | Caffeic Acid | p-Coumaric | Sinaptic Acid | ||||||
RL | SC | RL | SC | RL | SC | RL | SC | RL | SC | |
0 | 72.35 aA * | 64.06 aB | 0.41 aB | 0.44 aA | 0.43 aB | 0.62 aA | 0.20 aB | 0.27 aA | 0.82 bA | 0.57 bB |
35 | 34.92 cA | 35.02 cA | 0.19 cB | 0.24 bA | 0.38 cB | 0.43 cA | 0.13 bB | 0.16 bA | 0.78 bB | 0.92 aA |
35D | 37.61 bA | 36.97 bA | 0.24 bA | 0.24 bA | 0.41 bB | 0.48 bA | 0.14 bB | 0.16 bA | 0.90 aA | 0.90 aA |
Chlorog | Ferul | |||||||||
RL | SC | 0 | 35 | 35D | RL | SC | 0 | 35 | 35D | |
0.72 b | 0.89 a | 0.54 c | 0.86 b | 1.03 a | 0.17 a | 0.19 a | 0.22 a | 0.15 c | 0.16 b |
Lue Gin Gong | ||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Hesperidin | Naringerin | Caffeic Acid | Chlorogenic Acid | |||||||||||
RL | SC | RL | SC | RL | SC | RL | SC | |||||||
0 | 99.24 aA | 97.39 aB | 0.61 aA | 0.55 aB | 0.62 aA | 0.63 bA | 1.00 aA | 0.85 bB | ||||||
35 | 48.83 cB | 53.44 bA | 0.43 bB | 0.45 bA | 0.61 bB | 0.64 bA | 0.96 bB | 1.01 aA | ||||||
35 E | 52.61 bB | 54.75 bA | 0.42 bA | 0.42 cA | 0.61 bB | 0.65 aA | 0.99 aA | 0.98 aA | ||||||
p-Coumaric Acid | Ferulic Acid | Sinaptic Acid | ||||||||||||
RL | SC | 0 | 35 | 35D | RL | SC | 0 | 35 | 35D | RL | SC | 0 | 35 | 35D |
0.21 a * | 0.22 a | 0.23 a | 0.22 b | 0.21 c | 0.14 b | 0.16 a | 0.16 a | 0.15 b | 0.15 b | 1.65 b | 2.04 a | 1.84 a | 1.85 a | 1.84 a |
Valencia Delta Seedless | ||||||||||||||
Hesperidin | Sinaptic Acid | Chlorogenic Acid | ||||||||||||
RL | SC | RL | SC | RL | SC | 0 | 35 | 35D | ||||||
0 | 122.80 aB | 131.42 aA | 2.20 aA | 1.87 aB | 1.01 a | 0.98 b | 0.94 b | 1.01 a | 1.03 a | |||||
35 | 55.88 cA | 52.83 bB | 2.17 bA | 1.85 aB | ||||||||||
35E | 59.84 bA | 54.17 bB | 2.17 bA | 1.87 aB | ||||||||||
Naringerin | Caffeic Acid | |||||||||||||
RL | SC | 0 | 35 | 35D | RL | SC | 0 | 35 | 35D | |||||
0.55 a * | 0.54 a | 0.70 a | 0.46 b | 0.47 b | 0.72 a | 0.71 a | 0.73 a | 0.70 b | 0.72 a | |||||
p-Coumaric Acid | Ferulic Acid | |||||||||||||
RL | SC | 0 | 35 | 35D | RL | SC | 0 | 35 | 35D | |||||
0.23 a | 0.22 a | 0.20 a | 0.21 b | 0.22 b | 0.15 a | 0.15 a | 0.15 a | 0.15 a | 0.15 a |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Martins, R.C.; Leonel, S.; Souza, J.M.A.; Lima, G.P.P.; Leonel, M.; Putti, F.F.; Monteiro, G.C.; Züge, P.G.Ü.; Napoleão, G.M.; Figueira, R.; et al. Profile of Bioactive Compounds in Orange Juice Related to the Combination of Different Scion/Rootstocks, Packaging and Storage. Horticulturae 2023, 9, 347. https://doi.org/10.3390/horticulturae9030347
Martins RC, Leonel S, Souza JMA, Lima GPP, Leonel M, Putti FF, Monteiro GC, Züge PGÜ, Napoleão GM, Figueira R, et al. Profile of Bioactive Compounds in Orange Juice Related to the Combination of Different Scion/Rootstocks, Packaging and Storage. Horticulturae. 2023; 9(3):347. https://doi.org/10.3390/horticulturae9030347
Chicago/Turabian StyleMartins, Rafaelly Calsavara, Sarita Leonel, Jackson Mirellys Azevedo Souza, Giuseppina Pace Pereira Lima, Magali Leonel, Fernando Ferrari Putti, Gean Charles Monteiro, Patrícia Graosque Ülguim Züge, Gabriel Maluf Napoleão, Ricardo Figueira, and et al. 2023. "Profile of Bioactive Compounds in Orange Juice Related to the Combination of Different Scion/Rootstocks, Packaging and Storage" Horticulturae 9, no. 3: 347. https://doi.org/10.3390/horticulturae9030347
APA StyleMartins, R. C., Leonel, S., Souza, J. M. A., Lima, G. P. P., Leonel, M., Putti, F. F., Monteiro, G. C., Züge, P. G. Ü., Napoleão, G. M., Figueira, R., & Filho, J. D. (2023). Profile of Bioactive Compounds in Orange Juice Related to the Combination of Different Scion/Rootstocks, Packaging and Storage. Horticulturae, 9(3), 347. https://doi.org/10.3390/horticulturae9030347