Elucidation of Physio-Biochemical Changes in Citrus spp. Incited by Xanthomonas citri pv. citri
Abstract
:1. Introduction
2. Materials and Methods
2.1. The Site Conditions and Plant Material
2.2. Leaf Gas Exchange Parameters
2.3. Stomatal Observations
2.4. Chlorophyll Contents
2.5. Antioxidant Enzyme Assay
Preparation of Enzyme Extract
Superoxide Dismutase (SOD) (EC 1.15.1.1)
Catalase (EC 1.11.1.6)
Guaiacol Peroxidase (EC 1.11.1.7)
Glutathione Reductase (GR) (EC 1.8.1.7)
2.6. Reactive Oxygen Species (Oxidative Stress)
2.6.1. Superoxide Radical (O2−)
2.6.2. Hydrogen Peroxide (H2O2)
Estimation of H2O2
2.7. Phenyl Ammonia Lyase (PAL) Activity
2.8. Soluble Protein Content
2.9. Total Phenolic Content (TPC) Content
2.10. Polyphenol Oxidase (PPO) Activity
2.11. Statistical Analysis
3. Results
3.1. Physiological Response of Different Citrus Genotypes to X. citri pv. citri Infection
3.2. Stomatal Density and Dimensions and Their Correlation with Disease Intensity
3.3. Protein and Total Phenol Content (TPC)
3.4. Antioxidant Enzyme (SOD, CAT, and GR) Activity
3.5. Reactive Oxygen Species
3.6. Phenyl Ammonia Lyase (PAL) Activity
3.7. Polyphenol Oxidase Activity (PPO)
4. Discussion
4.1. Physiological Response of Different Citrus Genotypes to X. citri pv. citri Infection
4.2. Comparison of Stomatal Distribution and Aperture Size between Resistant and Susceptible Genotypes of Citrus spp.
4.3. Biochemical Change in Different Citrus Genotypes during X. citri pv. citri Infection
4.3.1. Soluble Protein Content
4.3.2. Total Phenolic Content
4.3.3. Phenyl Ammonia Lyase Activity
4.3.4. Polyphenol Oxidase Activity
4.3.5. Reactive Oxygen Species
4.3.6. Antioxidant Enzyme Activity
Peroxidase Activity
Catalase, SOD, and GR Activity
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- FAOSTAT, 2019–2020, Statistics Division, Food and Agriculture Organization of the United Nations. Agriculture Statistics; Food and Agriculture Organization of the United Nations: Rome, Italy, 2020. [Google Scholar]
- MOAFW, 2021–2022, Final Estimates of 2020-21 and First Advance Estimates of 2021-22 of Area and Production of Horticultural Crops. Available online: https://agricoop.nic.in/en/StatHortEst#gsc.tab=0 (accessed on 31 December 2022).
- APEDA. 2021. Available online: https://agriexchange.apeda.gov.in/InternationalProductions/International_Prodtion.aspx?ProductCode=0497 (accessed on 31 December 2022).
- Workman, D. Lemons and Limes Exporters by Country. 2021. Available online: https://www.worldstopexports.com/lemons-exporters-by-country (accessed on 31 December 2022).
- Rattanpal, H.S.; Singh, G.; Singh, S.; Arora, A. Citrus Cultivation in Punjab; Punjab Agricultural University: Ludhiana, India, 2017. [Google Scholar]
- Schubert, T.S.; Rizvi, S.A.; Sun, X.; Gottwald, T.R.; Graham, J.H.; Dixon, W.N. Meeting the challenge of eradicating citruscanker in Florida—Again. Plant Dis. 2001, 85, 340–356. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, L.; Li, J.; Zhang, Y.; Wang, N. Diffusible signal factor (DSF)-mediated quorum sensing modulates expression of diverse traits in Xanthomonas citri and responses of citrus plants to promote disease. BMC Genom. 2019, 20, 55. [Google Scholar] [CrossRef] [PubMed]
- Lee, H.A. Further data on the susceptibility of rutaceous plants to citrus-canker. J. Agric. Res. 1918, 15, 661–665. [Google Scholar]
- Gottwald, T.R.; Graham, J.H.; Civerolo, E.L.; Barrett, H.C.; Hearn, C.J. Differential host range reaction of citrus and citrus relatives to citrus canker and citrus bacterial spot determined by leaf mesophyll susceptibility. Plant Dis. 1993, 77, 1004–1009. [Google Scholar] [CrossRef]
- Viloria, Z.; Drouillard, D.L.; Graham, J.H.; Grosser, J.W. Screening triploid hybrids of Lakeland’ limequat for resistance to citrus canker. Plant Dis. 2004, 88, 1056–1060. [Google Scholar] [CrossRef] [Green Version]
- Khalaf, A.; Moore, G.A.; Jones, J.B.; Gmitter, F.G., Jr. New insights into the resistance of Nagami kumquat to canker disease. Physiol. Mol. Plant Pathol. 2007, 71, 240–250. [Google Scholar] [CrossRef]
- Francis, M.I.; Peña, A.; Graham, J.H. Detached leaf inoculation of germplasm for rapid screening of resistance to citrus canker and citrus bacterial spot. Eur. J. Plant Pathol. 2010, 127, 571–578. [Google Scholar] [CrossRef]
- Dewdney, M.; Graham, J. Florida Citrus Pest Management Guide: Citrus Canker (EDIS); The Institute of Food and Agricultural Sciences (IFAS) University of Florida: Gainesville, FL, USA, 2014; p. 182. [Google Scholar]
- Moreira, R.R.; Machado, F.J.; Lanza, F.E.; Trombin, V.G.; Bassanezi, R.B.; Miranda, M.P.; Barbosa, J.C.; Junior, G.J.S.; Behlau, F. Impact of diseases and pests on premature fruit drop in sweet orange orchards in São Paulo state citrus belt, Brazil. Pest Manag. Sci. 2022, 78, 2643–2656. [Google Scholar] [CrossRef]
- Gottwald, T.R.; Graham, J.H.; Schubert, T.S. Citrus canker: The pathogen and its impact. Plant Health Prog. 2002, 3, 15. [Google Scholar] [CrossRef] [Green Version]
- Kobayashi, A.K.; Vieira, L.G.E.; Bespalhok Filho, J.C.; Leite, R.P.; Pereira, L.F.P.; Molinari, H.B.C.; Marques, V.V. Enhanced resistance to citrus canker in transgenic sweet orange expressing the sarcotoxin IA gene. Eur. J. Plant Pathol. 2017, 149, 865–873. [Google Scholar] [CrossRef] [Green Version]
- Bock, C.H.; Graham, J.H.; Gottwald, T.R.; Cook, A.Z.; Parker, P.E. Windspeed andwind-associated leaf injury affect severity of citrus canker on Swingle citrumelo. Eur. J. Plant Pathol. 2010, 128, 21–38. [Google Scholar] [CrossRef]
- Pruvost, O.; Boher, B.; Brocherieux, C.; Nicole, M.; Chiroleu, F. Survival of Xanthomonas axonopodis pv. citri in leaf lesions under tropical environmental conditions and simulated splash dispersal of inoculum. Phytopathology 2002, 92, 336–346. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Melotto, M.; Underwood, W.; He, S.Y. Role of stomata in plant innate immunity and foliar bacterial diseases. Annu. Rev. Phytopathol. 2008, 46, 101. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rigano, L.A.; Siciliano, F.; Enrique, R.; Sendín, L.; Filippone, P.; Torres, P.S.; Qüesta, J.; Dow, J.M.; Castagnaro, A.P.; Vojnov, A.A.; et al. Biofilm formation, epiphytic fitness, and canker development in Xanthomonas axonopodis. pv. citri. Mol. Plant Microbe. Interact. 2007, 20, 1222–1230. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vojnov, A.A.; Marano, M.R. Biofilm formation and virulence in bacterial plant pathogens. In Virulence Mechanisms of Plant Pathogenic Bacteria; The American Phytopathological Society: St. Paul, MN, USA, 2015; pp. 1–492. [Google Scholar]
- Gonçalves-Zuliani, A.M.O.; Cardoso, K.A.K.; Belasque Junior, J.; Zanutto, C.A.; Hashiguti, H.T.; Bock, C.H.; Nakamura, C.V.; Nunes, W.M.D.C. Reaction of detached leaves from different varieties of sweet orange to inoculation with Xanthomonas citri pv.citri. Summa Phytopathol. 2016, 42, 125–133. [Google Scholar] [CrossRef]
- Teper, D.; Xu, J.; Li, J.; Wang, N. The immunity of Meiwa kumquat against Xanthomonas citri is associated with a known susceptibility gene induced by a transcription activator-like effector. PLoS Pathog. 2020, 16, e1008886. [Google Scholar] [CrossRef]
- Wang, Y.; Fu, X.Z.; Liu, J.H.; Hong, N. Differential structure and physiological response to canker challenge between‘ Meiwa’ kumquat and ‘Newhall’ navel orange with contrasting resistance. Sci. Hortic. 2011, 128, 115–123. [Google Scholar] [CrossRef]
- Beaulieu, J.M.; Leitch, I.J.; Patel, S.; Pendharkar, A.; Knight, C.A. Genome size is a strong predictor of cell size and stomatal density in angiosperms. New Phytol. 2008, 179, 975–986. [Google Scholar] [CrossRef] [Green Version]
- Duan, S.; Long, Y.; Cheng, S.; Li, J.; Ouyang, Z.; Wang, N. Rapid evaluation of the resistance of citrus germplasms against Xanthomonas citri subsp. citri. Phytopathology 2022, 112, 765–774. [Google Scholar] [CrossRef]
- Licciardello, G.; Caruso, P.; Bella, P.; Boyer, C.; Smith, M.W.; Pruvost, O.; Robene, I.; Cubero, J.; Catara, V. Pathotyping citrus ornamental relatives with Xanthomonas citri pv. citri and X. citri pv. aurantifolii refines our understanding of their susceptibility to these pathogens. Microorganisms 2022, 10, 986. [Google Scholar] [CrossRef]
- Dutton, C.; Horak, H.; Hepworth, C.; Mitchell, A.; Ton, J.; Hunt, L.; Gray, J.E. Bacterial infection systemically suppresses stomatal density. Plant Cell Environ. 2019, 42, 2411–2421. [Google Scholar] [CrossRef] [Green Version]
- Thordal-Christensen, H. Fresh insights into processes of non-host resistance. Curr. Opin. Plant Biol. 2003, 6, 351–357. [Google Scholar] [CrossRef]
- Molina, L.; Kahmann, R. An ustilago may disgene involved in H2O2 detoxification is required for virulence. Plant Cell 2007, 19, 2293–2309. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Peters, L.P.; Carvalho, G.; Vilhena, M.B.; Creste, S.; Azevedo, R.A.; Monteiro-Vitorello, C.B. Functional analysis of oxidative burstin sugarcane smut-resistant and-susceptible genotypes. Planta 2017, 245, 749–764. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pitino, M.; Armstrong, C.M.; Duan, Y. Rapid screening for citrus canker resistance employing pathogen-associated molecular pattern- triggered immunity responses. Hortic. Res. 2015, 2, 15042. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, G.; Sheng, X.; Greenshields, D.L.; Ogieglo, A.; Kaminskyj, S.; Selvaraj, G.; Wei, Y. Profiling of wheat class III peroxidase genes derived from powdery mildew-attacked epidermis reveals distinct sequence- associated expression patterns. Mol. Plant Microbe. Interact. 2005, 18, 730–741. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Han, F.P.; Fedak, G.; Ouellet, T.; Dan, H.; Somers, D.J. Mapping of genes expressed in Fusarium graminearum-infected heads of wheat cultivar‘ Frontana’. Genome 2005, 48, 88–96. [Google Scholar] [CrossRef]
- Passardi, F.; Penel, C.; Dun, C. Performing the paradoxical: How plant peroxidases modify the cell wall. Trends Plant Sci. 2004, 9, 534–540. [Google Scholar] [CrossRef] [PubMed]
- Schweizer, P. Tissue-specific expression of a defence-related peroxidase in transgenic wheat potentiates cell death in pathogen-attacked leaf epidermis. Mol. Plant Pathol. 2008, 9, 45–57. [Google Scholar] [CrossRef]
- Mittler, R.; Herr, E.H.; Orvar, B.L.; VanCamp, W.; Willekens, H.; Inzé, D.; Ellis, B.E. Transgenic tobacco plants with reduced capability to detoxify reactive oxygen intermediates are hyper responsive to pathogen infection. Proc. Natl. Acad. Sci. USA 1999, 96, 14165–14170. [Google Scholar] [CrossRef] [Green Version]
- Ma, W.; Pang, Z.; Huang, X.; Xu, J.; Pandey, S.S.; Li, J.; Achor, D.S.; Vasconcelos, F.N.C.; Hendrich, C.; Huang, Y.; et al. Citrus Huanglongbing is a pathogen-triggered immune disease that can be mitigated with antioxidants and gibberellin. Nat. Commun. 2022, 13, 529. [Google Scholar] [CrossRef]
- Barna, B.; Fodor, J.; Harrach, B.D.; Pogány, M.; Király, Z. The Janus face of reactive oxygen species in resistance and susceptibility of plants to necrotrophic and biotrophic pathogens. Plant Physiol. Biochem. 2012, 59, 37–43. [Google Scholar] [CrossRef]
- Apel, K.; Hirt, H. Reactive oxygen species: Metabolism, oxidative stress, and signal transduction. Annu. Rev. Plant Biol. 2004, 55, 373–399. [Google Scholar] [CrossRef] [Green Version]
- Torres, M.A. ROS in biotic interactions. Physiol. Plant 2010, 138, 414–429. [Google Scholar] [CrossRef]
- Aviello, G.; Knaus, U.G. NADPH oxidases and ROS signaling in the gastrointestinal tract. Mucosal. Immunol. 2018, 11, 1011–1023. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Peters, L.P.; Carvalho, G.; Martins, P.F.; Dourado, M.N.; Vilhena, M.B.; Pileggi, M.; Azevedo, R.A. Differential responses of the antioxidant system of ametryn and clomazone tolerant bacteria. PLoS ONE 2014, 9, e112271. [Google Scholar] [CrossRef] [PubMed]
- Wojtaszek, P. Oxidative burst: A nearly plant response to pathogen infection. Biochem. J. 1997, 322, 681–692. [Google Scholar] [CrossRef] [Green Version]
- Kumar, N.; Ebel, R.C.; Roberts, P.D. H2O2 degradation is suppressed in kumquat leaves infected with Xanthomonas axonopodis. pv. citri. Sci. Hortic. 2011, 130, 241–247. [Google Scholar] [CrossRef]
- Voloudakis, A.E.; Marmey, P.; Delannoy, E.; Jalloul, A.; Martinez, C.; Nicole, M. Molecular cloning and characterizationof Gossypium hirsutum superoxide dismutase genes during cotton–Xanthomonas campestris pv. malvacearum interaction. Physiol. Mol. Plant Pathol. 2006, 68, 119–127. [Google Scholar] [CrossRef]
- Alscher, R.G.; Erturk, N.; Heath, L.S. Role of superoxide dismutases (SODs) in controlling oxidative stress in plants. J. Exp. Bot. 2002, 53, 1331–1341. [Google Scholar] [CrossRef] [PubMed]
- Babita, M.; Maheswari, M.; Rao, L.M.; Shanker, A.K.; Rao, D.G. Osmotic adjustment, drought tolerance and yield in castor (Ricinus communis L.) hybrids. Environ. Exp. Bot. 2010, 69, 243–249. [Google Scholar] [CrossRef]
- Cao, H.; Glazebrook, J.; Clarke, J.D.; Volko, S.; Dong, X. The Arabidopsis NPR1 gene that controls systemic acquired resistance encodes a novel protein containing ankyrin repeats. Cell 1997, 88, 57–63. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Quiroga, M.; Guerrero, C.; Botella, M.A.; Barceló, A.; Amaya, I.; Medina, M.I.; Alonso, F.J.; de Forchetti, S.M.; Tigier, H.; Valpuesta, V. A tomato peroxidase involved in the synthesis of lignin and suberin. Plant Physiol. 2000, 122, 1119–1128. [Google Scholar] [CrossRef] [Green Version]
- Myung, I.S.; Hyun, J.W.; Kim, K.S.; Lee, S.C.; Lim, H.C. Evaluation of Shiranuhi, a hybrid of Kiyomi tangor andNakano No. 3 Ponkan, for resistance to citrus canker in growth chamber. Plant Pathol. J. 2003, 19, 253–256. [Google Scholar] [CrossRef] [Green Version]
- Shiotani, H.; Yoshioka, T.; Yamamoto, M.; Matsumoto, R. Susceptibility to citrus canker caused by Xanthomonas axonopodis. pv. citri depends on the nuclear genome of the host plant. J. Gen. Plant Pathol. 2008, 74, 133–137. [Google Scholar] [CrossRef] [Green Version]
- Ishihara, H.; Uchida, S.; Masuda, Y.; Tamura, K.; Tsuyumu, S. Increase in telomerase activity in citrus inoculated with Xanthomonas axonopodis. pv. citri. J. Gen. Plant Pathol. 2004, 70, 218–220. [Google Scholar] [CrossRef]
- Khalaf, A.A.; Gmitter, F.G.; Conesa, A.; Dopazo, J.; Moore, G.A. Fortunella margarita transcriptional reprogramming triggered by Xanthomonas citri pv. citri. BMC Plant Biol. 2011, 11, 159. [Google Scholar] [CrossRef] [Green Version]
- Li, Y.; Peng, Q.; Selimi, D.; Wang, Q.; Charkowski, A.O.; Chen, X.; Yang, C.H. The plant phenolic compound p-coumaric acid represses gene expression in the Dickeya dadantii type III secretion system. Appl. Environ. Microbiol. 2009, 75, 1223–1228. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nayem, S.A.; Chowdhury, M.S.M.; Sultana, N.; Masum, G.Z.H.; Rahman, M.S.; Jamal, M.A.H.M. Combined effect of salt stress and Xanthomonas axonopodis. pv.citri on citrus (Citrus aurantifolia). Heliyon 2020, 6, e03403. [Google Scholar] [CrossRef]
- Ehleringer, J.R.; Cerling, T.E. Atmospheric CO2 and the ratio of intercellular to ambient CO2 concentrations in plants. Tree. Physiol. 1995, 15, 105–111. [Google Scholar] [CrossRef]
- Sampson, J. A method of replicating dry or moist surfaces for examination by light microscopy. Nature 1961, 191, 932–933. [Google Scholar] [CrossRef] [PubMed]
- Hiscox, J.D.; Israelstam, G.F. A method for the extraction of chlorophyll from leaf tissue without maceration. Canad J. Bot. 1979, 57, 1332–1334. [Google Scholar] [CrossRef]
- Dhindsa, R.S.; Plumb-Dhindsa, P.; Thorpe, T.A. Leaf senescence: Correlated with increased levels of membrane permeability and lipid peroxidation, and decreased levels of superoxide dismutase and catalase. J. Exp. Bot. 1981, 32, 93–101. [Google Scholar] [CrossRef]
- Aebi, H. Catalase in vitro. In Methods in Enzymology; Academic Press: Cambridge, MA, USA, 1984; Volume 19, pp. 121–126. [Google Scholar]
- Thomas, R.L.; Jen, J.J.; Morr, C.V. Changes in soluble and bound peroxidase-IAA oxidase during tomato fruit development. J. Food Sci. 1982, 47, 158–161. [Google Scholar] [CrossRef]
- Smith, I.K.; Vierheller, T.L.; Thorne, C.A. Assay of glutathione reductase in crude tissue homogenates using 5,5′-dithiobis (2-nitrobenzoicacid). Anal. Biochem. 1988, 175, 408–413. [Google Scholar] [CrossRef] [PubMed]
- Chaitanya, K.K.; Naithani, S.C. Role of superoxide, lipid peroxidation and superoxide dismutase in membrane perturbation during loss of viability in seeds of Shorear obusta Gaertn. f. New Phytol. 1994, 126, 623–627. [Google Scholar] [CrossRef]
- Rao, M.V.; Paliyath, G.; Ormrod, D.P. Ultraviolet -B- and ozone-induced biochemical changes in antioxidant enzymes of Arabidopsis thaliana. Plant Physiol. 1996, 110, 125–136. [Google Scholar] [CrossRef] [Green Version]
- Teranishi, Y.; Tanaka, A.; Osumi, M.; Fukui, S. Catalase activities of hydrocarbon-utilizing Candida yeasts. Agric. Biol. Chem. 1974, 38, 1213–1220. [Google Scholar] [CrossRef]
- Edward, E.A.; Kessmann, H. Isoflavonoids phytoalexins and their biosynthesis enzymes. In Moecular Plant Pathology: A Practical Approach; Gurr, S.J., McPherson, M.J., Bowles, D.J., Eds.; Oxford University Press: Oxford, UK, 1992; pp. 45–62. [Google Scholar]
- Bradford, M.M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 1976, 72, 248–254. [Google Scholar] [CrossRef]
- Emmons, C.L.; Peterson, D.M.; Paul, G.L. Antioxidant capacity of oat (Avena sativa L.) extracts. 2. In vitro antioxidant activity and contents of phenolic and tocol antioxidants. J. Agric. Food Chem. 1999, 47, 4894–4898. [Google Scholar] [CrossRef]
- Singleton, V.L.; Orthofer, R.; Lamuela-Raventós, R.M. Analysis of total phenols and other oxidation substrates and antioxidants by means of folin-ciocalteu reagent. In Methods in Enzymology; Academic Press: Cambridge, MA, USA, 1999; Volume 299, pp. 152–178. [Google Scholar]
- Kar, M.; Mishra, D. Catalase, peroxidase, and polyphenol oxidase activities during rice leaf senescence. Plant Physiol. 1976, 57, 315–319. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bolwell, G.P.; Wojtaszek, P. Mechanisms for the generation of reactive oxygen species in plant defence–abroad perspective. Physiol. Mol. Plant Pathol. 1997, 51, 347–366. [Google Scholar] [CrossRef]
- Guo, D.P.; Guo, Y.P.; Zhao, J.P.; Liu, H.; Peng, Y.; Wang, Q.M.; Chen, J.S.; Rao, G.Z. Photosynthetic rate and chlorophyll fluorescence in leaves of stem mustard (Brassica juncea var. tsatsai) after turnip mosaic virus in fection. Plant Sci. 2005, 168, 57–63. [Google Scholar] [CrossRef]
- Funayama, S.; Hikosaka, K.; Yahara, T. Effects of virus infection and growth irradiance on fitness components and photosynthetic properties of Eupatorium makinoi (Compositae). Am. J. Bot. 1997, 84, 823–829. [Google Scholar] [CrossRef]
- Sayed, O.H. Chlorophyll fluorescence as a tool in cereal crop research. Photosynthetica 2003, 41, 321–330. [Google Scholar] [CrossRef]
- Farquhar, G.D.; Sharkey, T.D. Stomatal conductance and photosynthesis. Annu. Rev. Plant Physiol. 1982, 33, 317–345. [Google Scholar] [CrossRef]
- Berova, M.; Stoeva, N.; Zlatev, Z.; Stoilova, T.; Chavdarov, P. Physiological changes in bean (Phaseolus vulgaris L.) Leaves, infected by the most important bean disease. J. Cent. Eur. Agric. 2007, 8, 57–62. [Google Scholar]
- Garavaglia, B.S.; Thomas, L.; Gottig, N.; Dunger, G.; Garofalo, C.G.; Daurelio, L.D.; Ndimba, B.; Orellano, E.G.; Gehring, C.; Ottado, J. Aeukaryotic-acquired gene by abiotrophic phytopathogen allows prolonged survival on the host by counteracting the shut-down of plant photosynthesis. PLoS ONE 2010, 5, 8950. [Google Scholar] [CrossRef] [Green Version]
- Hameed, A.; Atiq, M.; Sahi, S.T.; Rajput, N.A.; Ahmed, Z.; Alam, M.W.; Alsamadany, H.; Alzahrani, Y.; Sarfraz, S.; Altaf, J.; et al. Biochemical base of resistance in citrus against canker disease. Pak. J. Agri. Sci. 2021, 58, 1850–1858. [Google Scholar]
- Rasoulnia, A.; Alavi, S.M.; Askari, H.; Farrokhi, N.; Soltani Najafabadi, M. Effects of Xanthomonas citri pv.citri infection on chlorophyll pigment content, chlorophyll fluorescence and proteins change in Citrus aurantifolia. J. Agric. Sci. Technol. 2018, 20, 571–582. [Google Scholar]
- Berger, S.; Sinha, A.K.; Roitsch, T. Plant physiology meets phytopathology: Plant primary metabolism and plant–pathogen interactions. J. Exp. Bot. 2007, 58, 4019–4026. [Google Scholar] [CrossRef]
- Melotto, M.; Underwood, W.; Koczan, J.; Nomura, K.; He, S.Y. Plant stomata functioning innate immunity against bacterial invasion. Cell 2006, 126, 969–980. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Niedz, R.P.; Doostdar, H.; McCollum, T.G.; McDonald, R.E.; Mayer, R.T. Plant defensive proteins and disease resistance in citrus. Proc. Fla. State Hortic. Soc. 1994, 107, 79–82. [Google Scholar]
- Dangl, J.L.; Jones, J.D. Plant pathogens and integrated defence responses to infection. Nature 2001, 411, 826–833. [Google Scholar] [CrossRef] [PubMed]
- Sharma, S.K.; Sharma, R.R. Citrus canker approaching century: A review. Tree Sci. Biotech. 2009, 2, 54–56. [Google Scholar]
- Li, X.; Zhao, C.; Li, H.; Zhu, W.; Ma, H.; Feng, H. Bacterial impact on H2O2 accumulation during the interaction between Xanthomonas and rice. Plant Prod. Sci. 2009, 12, 133–138. [Google Scholar] [CrossRef] [Green Version]
- Khan, K.; Ikram, S.; Ashfaq, M.; Jaskani, M.J.; Shafqat, W. Citrus rootstock characterization against citrus canker and evaluation of antibiotics effect against Xanthomonas axonopodis. pv. citri. J. Innov. Agric. 2021, 8, 1–8. [Google Scholar] [CrossRef]
- Taizand, Z. Photosynthesis: Physiological and ecological considerations. Plant Physiol. 2006, 9, 171–192. [Google Scholar]
- Lattanzio, V.; Lattanzio, V.M.; Cardinali, A. Role of phenolics in the resistance mechanisms of plants against fungal pathogens and insects. Phytochem. Adv. Res. 2006, 661, 23–67. [Google Scholar]
- Nicholson, R.L.; Hammerschmidt, R. Phenolic compounds and the role in disease resistance. Annu. Rev. Phytopathol. 1992, 30, 369–389. [Google Scholar] [CrossRef]
- Abid, M.; Khan, M.A.; Wahid, A. Screening and determinationofphenolicsinrelationtoresistanceagainstcitruscanker. Pak. J. Phytopathol. 2008, 20, 109–116. [Google Scholar]
- Raza, M.K.; Khan, M.M.; Naqvi, S.A.; Jaskani, M.J.; Mahmood, K.; Husnain, S.K. Efficacy of citrus rootstocks against citrus canker (Xanthomonas axonopod Dis. pv. citri) infestation. Pak. J. Phytopathol. 2016, 28, 241–247. [Google Scholar]
- Łaźniewska, J.; Macioszek, V.K.; Kononowicz, A.K. Plant-fungus interface: The role of surface structures in plant resistanceand susceptibility to pathogenic fungi. Physiol. Mol. Plant Pathol. 2012, 78, 24–30. [Google Scholar] [CrossRef]
- Dixon, R.A.; Paiva, N.L. Stress-induced phenylpropanoid metabolism. Plant Cell 1995, 7, 1085. [Google Scholar] [CrossRef]
- Droby, S.; Wisniewski, M.; Macarisin, D.; Wilson, C. Twenty years of postharvest biocontrol research: Is it time for a new paradigm? Postharvest. Biol. Technol. 2009, 52, 137–145. [Google Scholar] [CrossRef]
- Ballester, A.R.; Izquierdo, A.; Lafuente, M.T.; González-Candelas, L. Biochemical and molecular characterization of induced resistance against Penicillium digitatum in citrus fruit. Postharvest. Biol. Technol. 2010, 56, 31–38. [Google Scholar] [CrossRef] [Green Version]
- Ryals, J.A.; Neuenschwander, U.H.; Willits, M.G.; Molina, A.; Steiner, H.Y.; Hunt, M.D. Systemic acquired resistance. Plant Cell 1996, 8, 1809–1819. [Google Scholar] [CrossRef] [Green Version]
- Vidhyasekaran, P. Physiology of Disease Resistance in Plants; CRC Press, Inc.: Boca Raton, FL, USA, 1998; Volume 2. [Google Scholar]
- Kosuge, T. The role of phenolics in host response to infection. Annu. Rev. Phytopathol. 1969, 7, 195–222. [Google Scholar] [CrossRef]
- Woods, T.L.; Agrios, G.N. Inhibitory effects of a polyphenol-polyphenol oxidase system on the infectivity of cowpea. Phytopathology 1974, 64, 35–37. [Google Scholar] [CrossRef]
- Jiao, H.J.; Wang, S.Y.; Civerolo, E.L. Enzymatic activities of citrus leaves from plants reresistant and susceptible to citrus bacterial canker disease. Env. Exp. Bot. 1992, 32, 465–470. [Google Scholar] [CrossRef]
- Bakhtawar, F.; Wang, X.; Manan, A.; Iftikhar, Y.; Atta, S.; Bashir, M.A.; Mubeen, M.; Sajid, A.; Hannan, A.; Hashem, M.; et al. Biochemical characterization of citrus Bentleaf viroid infecting citrus cultivars. J. King Saud. Univ. Sci. 2022, 34, 101733. [Google Scholar] [CrossRef]
- Roemmelt, S.; Plagge, J.; Treutter, D.; Gutmann, M.; Feucht, W.; Zeller, W. October. Defence reaction of apple against fireblight: Histological and biochemical studies. VIII Int. Workshop Fire Blight 1998, 489, 335–336. [Google Scholar]
- Chen, X.R.; Wang, X.L.; Zhang, Z.G.; Wang, Y.C.; Zheng, X.B. Differences in the induction of the oxidative burst in compatible and incompatible interactions of soybean and Phytophthora sojae. Physiol. Mol. Plant Pathol. 2008, 73, 16–24. [Google Scholar] [CrossRef]
- Majid, M.U.; Awan, M.F.; Fatima, K.; Tahir, M.S.; Ali, Q.; Rashid, B.; Rao, A.Q.; Nasir, I.A.; Husnain, T. Genetic resources of chili pepper (Capsicum annuum L.) against Phytophthora capsica and their induction through various biotic and abiotic factors. Cytol. Genet. 2017, 51, 296–304. [Google Scholar] [CrossRef]
- Peng, M.; Kuc, J. Peroxidase-generate dhydrogen peroxide as a source of anti-fungal activity in vitro and on tobacco leafdisks. Phytopathology 1992, 82, 696–699. [Google Scholar] [CrossRef]
- Iriti, M.; Varoni, E.M. Chitosan-induced anti virala ctivity and innate immunity in plants. Environ. Sci. Pollut. Res. 2015, 22, 2935–2944. [Google Scholar] [CrossRef] [PubMed]
- Zhang, F.; Zhang, H.; Wang, G.; Xu, L.; Shen, Z. Cadmium-induced accumulation of hydrogen peroxide in the leaf apoplastof Phaseolus aureus and Vicia sativa and the roles of differentanti oxidant enzymes. J. Hazard. Mater. 2009, 168, 76–84. [Google Scholar] [CrossRef]
- Bhardwaj, R.; Handa, N.; Sharma, R.; Kaur, H.; Kohli, S.; Kumar, V.; Kaur, P. Lignins and abiotic stress: An overview. In Physiological Mechanisms and Adaptation Strategies in Plants Under Changing Environment; Ahmad, P., Wani, M., Eds.; Springer: New York, NY, USA, 2014; pp. 267–296. [Google Scholar] [CrossRef]
- Kumar, N.; Ebel, R.C.; Roberts, P.D. Superoxide dismutase activity in kumquat leaves in fected with Xanthomonas axonopodis. pv. citri. J. Hortic. Sci. Biotechnol. 2011, 86, 62–68. [Google Scholar] [CrossRef]
- Rasoulnia, A.; Alavi, S.M.; Askari, H.; Farrokhi, N.; Najafabadi, M.S. Antioxidant activity and lipid peroxidation in response to citrus canker bacterial infection. Intl. J. Farm. Alli. Sci. 2013, 2, 1179–1184. [Google Scholar]
- Hu, Y.Q.; Liu, S.; Yuan, H.M.; Li, J.; Yan, D.W.; Zhang, J.F.; Lu, Y.T. Functional comparison of catalase genes in the elimination of photorespiratory H2O2 using promoter-and3′-untranslated region exchange experiments in the Arabidopsis CAT2 photo respiratory mutant. Plant Cell Environ. 2010, 33, 1656–1670. [Google Scholar] [CrossRef]
- Imlay, J.A. Cellular defences against superoxide and hydrogen peroxide. Annu. Rev. Biochem. 2008, 77, 755–776. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kumar, N.; Ebel, R.C.; Roberts, P.D. Antioxidant metabolism of grape fruit infected with Xanthomonas axonopodis. pv. citri. Environ. Exp. Bot. 2011, 71, 41–49. [Google Scholar] [CrossRef]
- Treus, M.; Salas, C.O.; Gonazález, M.A.; Estévez, J.C.; Tapia, R.A.; Estévez, R.J. (Z)-Ethy l2-phenyl-1- (2-vinylphenyl) vinyl carbamates. Part 1: Synthesis and preliminary studies on the irdivergent transformation into benzo [c] phenanthridines and 2-phenyl-12010, 4-naphthoquinones. Tetrahedron 2010, 66, 9986–9995. [Google Scholar] [CrossRef]
- Chen, P.S.; Wang, L.Y.; Chen, Y.J.; Tzeng, K.C.; Chang, S.C.; Chung, K.R.; Lee, M.H. Understanding cellular defence inkumquat and calamondin to citrus canker caused by Xanthomonas citri pv. citri. Physiol. Mol. Plant Pathol. 2012, 79, 1–12. [Google Scholar] [CrossRef]
Treatment | Photosynthetic Rate (A) (μmol m−2 s−1) | Transpiration Rate (E) (mol m–2 s–1) | Stomatal Conductance (gs) (mol m–2 s–1) | Intrinsic Water-Use Efficiency (µmol H2O m−2 s−1) | Total Chlorophyll (mg g−1 FW) | Chlorophyll “a” (mg g−1 FW) | Chlorophyll “b” (mg g−1 FW) |
---|---|---|---|---|---|---|---|
Canker alone | |||||||
Non-inoculated | 6.20 a | 0.81 a | 0.039 a | 159.59 b | 1.41 a | 0.99 a | 0.42 a |
Inoculated | 5.06 b | 0.61 b | 0.028 b | 195.82 a | 1.10 b | 0.76 b | 0.33 b |
Citrus species | |||||||
Kagzi Kalan lemon | 7.06 a | 0.96 a | 0.036 b | 197.10 ba | 1.54 b | 1.12 b | 0.42 b |
Konkan Seedless lemon | 5.57 c | 0.72 c | 0.033 b | 170.68 ba | 1.82 a | 1.29 a | 0.53 a |
Marsh Seedless grapefruit | 6.16 b | 0.88 b | 0.045 a | 138.39 b | 1.06 e | 0.72 e | 0.33 c |
Redblush grapefruit | 5.40 d | 0.64 d | 0.028 c | 225.91 a | 1.13 d | 0.79 d | 0.34 c |
Pusa Udit lime | 4.67 f | 0.54 e | 0.033 b | 143.97 b | 1.19 c | 0.84 c | 0.35 c |
ALC 35 lime | 4.90 e | 0.50 f | 0.027 c | 190.18 ba | 0.81 f | 0.52 f | 0.28 d |
Non-inoculated × Citrus species | |||||||
Kagzi Kalan lemon | 7.29 a | 1.02 a | 0.039 b | 187.24 ba | 1.66 b | 1.21 b | 0.44 b |
Konkan Seedless lemon | 6.03 ed | 0.82 c | 0.038 cb | 158.74 b | 2.05 a | 1.45 a | 0.60 a |
Marsh Seedless grapefruit | 6.53 c | 0.98 a | 0.051 a | 128.12 b | 1.11 g | 0.76 g | 0.35 d |
Redblush grapefruit | 5.89 ef | 0.75 d | 0.033 cd | 178.47 b | 1.27 f | 0.89 f | 0.38 c |
Pusa Udit lime | 5.27 g | 0.67 e | 0.037 cb | 142.51 b | 1.36 e | 0.98 e | 0.39 c |
ALC 35 lime | 6.17 d | 0.63 e | 0.038 cb | 162.48 b | 1.02 h | 0.69 h | 0.33 ed |
Inoculated × Citrus species | |||||||
Kagzi Kalan lemon | 6.83 b | 0.91 b | 0.033 cd | 206.96 ba | 1.42 d | 1.03 d | 0.39 c |
Konkan Seedless lemon | 5.11 hg | 0.63 e | 0.028 ed | 182.63 ba | 1.58 c | 1.13 c | 0.46 h |
Marsh Seedless grapefruit | 5.79 f | 0.78 dc | 0.039 b | 148.66 b | 1.00 h | 0.68 h | 0.32 ef |
Redblush grapefruit | 4.91 h | 0.54 f | 0.023 e | 273.35 a | 0.98 h | 0.68 h | 0.30 f |
Pusa Udit lime | 4.07 i | 0.42 g | 0.028 ed | 145.44 b | 1.01 h | 0.71 h | 0.30 f |
ALC 35 lime | 3.63 j | 0.37 h | 0.017 f | 217.87 ba | 0.59 i | 0.36 i | 0.23 g |
Citrus Genotype | Stomatal Density (mm−2) | Stomata Pore Length (µm) | Stomata Pore Width (µm) | Stomata Complex Length (µm) | Stomata Complex Width (µm) | Stomata Area (µm2) | Stomata Complex Area (µm2) | Stomatal Index (%) (40×) | Stomatal Conductance Index |
---|---|---|---|---|---|---|---|---|---|
Kagzi Kalan | 408.31 c | 9.54 b | 7.03 b | 17.59 bc | 15.44 a | 67.59 b | 273.25 bac | 7.73 bc | 3.65 c |
Konkan Seedless | 580.23 bac | 10.35 ba | 7.42 ba | 20.28 a | 16.39 a | 77.31 ba | 332.79 a | 11.01 a | 4.96 b |
Marsh Seedless | 472.78 b c | 9.41 b | 7.39 ba | 17.03 c | 14.45 a | 70.01 b | 246.58 c | 8.18 b c | 4.66 cb |
Redblush | 623.21 ba | 9.95 b | 7.13 ba | 16.90d | 15.53 a | 70.95 b | 262.88 bc | 8.54 bac | 5.78 b |
Pusa Udit | 429.80 c | 10.12 b | 7.41 ba | 19.39 bac | 16.45 a | 74.95 b | 318.25 ba | 7.01 c | 5.31 b |
ALC 35 | 687.68 a | 11.50 a | 8.27 a | 20.1 ba | 16.49 a | 95.12 a | 331.23 a | 9.83 ba | 7.89 a |
LSD (p ≤ 0.005) | 173.53 | 1.21 | 1.21 | 2.58 | NS | 20.08 | 61.97 | 2.76 | 1.29 |
Treatments | Total Soluble Protein (mg g−1 FW) | Total Phenol (µg of GAE of phenolg−1) | Superoxide Dismutase (mg–1 TSP min–1) | Guaiacol Peroxidase (µ mol Tetra-Guiacol mg−1 TSP min−1) | Catalase (µmoles H2O2 Hydrolyzed mg−1 TSP min−1) | Glutathione Reductase (mmoles DNTB Reduced mg–1 TSP min–1) |
---|---|---|---|---|---|---|
Canker alone | ||||||
Non-inoculated | 16.33 b | 43.14 b | 15.03 b | 58.49 b | 2.94 b | 0.064 b |
Inoculated | 20.14 a | 61.94 a | 17.79 a | 75.31 a | 3.78 a | 0.079 a |
Citrus species | ||||||
Kagzi Kalan lemon | 22.68 a | 67.21 a | 12.21 e | 112.88 a | 3.40 b | 0.060 d |
Konkan Seedless lemon | 19.23 c | 49.21 d | 15.59 d | 77.44 b | 3.65 ba | 0.070 c |
Marsh Seedless grapefruit | 20.70 b | 62.81 b | 21.34 a | 75.38 b | 2.98 c | 0.054 d |
Redblush grapefruit | 18.43 d | 54.21 c | 16.36 cb | 64.29 c | 2.25 d | 0.075 c |
Pusa Udit lime | 14.28 e | 38.41 f | 16.16 cd | 31.48 e | 3.96 a | 0.089 a |
ALC 35 lime | 14.13 e | 43.41 e | 16.78 b | 39.94 d | 3.92 a | 0.082 b |
Non-inoculated × Citrus species | ||||||
Kagzi Kalan lemon | 21.20 c | 55.21 d | 11.51 i | 101.88 b | 2.85 ef | 0.054 fe |
Konkan Seedless lemon | 17.75 f | 42.01 g | 13.85 g | 69.17 d | 3.08 ef | 0.064 ed |
Marsh Seedless grapefruit | 19.35 e | 50.81 e | 20.05 b | 63.35 e | 2.67 f | 0.051 f |
Redblush grapefruit | 17.10 g | 43.21 gf | 14.80 f | 56.02 f | 1.86 g | 0.071 cbd |
Pusa Udit lime | 12.20 i | 31.21 i | 14.04 gf | 27.44 i | 3.37 ecd | 0.077 cb |
ALC 35 lime | 10.40 j | 36.41 h | 15.91 e | 33.08 h | 3.77 bcd | 0.069 cd |
Inoculated × Citrus species | ||||||
Kagzi Kalan lemon | 24.15 a | 79.21 a | 12.91 h | 123.87 a | 3.94 bc | 0.067 d |
Konkan Seedless lemon | 20.70 d | 56.41 d | 17.33 d | 85.71 c | 4.22 ba | 0.077 cb |
Marsh Seedless grapefruit | 22.05 b | 74.81 b | 22.64 a | 87.41 c | 3.29 ed | 0.056 fe |
Redblush grapefruit | 19.75 e | 65.21 c | 17.92 dc | 72.56 d | 2.64 f | 0.079 b |
Pusa Udit lime | 16.35 h | 45.61 f | 18.27 c | 35.53 h | 4.55 a | 0.101 a |
ALC 35 lime | 17.85 f | 50.41 e | 17.66 dc | 46.80 g | 4.06 ba | 0.095 a |
Treatments | Hydrogen Peroxide (mmoles of H2O2 mg−1 FW) | Superoxide Radical (Δ540 Mm−1 g−1 FW) |
---|---|---|
Canker alone | ||
Non-inoculated | 158.83 b | 16.21 × 10−4 b |
Inoculated | 199.61 a | 19.23 × 10−4 a |
Citrus species | ||
Kagzi Kalan lemon | 193.95 a | 12.56 × 10−4 d |
Konkan Seedless lemon | 182.78 b | 18.27 × 10−4 b |
Marsh Seedless grapefruit | 195.23 a | 20.34 × 10−4 a |
Redblush grapefruit | 145.11 d | 19.72 × 10−4 a |
Pusa Udit lime | 173.31 c | 18.77 × 10−4 b |
ALC 35 lime | 184.94 b | 16.67 × 10−4 c |
Non-inoculated × Citrus species | ||
Kagzi Kalan lemon | 189.37 cd | 11.74 × 10−4 g |
Konkan Seedless lemon | 164.08 e | 16.45 × 10−4 e |
Marsh Seedless grapefruit | 185.67 d | 19.40 × 10−4 bc |
Redblush grapefruit | 122.84 g | 18.35 × 10−4 dc |
Pusa Udit lime | 142.37 f | 17.19 × 10−4 de |
ALC 35 lime | 148.62 f | 14.14 × 10−4 f |
Inoculated × Citrus species | ||
Kagzi Kalan lemon | 198.53 cb | 13.39 × 10−4 f |
Konkan Seedless lemon | 201.49 b | 20.09 × 10−4 ba |
Marsh Seedless grapefruit | 204.78 b | 21.29 × 10−4 a |
Redblush grapefruit | 167.38 e | 21.09 × 10−4 a |
Pusa Udit lime | 204.26 b | 20.35 × 10−4 ba |
ALC 35 lime | 221.25 a | 19.19 × 10−4 bc |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mahawer, A.K.; Dubey, A.K.; Awasthi, O.P.; Singh, D.; Dahuja, A.; Sevanthi, A.M.; Kumar, A.; Goswami, A.K.; Sharma, N.; Yadav, J.; et al. Elucidation of Physio-Biochemical Changes in Citrus spp. Incited by Xanthomonas citri pv. citri. Horticulturae 2023, 9, 324. https://doi.org/10.3390/horticulturae9030324
Mahawer AK, Dubey AK, Awasthi OP, Singh D, Dahuja A, Sevanthi AM, Kumar A, Goswami AK, Sharma N, Yadav J, et al. Elucidation of Physio-Biochemical Changes in Citrus spp. Incited by Xanthomonas citri pv. citri. Horticulturae. 2023; 9(3):324. https://doi.org/10.3390/horticulturae9030324
Chicago/Turabian StyleMahawer, Ashok Kumar, Anil Kumar Dubey, Om Prakash Awasthi, Dinesh Singh, Anil Dahuja, Amitha Mithra Sevanthi, Amrender Kumar, Amit Kumar Goswami, Nimisha Sharma, Jagdish Yadav, and et al. 2023. "Elucidation of Physio-Biochemical Changes in Citrus spp. Incited by Xanthomonas citri pv. citri" Horticulturae 9, no. 3: 324. https://doi.org/10.3390/horticulturae9030324
APA StyleMahawer, A. K., Dubey, A. K., Awasthi, O. P., Singh, D., Dahuja, A., Sevanthi, A. M., Kumar, A., Goswami, A. K., Sharma, N., Yadav, J., Kesharwani, A. K., Kashyap, A. S., Kulshreshtha, A., Singh, R. P., Morade, A., & Sharma, R. M. (2023). Elucidation of Physio-Biochemical Changes in Citrus spp. Incited by Xanthomonas citri pv. citri. Horticulturae, 9(3), 324. https://doi.org/10.3390/horticulturae9030324