In Vitro Screening for Salinity Tolerance in Garden Pea (Pisum sativum L.)
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Material
2.2. In Vitro Salinity Conditions
2.3. Evaluation
2.4. Data Analysis
3. Results
3.1. Effect of NaCl Concentration on Seed Germination and Seedling Emergence
3.2. Effect of NaCl Concentration on Plant Growth
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Dos Santos, T.B.; Ribas, A.F.; de Souza, S.G.H.; Budzinski, I.G.F.; Domingues, D.S. Physiological responses to drought, salinity, and heat stress in plants: A Review. Stresses 2022, 2, 9. [Google Scholar] [CrossRef]
- Lee, X.; Yang, F.; Xing, Y.; Huang, Y.; Xu, L.; Liu, Z.; Holtzman, R.; Kan, I.; Li, Y.; Zhang, L.; et al. Use of biochar to manage soil salts and water: Effects and mechanisms. Catena 2022, 211, 106018. [Google Scholar] [CrossRef]
- Alharbi, K.; Al-Osaimi, A.A.; Alghamdi, B.A. Sodium chloride (NaCl)-induced physiological alteration and oxidative stress generation in Pisum sativum (L.): A Toxicity Assessment. ACS Omega 2022, 7, 20819–20832. [Google Scholar] [CrossRef]
- Piwowarczyk, B.; Tokarz, K.; Kamin´ska, I. Responses of grass pea seedlings to salinity stress in In vitro culture conditions. Plant Cell Tissue Organ. Cult. 2016, 124, 227–240. [Google Scholar] [CrossRef]
- Food and Agriculture Organization of the United Nations. World Soil Day: FAO Highlights the Threat of Soil Salinization to Global Food Security 2021; FAO: Rome, Italy, 2021. [Google Scholar]
- Dahl, W.J.; Foster, L.M.; Tyler, R.T. Review of the health benefits of peas (Pisum sativum L.). Br. J. Nutr. 2012, 108 (Suppl. 1), S3–S10. [Google Scholar] [CrossRef] [Green Version]
- Kumari, T.; Deka, S.C. Potential health benefits of garden pea seeds and pods: A review. Legume Sci. 2021, 3, e82. [Google Scholar] [CrossRef]
- Nadeem, M.; Li, J.; Yahya, M.; Wang, M.; Ali, A.; Cheng, A.; Wang, X.; Ma, C. Grain Legumes and Fear of salt stress: Focus on mechanisms and management strategies. Int. J. Mol. Sci. 2019, 20, 799. [Google Scholar] [CrossRef] [Green Version]
- Gupta, B.; Huang, B. Mechanism of salinity tolerance in plants: Physiological, biochemical, and molecular characterization. Int. J. Genom. 2014, 2014, 701596. [Google Scholar] [CrossRef] [Green Version]
- Yang, Y.; Guo, Y. Elucidating the molecular mechanisms mediating plant salt-stress responses. New Phytol. 2018, 217, 523–539. [Google Scholar] [CrossRef] [Green Version]
- Ouerghi, K.; Abdi, N.; Maazaoui, H.; Hmissi, I.; Bouraoui, M.; Sifi, B. Physiological and morphological characteristics of pea (Pisum sativum L.) seeds under salt stress. J. New Sci. Agric. Biotechnol. 2016, 28, 1559–1565. [Google Scholar]
- Tokarz, K.M.; Wesołowski, W.; Tokarz, B.; Makowski, W.; Wysocka, A.; Jedrzejczyk, R.J.; Chrabaszcz, K.; Malek, K.; Kostecka-Gugała, A. Stem photosynthesis—A key element of grass pea (Lathyrus sativus L.) Acclimatisation to salinity. Int. J. Mol. Sci. 2021, 22, 685. [Google Scholar] [CrossRef] [PubMed]
- Manchanda, G.; Garg, N. Salinity and its effects on the functional biology of Legumes. Acta Physiol. Plant. 2008, 30, 595–618. [Google Scholar] [CrossRef]
- Toker, C.; Lluch, C.; Tejera, N.A.; Siddique, K.H.M. Abiotic Stresses. In Chickpea Breeding and Management; Yadav, S.S., Redden, R., Chen, W., Sharma, B., Eds.; CAB International: Wallingford, UK, 2007; pp. 474–496. [Google Scholar]
- Flowers, T.J.; Gaur, P.M.; Gowda, C.L.L.; Krishnamurthy, L.; Samineni, S.; Siddique, K.H.M.; Turner, N.C.; Vadez, V.; Varshney, R.K.; Colmer, T.D. Salt sensitivity in chickpea. Plant Cell Environ. 2009, 33, 490–509. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Queiros, F.; Fidalgo, F.; Santos, I.; Salema, R. In vitro selection of salt tolerant cell lines in Solanum tuberosum L. Biol. Plant. 2007, 51, 728–734. [Google Scholar] [CrossRef]
- Maamouri, A.; Trifa, Y.; Kouki, K.; Aounallah, K.; Karmous, C. In vitro culture used for screening salt stress tolerant lettuce cultivars. Acta Hort. 2012, 936, 477–484. [Google Scholar] [CrossRef]
- Raoufi, A.; Salehi, H.; Rahemi, M.; Shekafandeh, A.; Khalili, S. In vitro screening: The best method for salt tolerance selection among pistachio rootstocks. J. Saudi Soc. Agric. Sci. 2021, 20, 146–154. [Google Scholar] [CrossRef]
- Wang, W.; Vinocur, B.; Altman, A. Plant responses to drought, salinity and extreme temperatures: Towards genetic engineering for stress tolerance. Planta 2003, 218, 1–14. [Google Scholar] [CrossRef]
- Sattar, F.A.; Hamooh, B.T.; Wellman, G.; Ali, M.A.; Shah, S.H.; Anwar, Y.; Mousa, M.A.A. Growth and biochemical responses of potato cultivars under In vitro Lithium Chloride and Mannitol simulated salinity and drought stress. Plants 2021, 10, 924. [Google Scholar] [CrossRef]
- Stanisavljevic, N.; Savic, J.; Jovanovic, Z.; Miljus-Djukic, J.; Radovic, S.; Vinterhalter, D.; Vinterhalter, B. Antioxidative-related enzyme activity in Alyssum markgrafii shoot cultures as affected by nickel level. Acta Physiol. Plant. 2012, 34, 1997–2006. [Google Scholar] [CrossRef]
- Miljuš-Djukić, J.; Stanisavljević, N.; Radović, S.; Jovanović, Ž.; Mikić, A.; Maksimović, V. Differential response of three contrasting pea (Pisum arvense, P. sativum and P. fulvum) species to salt stress: Assessment of variation in antioxidative defence and miRNA expression. Aust. J. Crop Sci. 2013, 7, 2145–2153. [Google Scholar]
- Khosravi, Z.; Pourmohammad, A.; Aliloo, A.; Shahabivand, S.; Hassanpouraghdam, M.B.; Topçu, H. In vitro salinity stress mediates grass pea genotypes’ (Lathyrus sativus L.) responses. Turk. J. Agric. For. 2022, 46, 340–351. [Google Scholar] [CrossRef]
- Rai, M.K.; Jaiswal, V.S.; Jaiswal, U. Regeneration of plantlets of guava (Psidium guajava L.) from somatic embryos developed under salt-stress condition. Acta Physiol. Plant. 2010, 32, 1055–1062. [Google Scholar] [CrossRef]
- El Sayed, H.; Sayed, A.E. Isolation and characterization of NaCl resistant callus line of field pea (Pisum sativum L.) to salinity. Agric. Biol. J. N. Am. 2011, 2, 964–973. [Google Scholar] [CrossRef]
- Tran, T.T.; Bui, V.T.; Tran, H.T. Effect of drought stress and thermal pre-treatment on the In vitro shoot development of Solanum lycopersicum L. Chem. Eng. Trans. 2020, 78, 229–234. [Google Scholar]
- Murashige, T.; Skoog, F. A revised medium for rapid growth and bioassays with tobacco tissue culture. Physiol. Plant. 1965, 15, 473–497. [Google Scholar] [CrossRef]
- Gamborg, O.L.; Miller, R.A.; Ojima, K. Nutrient requirements of suspension cultures of soybean root cells. Exp. Cell Res. 1968, 50, 151–158. [Google Scholar] [CrossRef]
- Ismail, L.M.; Soliman, M.I.; Abd El-Aziz, M.H.; Abdel-Aziz, H.M.M. Impact of silica ions and nano silica on growth and productivity of pea plants under salinity stress. Plants 2022, 11, 494. [Google Scholar] [CrossRef]
- Khan, M.A.H.; Baset Mia, M.A.; Quddus, M.A.; Sarker, K.K.; Rahman, M.; Skalicky, M.; Brestic, M.; Gaber, A.; Alsuhaibani, A.M.; Hossain, A. Salinity-induced physiological changes in pea (Pisum sativum L.): Germination rate, biomass accumulation, relative water content, seedling vigor and salt tolerance index. Plants 2022, 11, 3493. [Google Scholar] [CrossRef]
- Ehtaiwwesh, A.F.; Emsahel, M.J. Impact of salinity stress on germination and growth of pea (Pisum sativum L.) plants. Al-Mukhtar J. Sci. 2020, 35, 146–159. [Google Scholar] [CrossRef]
- Tokarz, B.; Wójtowicz, T.; Makowski, W.; Jedrzejczyk, R.J.; Tokarz, K.M. What is the difference between the response of grass pea (Lathyrus sativus L.) to salinity and drought stress?—A physiological study. Agronomy 2020, 10, 833. [Google Scholar] [CrossRef]
- Okcu, G.; Kaya, M.D.; Atak, M. Effects of salt and drought stresses on germination and seedling growth of pea (Pisum sativum L.). Turk. J. Agric. For. 2005, 29, 237–242. [Google Scholar]
- Kaya, M.; Kaya, G.; Kaya, M.D.; Atak, M. Interaction between seed size and NaCl on germination and early seedling growth of some Turkish cultivars of chickpea (Cicer arietinum L.). J. Zhejiang Univ. Sci. B 2008, 9, 371–377. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Talukdar, D. Morpho-physiological responses of grass pea (Lathyrus sativus L.) genotypes to salt stress at germination and seedling stages. Legume Res. 2011, 34, 232–241. [Google Scholar]
- Verslues, P.E.; Agarwal, M.; Katiyar-Agarwal, S.; Zhu, J.; Zhu, J.K. Methods and concepts in quantifying resistance to drought, salt and freezing, abiotic stresses that affect plant water status. Plant J. 2006, 45, 523–539. [Google Scholar] [CrossRef] [PubMed]
- Alam, M.Z.; Stuchbury, T.; Naylor, R.E.L. Effect of NaCl and PEG induced osmotic potentials on germination and early seedling growth of rice cultivars differing in salt tolerance. Pak. J. Biol. Sci. 2002, 5, 1207–1210. [Google Scholar] [CrossRef] [Green Version]
- Ishrat, F.; Afrasiab, H.; Bareen, F. Effects of salinity stress on growth and physio-biochemical parameters of three pea (Pisum sativum L.) cultivars of different maturity duration. Adv. Life Sci. 2022, 9, 380–391. [Google Scholar]
- Zaki, H.E.M.; Yokoi, S. A comparative In vitro study of salt tolerance in cultivated tomato and related wild species. Plant Biotechnol. 2016, 33, 361–372. [Google Scholar] [CrossRef] [Green Version]
- Ghezal, N.; Rinez, I.; Sbai, H.; Saad, I.; Farooqd, M.; Rinez, A.; Zribi, I.; Haouala, R. Improvement of Pisum sativum salt stress tolerance by bio-priming their seeds using Typha angustifolia leaves aqueous extract. S. Afr. J. Bot. 2016, 105, 240–250. [Google Scholar] [CrossRef]
- Datta, J.K.; Nag, S.; Banerjee, A.; Mondal, N.K. Impact of salt stress on five varieties of wheat (Triticum aestivum L.) cultivars under laboratory condition. J. Appl. Sci. Environ. Manag. 2006, 13, 93–97. [Google Scholar]
- Foti, C.; Khah, E.M.; Pavli, O.I. Germination profiling of lentil genotypes subjected to salinity stress. Plant Biol. 2019, 21, 481–486. [Google Scholar] [CrossRef] [Green Version]
- Farooq, M.; Wahid, A.; Kobayashi, N.; Fujita, D.; Basra, S.M.A. Plant drought stress: Effects, mechanisms and management. In Sustain. Agric.; Springer: Berlin/Heidelberg, Germany, 2009; pp. 153–188. [Google Scholar]
- Attia, H. Physiological responses of pea plants to salinity and Gibberellic acid. Phyton 2023, 92, 149–164. [Google Scholar] [CrossRef]
Genotype | Description |
---|---|
Denitsa | Early variety with wrinkled and light green seeds, TSW * 157 g |
Eco | Introduced, mid-early variety, afila leaves, round, smooth, and cream seeds, TSW 187 g |
Flora 6 | Mid-early variety with wrinkled, green seeds, TSW 126 g |
Hebar | Mid-early variety with wrinkled, light green seeds, TSW 166 g |
Kazino af. | Introduced, mid-early variety, afila leaves, round, smooth, and cream seeds, TSW 187 g |
L_1857 | Mid-early breeding line, wrinkled, and dark green seeds, TSW 161 g |
L_22/16 | Mid-early breeding line, round, smooth, and cream green seeds, weight 173 g |
L_22/16 af. | Mid-early breeding line, afila leaves, round, smooth, and cream green seeds, TSW 176 g |
L_6100 | Mid-early breeding line, wrinkled, and grayish green seeds, TSW 129 g |
Marsi | Mid-early variety with wrinkled, greenish seeds, TSW 190 g |
Mira | Late variety with wrinkled, greenish seeds, TSW 150 g |
Musala | Early variety with wrinkled, cream seeds, TSW 148 g |
Paldin | Mid-early variety with wrinkled, green seeds, TSW 201 g |
Pl. perla | Late variety with wrinkled, cream green seeds, TSW 168 g |
Plovdiv | Mid-early variety with wrinkled, green seeds, TSW 136 g |
Prometey | Late variety with wrinkled, dark green seeds, TSW 142 g |
Ran 1 | Early, local variety with spherical, smooth, and green seeds, TSW 213 g |
Skinado | Introduced, mid-early variety, wrinkled, and green seeds, TSW 149 g |
Uspeh 72 | Late variety with wrinkled, cream seeds, TSW 151 g |
Vechernitsa | Late variety with wrinkled, green seeds, TSW 102 g |
Vyatovo | Late variety with wrinkled, green seeds, TSW 40 g |
Zornitsa | Early variety with spherical, smooth, and green seeds, TSW 173 g |
Source of Variation | Relative Effect Size (% of Total Variance) | ||||
---|---|---|---|---|---|
SG | ER | SL | RL | PFW | |
Factor A | 6.78 *** | 7.78 *** | 15.30 *** | 19.57 *** | 14.56 *** |
Factor B | 59.80 *** | 63.58 *** | 66.67 *** | 58.55 *** | 65.41 *** |
A x B | 8.72 *** | 8.44 *** | 7.55 *** | 10.07 *** | 8.86 *** |
Error | 24.37 | 20.21 | 10.48 | 11.80 | 11.17 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Grozeva, S.; Kalapchieva, S.; Tringovska, I. In Vitro Screening for Salinity Tolerance in Garden Pea (Pisum sativum L.). Horticulturae 2023, 9, 338. https://doi.org/10.3390/horticulturae9030338
Grozeva S, Kalapchieva S, Tringovska I. In Vitro Screening for Salinity Tolerance in Garden Pea (Pisum sativum L.). Horticulturae. 2023; 9(3):338. https://doi.org/10.3390/horticulturae9030338
Chicago/Turabian StyleGrozeva, Stanislava, Slavka Kalapchieva, and Ivanka Tringovska. 2023. "In Vitro Screening for Salinity Tolerance in Garden Pea (Pisum sativum L.)" Horticulturae 9, no. 3: 338. https://doi.org/10.3390/horticulturae9030338
APA StyleGrozeva, S., Kalapchieva, S., & Tringovska, I. (2023). In Vitro Screening for Salinity Tolerance in Garden Pea (Pisum sativum L.). Horticulturae, 9(3), 338. https://doi.org/10.3390/horticulturae9030338