Effects of Geographical Area and Harvest Times on Chemical Composition and Antibacterial Activity of Juniperus communis L. Pseudo-Fruits Extracts: A Statistical Approach
Abstract
:1. Introduction
2. Materials and Methods
2.1. J. communis Samples
2.2. Chemical, Reagents, Bacterial Strains and Culture Media
2.3. Extraction Procedure
2.4. Determination of Total Phenolic Content (TPC)
2.5. HPLC Analysis
2.6. Assessment of Antibacterial Activity and Minimum Inhibitory Concentration
2.7. Statistical Analysis
3. Results
3.1. Dry Weight and Final Concentration of the Extracts
3.2. Determination of Total Phenolic Content (TPC)
3.3. HPLC Profile of the Extracts
3.4. Antibacterial Activity and MIC of J. communis Pseudo-Fruits Extracts
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Firenzuoli, F.; Gori, L. Herbal Medicine Today: Clinical and Research Issues. Evid.-Based Complement. Altern. Med. 2007, 4, 37–40. [Google Scholar] [CrossRef] [PubMed]
- Andersen, F.A. Final Report on the Safety Assessment of Juniperus communis Extract, Juniperus Oxycedrus Extract, Juniperus Oxycedrus Tar, Juniperus Phoenicea Extract, and Juniperus Virginiana Extract. Int. J. Toxicol. 2001, 20, 41–56. [Google Scholar] [CrossRef]
- Ciocârlan, V. Illustrated Flora of Romania—Pteridophyta et Spermatophyta; Ceres Ed.: Bucharest, Romania, 2009; ISBN 978-973-40-0817-9. [Google Scholar]
- Adams, R.P. Junipers of the World: The Genus Juniperus; Trafford Publication: Victoria, BC, Canada, 2004; ISBN 1490723250. [Google Scholar]
- Bais, S.; Gill, N.S.; Rana, N.; Shandil, S. A Phytopharmacological Review on a Medicinal Plant: Juniperus communis. Int. Sch. Res. Not. 2014, 2014, 634723. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Thomas, P.A.; El-Barghathi, M.; Polwart, A. Biological Flora of the British Isles: Juniperus communis L. J. Ecol. 2007, 95, 1404–1440. [Google Scholar] [CrossRef]
- Gruwez, R.; Leroux, O.; De Frenne, P.; Tack, W.; Viane, R.; Verheyen, K. Critical phases in the seed development of common juniper (Juniperus communis). Plant Biol. 2012, 15, 210–219. [Google Scholar] [CrossRef] [PubMed]
- Modnicki, D.; Łabedzka, J. Estimation of the total phenolic compounds in juniper sprouts (Juniperus communis L.; Cupressaceae) from different places at the Kujawsko-Pomorskie province. Herba Pol. 2009, 55, 127–132. [Google Scholar]
- Miceli, N.; Trovato, A.; Marino, A.; Bellinghieri, V.; Melchini, A.; Dugo, P.; Cacciola, F.; Donato, P.; Mondello, L.; Güvenç, A.; et al. Phenolic composition and biological activities of Juniperus drupacea Labill. berries from Turkey. Food Chem. Toxicol. 2011, 49, 2600–2608. [Google Scholar] [CrossRef]
- Angioni, A.; Barra, A.; Russo, M.T.; Coroneo, V.; Dessiä, S.; Cabras, P. Chemical Composition of the Essential Oils of Juniperus from Ripe and Unripe Berries and Leaves and Their Antimicrobial Activity. J. Agric. Food Chem. 2003, 51, 3073–3078. [Google Scholar] [CrossRef]
- Chatzopoulou, P.S.; Katsiotis, S.T. Chemical Investigation of the Leaf Oil of Juniperus communis L. J. Essent. Oil Res. 1993, 5, 603–607. [Google Scholar] [CrossRef]
- El-Sawi, S.; Motawae, H.; Ali, A. Chemical composition, cytotoxic activity and antimicrobial activity of essential oils of leaves and berries of Juniperus phoenicea L. Grown in Egypt. Afr. J. Tradit. Complement. Altern. Med. 2008, 4, 417–426. [Google Scholar] [CrossRef] [Green Version]
- Höferl, M.; Stoilova, I.; Schmidt, E.; Wanner, J.; Jirovetz, L.; Trifonova, D.; Krastev, L.; Krastanov, A. Chemical Composition and Antioxidant Properties of Juniper Berry (Juniperus communis L.) Essential Oil. Action of the Essential Oil on the Antioxidant Protection of Saccharomyces cerevisiae Model Organism. Antioxidants 2014, 3, 81–98. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Visan, D.-C.; Oprea, E.; Radulescu, V.; Voiculescu, I.; Biris, I.-A.; Cotar, A.I.; Saviuc, C.; Chifiriuc, M.C.; Marinas, I.C. Original Contributions to the Chemical Composition, Microbicidal, Virulence-Arresting and Antibiotic-Enhancing Activity of Essential Oils from Four Coniferous Species. Pharmaceuticals 2021, 14, 1159. [Google Scholar] [CrossRef] [PubMed]
- Sela, F.; Karapandzova, M.; Stefkov, G.; Kulevanova, S. Chemical composition of berry essential oils from Juniperus communis L. (Cupressaceae) growing wild in Republic of Macedonia and assessment of the chemical composition in accordance to European Pharmacopoeia. Maced. Pharm. Bull. 2011, 57, 43–51. [Google Scholar] [CrossRef]
- Stoilova, I.S.; Wanner, J.; Jirovetz, L.; Trifonova, D.; Krastev, L.; Stoyanova, A.S.; Krastanov, A.I. Chemical composition and antioxidant properties of juniper berry [Juniperus communis L.] essential oil. Bulg. J. Agri. Sci. 2014, 20, 227–237. [Google Scholar]
- Tang, J.; Dunshea, F.R.; Suleria, H.A.R. LC-ESI-QTOF/MS Characterization of Phenolic Compounds from Medicinal Plants (Hops and Juniper Berries) and Their Antioxidant Activity. Foods 2019, 9, 7. [Google Scholar] [CrossRef] [Green Version]
- Olech, M.; Nowak, R.; Ivanova, D.; Tashev, A.; Boyadzhieva, S.; Kalotova, G.; Angelov, G.; Gawlik-Dziki, U. LC-ESI-MS/MS-MRM Profiling of Polyphenols and Antioxidant Activity Evaluation of Junipers of Different Origin. Appl. Sci. 2020, 10, 8921. [Google Scholar] [CrossRef]
- Gu, C.; Howell, K.; Dunshea, F.R.; Suleria, H.A.R. LC-ESI-QTOF/MS Characterisation of Phenolic Acids and Flavonoids in Polyphenol-Rich Fruits and Vegetables and Their Potential Antioxidant Activities. Antioxidants 2019, 8, 405. [Google Scholar] [CrossRef] [Green Version]
- Antonelli, M.; Donelli, D.; Barbieri, G.; Valussi, M.; Maggini, V.; Firenzuoli, F. Forest Volatile Organic Compounds and Their Effects on Human Health: A State-of-the-Art Review. Int. J. Environ. Res. Public Health 2020, 17, 6506. [Google Scholar] [CrossRef]
- Meneguzzo, F.; Albanese, L.; Bartolini, G.; Zabini, F. Temporal and Spatial Variability of Volatile Organic Compounds in the Forest Atmosphere. Int. J. Environ. Res. Public Health 2019, 16, 4915. [Google Scholar] [CrossRef] [Green Version]
- Raina, R.; Verma, P.K.; Peshin, R.; Kour, H. Potential of Juniperus communis L. as a nutraceutical in human and veterinary medicine. Heliyon 2019, 5, e02376. [Google Scholar] [CrossRef] [Green Version]
- Akdogan, M.; Koyu, A.; Ciris, M.; Yildiz, K. Anti-hypercholesterolemic activity of Juniperus communis Lynn. oil in rats: A biochemical and histopathological investigation. Biomed. Res. 2012, 23, 321–328. [Google Scholar]
- Bais, S.; Gill, S.; Rana, N. Effect of Juniperus communis extract on reserpine induced catalepsy. Inventi Impact Ethnopharmacol. 2014, 2014, 1–4. [Google Scholar]
- Banerjee, S.; Mukherjee, A.T.; Chatterjee, T.K. Evaluation of analgesic activities of methanolic extract of medicinal plant Juniperus communis Linn. Int. J. Pharm. Pharm. Sci. 2012, 4, 547–550. [Google Scholar]
- Sami, B.; Jason, H.; Stephanie, J.; Annie-Pier, B.; Caitlyn, D.C.; Madison, C.; Allyson, B.; Christopher, A.G.; Gilles, A.R. Deoxypodophyllotoxin Isolated from Juniperus communis Induces Apoptosis in Breast Cancer Cells. Anti-Cancer Agents Med. Chem. (Former. Curr. Med. Chem.-Anti-Cancer Agents) 2014, 15, 79–88. [Google Scholar] [CrossRef]
- Kalinkevich, K.; Karandashov, V.E.; Ptitsyn, L.R. In vitro study of the anti-inflammatory activity of some medicinal and edible plants growing in Russia. Russ. J. Bioorganic Chem. 2014, 40, 752–761. [Google Scholar] [CrossRef]
- Lantto, T.A.; Laakso, I.; Dorman, H.J.D.; Mauriala, T.; Hiltunen, R.; Kõks, S.; Raasmaja, A. Cellular Stress and p53-Associated Apoptosis by Juniperus communis L. Berry Extract Treatment in the Human SH-SY5Y Neuroblastoma Cells. Int. J. Mol. Sci. 2016, 17, 1113. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Manvi, G.P. Screening and evaluation of pharmacognostic, phytochemical and hepatoprotective activity of J. communis L. Stems. Int. J. Pharma Bio Sci. 2010, 1, 17–23. [Google Scholar]
- Pramanik, K.C.; Biswas, R.; Bandyopadhyay, D.; Mishra, M.; Ghosh, C.; Chatterjee, T.K. Evaluation of anti-ulcer properties of the leaf extract of Juniperus communis L. in animals. J. Nat. Remedies 2007, 7, 207–213. [Google Scholar] [CrossRef]
- Rana, N.; Bais, S. Neuroprotective Effect of J. Communis in Parkinson Disease Induced Animal Models. Master’s Thesis, Pharmacology Department, Punjab Technical University, Punjab, India, 2014. [Google Scholar]
- Ved, A.; Gupta, A.; Rawat, A.K.S. Antioxidant and Hepatoprotective Potential of Phenol-Rich Fraction of Juniperus communis Linn. Leaves. Pharmacogn. Mag. 2017, 13, 108–113. [Google Scholar] [CrossRef]
- Banerjee, S.; Singh, H.; Chatterjee, T.K. Evaluation of anti-diabetic and antihyperlipidemic potential of methanolic extract of Juniperus communis [L.] in streptozotocin nicotinamide induced diabetic rats. Int. J. Pharma Bio Sci. 2013, 4, 10–17. [Google Scholar]
- Elmastaş, M.; Gülçin, I.; Beydemir, Ş.; İrfan Küfrevioğlu, Ö.; Aboul-Enein, H.Y. A Study on the In Vitro Antioxidant Activity of Juniper (Juniperus communis L.) Fruit Extracts. Anal. Lett. 2006, 39, 47–65. [Google Scholar] [CrossRef]
- Emami, S.; Javadi, B.; Hassanzadeh, M. Antioxidant Activity of the Essential Oils of Different Parts of Juniperus communis. subsp. hemisphaerica. and Juniperus oblonga. Pharm. Biol. 2007, 45, 769–776. [Google Scholar] [CrossRef] [Green Version]
- Fernandez, A.; Cock, I.E. The Therapeutic Properties of Juniperus communis, L.: Antioxidant Capacity, Bacterial growth Inhibition, Anticancer Activity and Toxicity. Pharmacogn. J. 2016, 8, 273–280. [Google Scholar] [CrossRef] [Green Version]
- Fierascu, I.; Ungureanu, C.; Avramescu, S.M.; Cimpeanu, C.; Georgescu, M.I.; Fierascu, R.C.; Ortan, A.; Sutan, A.N.; Anuta, V.; Zanfirescu, A.; et al. Genoprotective, antioxidant, antifungal and anti-inflammatory evaluation of hydroalcoholic extract of wild-growing Juniperus communis L. (Cupressaceae) native to Romanian southern sub-Carpathian hills. BMC Complement. Altern. Med. 2018, 18, 3. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ceccanti, C.; Landi, M.; Guidi, L.; Pardossi, A.; Incrocci, L. Seasonal Fluctuations of Crop Yield, Total Phenolic Content and Antioxidant Activity in Fresh or Cooked Borage (Borago officinalis L.), Mallow (Malva sylvestris L.) and Buck’s-Horn Plantain (Plantago coronopus L.) Leaves. Horticulturae 2022, 8, 253. [Google Scholar] [CrossRef]
- Popescu, D.I.; Lengyel, E.; Apostolescu, F.G.; Soare, L.C.; Botoran, O.R.; Șuțan, N.A. Volatile Compounds and Antioxidant and Antifungal Activity of Bud and Needle Extracts from Three Populations of Pinus mugo Turra Growing in Romania. Horticulturae 2022, 8, 952. [Google Scholar] [CrossRef]
- Adams, R.P.; Douaihy, B.; Dagher-Kharrat, M.D.; Faryaliyev, V.; Tashev, A.N.; Husnu Can Baser, K.; Christou, A.K. Geographic variation in the volatile leaf oils of Juniperus excelsa and J. polycarpos. Phytologia 2014, 96, 96–102. [Google Scholar]
- Gordien, A.Y.; Gray, A.I.; Franzblau, S.G.; Seidel, V. Antimycobacterial terpenoids from Juniperus communis L. (Cuppressaceae). J. Ethnopharmacol. 2009, 126, 500–505. [Google Scholar] [CrossRef]
- Glišić, S.B.; Milojević, S.Ž.; Dimitrijević, S.I.; Orlović, A.M.; Skala, D.U. Antimicrobial activity of the essential oil and different fractions of Juniperus communis L. and a comparison with some commercial antibiotics. J. Serb. Chem. Soc. 2007, 72, 311–320. [Google Scholar] [CrossRef]
- Pepeljnjak, S.; Kosalec, I.; Kalodera, Z.; Blǎzevíc, N. Antimicrobial activity of juniper berry essential oil Juniperus communis L., Cupressaceae. Acta Pharm. 2005, 55, 417–422. [Google Scholar]
- Filipowicz, N.; Kamiński, M.; Kurlenda, J.; Asztemborska, M.; Ochocka, J.R. Antibacterial and antifungal activity of juniper berry oil and its selected components. Phytother. Res. 2003, 17, 227–231. [Google Scholar] [CrossRef] [PubMed]
- Rezvani, S.; Rezai, M.A.; Mahmoodi, N. Analysis and antimicrobial activity of the plant Juniperus communis. Rasayan J. Chem. 2009, 2, 257–260. [Google Scholar]
- Haziri, A.; Faiku, F.; Mehmeti, A.; Govori, S.; Abazi, S.; Daci, M.; Haziri, I.; Bytyqi-Damoni, A.; Mele, A. Antimicrobial properties of the essential oil of Juniperus communis (L.) growing wild in east part of Kosovo. Am. J. Pharmacol. Toxicol. 2013, 8, 128–133. [Google Scholar] [CrossRef] [Green Version]
- Akkol, E.K.; Güvenç, A.; Yesilada, E. A comparative study on the antinociceptive and anti-inflammatory activities of five Juniperus taxa. J. Ethnopharmacol. 2009, 125, 330–336. [Google Scholar] [CrossRef]
- Sati, S.C.; Joshi, S. Antibacterial potential of leaf extracts of Juniperus communis L. from Kumaun Himalaya. Afr. J. Microbiol. Res. 2010, 4, 1291–1294. [Google Scholar]
- Miceli, N.; Marino, A.; Köroğlu, A.; Cacciola, F.; Dugo, P.; Mondello, L.; Taviano, M.F. Comparative study of the phenolic profile, antioxidant and antimicrobial activities of leaf extracts of five Juniperus L. (Cupressaceae) taxa growing in Turkey. Nat. Prod. Res. 2018, 34, 1636–1641. [Google Scholar] [CrossRef]
- Zhang, Y.; Wu, D.; Kuang, S.; Qing, M.; Ma, Y.; Yang, T.; Wang, T.; Li, D. Chemical composition, antioxidant, antibacterial and cholinesterase inhibitory activities of three Juniperus species. Nat. Prod. Res. 2019, 34, 3531–3535. [Google Scholar] [CrossRef]
- Kumar, P.; Bhatt, R.P.; Sati, O.P.; Dhatwalia, V.K.; Singh, L. In-vitro antifungal activity of different fraction of Juniperus communis leaves and bark against Aspergillus niger and aflatoxigenic Aspergillus flavus. Int. J. Pharma Bio Sci. 2010, 1, 1–7. [Google Scholar] [CrossRef]
- Chrapačienė, S.; Rasiukevičiūtė, N.; Valiuškaitė, A. Control of Seed-Borne Fungi by Selected Essential Oils. Horticulturae 2022, 8, 220. [Google Scholar] [CrossRef]
- Ieftime, A.; Ieftime, A. Preliminary data on the herpetofauna of the Cozia Massif (Romania). 1. Reptiles. Trav. Muséum Natl. D’histoire Nat. “Grigore Antipa” 2006, 49, 331–340. [Google Scholar]
- çobanoğlu, G.; Yavuz, M.; Costache, I.; Radu, I.; Açikgöz, B.; Baloniu, L. Epiphytic and terricolous lichens diversity in Cozia National Park (Romania). Oltenia. Stud. Comunicări. Ştiinţele Nat. 2009, 25, 17–22. [Google Scholar]
- Neblea, M.A.; Marian, M.C. Phytosociological Studies On Calcareous Screes From Meridional Carpathians (Romania). Curr. Trends Nat. Sci. 2021, 10, 209–219. [Google Scholar] [CrossRef]
- Stegăruș, D.I.; Lengyel, E.; Apostolescu, G.F.; Botoran, O.R.; Tanase, C. Phytochemical Analysis and Biological Activity of Three Stachys Species (Lamiaceae) from Romania. Plants 2021, 10, 2710. [Google Scholar] [CrossRef] [PubMed]
- Farjon, A. A Monograph of Cupressaceae and Sciadopityaceae; Royal Botanic Gardens, Kew: Richmond, UK, 2005; ISBN 9781842460689. [Google Scholar]
- Slavenas, J.; Ražinskaite, D. The dynamics of accumulation of phytoncides and essential oil in Juniperus communis L. Proc. Acad. Sci. Lith. SSR 1962, 27, 115–134. [Google Scholar]
- Lo[Zbreve]ienė, K.; Labokas, J.; Venskutonis, P.R.; Maždžierienė, R. Chromatographic Evaluation of the Composition of Essential Oil and α-Pinene Enantiomers in Juniperus communis L. Berries during Ripening. J. Essent. Oil Res. 2010, 22, 453–458. [Google Scholar] [CrossRef]
- Raal, A.; Kanut, M.; Orav, A. Annual variation of yield and composition of the essential oil of common juniper (Juniperus communis L.) branches from Estonia. Balt. For 2010, 16, 50–56. [Google Scholar]
- Falasca, A.; Caprari, C.; De Felice, V.; Fortini, P.; Saviano, G.; Zollo, F.; Iorizzi, M. GC-MS analysis of the essential oils of Juniperus communis L. berries growing wild in the Molise region: Seasonal variability and in vitro antifungal activity. Biochem. Syst. Ecol. 2016, 69, 166–175. [Google Scholar] [CrossRef] [Green Version]
- Fejér, J.; Gruľová, D.; Eliašová, A.; Kron, I.; De Feo, V. Influence of environmental factors on content and composition of essential oil from common juniper ripe berry cones (Juniperus communis L.). Plant Biosyst. 2018, 152, 1227–1235. [Google Scholar] [CrossRef]
- Fejér, J.; Kron, I.; Gruľová, D.; Eliašová, A. Seasonal Variability of Juniperus communis L. Berry Ethanol Extracts: 1. In Vitro Hydroxyl Radical Scavenging Activity. Molecules 2020, 25, 4114. [Google Scholar] [CrossRef]
- Shanjani, P.S.; Mirza, M.; Calagari, M.; Adams, R.P. Effects drying and harvest season on the essential oil composition from foliage and berries of Juniperus excelsa. Ind. Crops Prod. 2010, 32, 83–87. [Google Scholar] [CrossRef]
- Espíndola, K.M.M.; Ferreira, R.G.; Narvaez, L.E.M.; Rosario, A.C.R.S.; Da Silva, A.H.M.; Silva, A.G.B.; Vieira, A.P.O.; Monteiro, M.C. Chemical and Pharmacological Aspects of Caffeic Acid and Its Activity in Hepatocarcinoma. Front. Oncol. 2019, 9, 541. [Google Scholar] [CrossRef] [Green Version]
- Wan, Y.-Y.; Zhang, Y.; Zhang, L.; Zhou, Z.-Q.; Li, X.; Shi, Q.; Wang, X.-J.; Bai, J.-G. Caffeic acid protects cucumber against chilling stress by regulating antioxidant enzyme activity and proline and soluble sugar contents. Acta Physiol. Plant. 2014, 37, 1706. [Google Scholar] [CrossRef]
- Eom, S.H.; Ahn, M.-A.; Kim, E.; Lee, H.J.; Lee, J.H.; Wi, S.H.; Kim, S.K.; Bin Lim, H.; Hyun, T.K. Plant Response to Cold Stress: Cold Stress Changes Antioxidant Metabolism in Heading Type Kimchi Cabbage (Brassica rapa L. ssp. Pekinensis). Antioxidants 2022, 11, 700. [Google Scholar] [CrossRef] [PubMed]
- Manuja, R.; Sachdeva, S.; Jain, A.; Chaudhary, J. A comprehensive review on biological activities of p-hydroxy benzoic acid and its derivatives. Int. J. Pharm. Sci. Rev. Res. 2013, 22, 109–115. [Google Scholar]
- Šamec, D.; Karalija, E.; Šola, I.; Vujčić Bok, V.; Salopek-Sondi, B. The role of polyphenols in abiotic stress response: The influence of molecular structure. Plants 2021, 10, 118. [Google Scholar] [CrossRef] [PubMed]
- Koriem, K.M.M. Caftaric acid: An overview on its structure, daily consumption, bioavailability and pharmacological effects. Biointerface Res. Appl. Chem. 2020, 10, 5616–5623. [Google Scholar] [CrossRef]
- Paiva, L.; Lima, E.; Motta, M.; Marcone, M.; Baptista, J. Variability of antioxidant properties, catechins, caffeine, L-theanine and other amino acids in different plant parts of Azorean Camellia sinensis. Curr. Res. Food Sci. 2020, 3, 227–234. [Google Scholar] [CrossRef]
- Spizzirri, U.G.; Iemma, F.; Puoci, F.; Cirillo, G.; Curcio, M.; Parisi, O.I.; Picci, N. Synthesis of Antioxidant Polymers by Grafting of Gallic Acid and Catechin on Gelatin. Biomacromolecules 2009, 10, 1923–1930. [Google Scholar] [CrossRef]
- Yoshino, S.; Mitoma, T.; Tsuruta, K.; Todo, H.; Sugibayashi, K. Effect of emulsification on the skin permeation and UV protection of catechin. Pharm. Dev. Technol. 2013, 19, 395–400. [Google Scholar] [CrossRef]
- Goyal, A.K.; Bhat, M.; Sharma, M.; Garg, M.; Khairwa, A.; Garg, R. Effect of green tea mouth rinse on Streptococcus mutans in plaque and saliva in children: An in vivo study. J. Indian Soc. Pedod. Prev. Dent. 2017, 35, 41. [Google Scholar] [CrossRef]
- Przystupski, D.; Michel, O.; Rossowska, J.; Kwiatkowski, S.; Saczko, J.; Kulbacka, J. The modulatory effect of green tea catechin on drug resistance in human ovarian cancer cells. Med. Chem. Res. 2019, 28, 657–667. [Google Scholar] [CrossRef] [Green Version]
- Michel, O.; Szlasa, W.; Baczyńska, D.; Saczko, J.; Tarek, M.; Kulbacka, J. The role of catechin in electroporation of pancreatic cancer cells—Effects on pore formation and multidrug resistance proteins. Bioelectrochemistry 2022, 147, 108199. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.; Li, Z.; Ma, Y.; Liu, Y.; Lin, C.-C.; Li, S.; Zhan, J.; Ho, C.-T. Immunomodulatory Effects of Green Tea Polyphenols. Molecules 2021, 26, 3755. [Google Scholar] [CrossRef] [PubMed]
- Gonçalves, A.C.; Flores-Félix, J.D.; Coutinho, P.; Alves, G.; Silva, L.R. Zimbro (Juniperus communis L.) as a Promising Source of Bioactive Compounds and Biomedical Activities: A Review on Recent Trends. Int. J. Mol. Sci. 2022, 23, 3197. [Google Scholar] [CrossRef] [PubMed]
Month of Harvesting | ICR | BLA | CNP | |||
---|---|---|---|---|---|---|
Extraction Yield (mg) * | Final Concentrations (mg/mL) * | Extraction Yield (mg) * | Final Concentrations (mg/mL) * | Extraction Yield (mg) * | Final Concentrations (mg/mL) * | |
September | 129.3 ± 0.04 f | 12.93 ± 0.01 f | 135.2 ± 0.26 e | 13.52 ± 0.03 e | 106.7 ± 0.14 h | 10.67 ± 0.01 h |
October | 144.5 ± 0.9 d | 14.45 ± 0.09 d | 151.7 ± 0.4 b | 15.17 ± 0.04 b | 111.1 ± 0.19 g | 11.11 ± 0.02 g |
November | 149.1 ± 0.08 c | 14.91 ± 0.01 c | 167.3 ± 0.17 a | 16.73 ± 0.02 a | 129.4 ± 0.06 f | 12.94 ± 0.01 f |
Compound | ICR Sample (mg/g DW) * | BLA Sample (mg/g DW) * | CNP Sample (mg/g DW) * | LOD/LOQ (mg/g) | ||||||
---|---|---|---|---|---|---|---|---|---|---|
Harvest Time | September | October | November | September | October | November | September | October | November | |
Caffeic acid | 0.0923 ± 0.0009 b | 0.0944 ± 0.0005 a | 0.0945 ± 0.0004 a | 0.0883 ± 0.0003 d | 0.0901 ± 0.0005 c | 0.0903 ± 0.0003 c | 0.0728 ± 0.0002 f | 0.0723 ± 0.0003 f | 0.0775 ± 0.0005 e | 0.0173/0.0523 |
Caftaric acid | 0.0026 ± 0.0002 a | 0.0027 ± 0.0002 a | 0.0013 ± 0.0003 c | 0.0013 ± 0.0003 c | 0.0016 ± 0.0002 c | 0.002 ± 0.0003 b | 0.0013 ± 0.0003 c | 0.0013 ± 0.0001 c | 0.0016 ± 0.0003 c | 0.0003/0.0008 |
Cinnamic acid | 1.0245 ± 0.0003 a | 1.0247 ± 0.0003 a | 1.0248 ± 0.0003 a | 1.0234 ± 0.0004 b | 1.0235 ± 0.0003 b | 1.0235 ± 0.0003 b | 1.0175 ± 0.0004 c | 1.0175 ± 0.0004 c | 1.0175 ± 0.0002 c | 0.0194/0.0588 |
Chlorogenic acid | 0.0102 ± 0.0002 c | 0.0102 ± 0.0001 c | 0.0106 ± 0.0002 bc | 0.0109 ± 0.0002 ab | 0.0111 ± 0.0002 a | 0.0102 ± 0.0004 c | 0.0102 ± 0.0003 c | 0.0105 ± 0.0002 bc | 0.0102 ± 0.0004 c | 0.0029/0.0089 |
Coumaric acid | 0.4671 ± 0.0003 d | 0.467 ± 0.0001 d | 0.4677 ± 0.0003 c | 0.4701 ± 0.0004 b | 0.4701 ± 0.0002 b | 0.4711 ± 0.0004 a | 0.4271 ± 0.0002 f | 0.4301 ± 0.0002 e | 0.43 ± 0.0003 e | 0.0118/0.0358 |
Ellagic acid | 0.0006 ± 0.0001 b | 0.0006 ± 0.0001 b | 0.0006 ± 0.0001 b | 0.0006 ± 0.0001 b | 0.0006 ± 0.0001 b | 0.0023 ± 0.0003 a | 0.0006 ± 0.0002 b | 0.0006 ± 0.0001 b | 0.0006 ± 0.0001 b | 0.0002/0.0005 |
Ferulic acid | 0.0001 ± 0.0001 c | 0.0001 ± 0.0001 c | 0.0006 ± 0.0001 b | 0.0008 ± 0.0001 a | 0.0006 ± 0.0001 b | 0.0001 ± 0.0001 c | 0.0001 ± 0.0001 c | 0.0002 ± 0.0001 c | 0.0001 ± 0.0001 c | 0.0000/0.0001 |
Gallic acid | 0.0001 ± 0 a | 0.0001 ± 0 a | 0.0001 ± 0 a | 0.0001 ± 0 a | 0.0001 ± 0 a | 0.0001 ± 0 a | 0.0001 ± 0 a | 0.0001 ± 0 a | 0.0001 ± 0 a | 0.0000/0.0001 |
Syringic acid | 0.0021 ± 0.0002 a | 0.0021 ± 0.0003 a | 0.0022 ± 0.0002 a | 0.0009 ± 0.0001 b | 0.0009 ± 0.0002 b | 0.0009 ± 0.0002 b | 0.0009 ± 0.0001 b | 0.0009 ± 0.0001 b | 0.0009 ± 0.0006 b | 0.0003/0.0008 |
Vanillic acid | 0.0002 ± 0 a | 0.0002 ± 0 a | 0.0002 ± 0 a | 0.0002 ± 0 a | 0.0002 ± 0 a | 0.0002 ± 0 a | 0.0002 ± 0 a | 0.0002 ± 0 a | 0.0002 ± 0 a | 0.0001/0.0002 |
P-hydroxybenzoic acid | 5.2987 ± 0.0003 c | 5.2988 ± 0.0003 c | 5.2991 ± 0.0004 c | 5.3907 ± 0.0003 b | 5.3908 ± 0.0003 b | 5.3917 ± 0.0003 a | 4.1297 ± 0.0004 f | 4.1385 ± 0.0001 e | 4.200 ± 0.0003 d | 0.0341/0.1033 |
Catechins | 7.2987 ± 0.0002 b | 7.3481 ± 0.0002 b | 7.35 ± 0.0002 b | 7.4907 ± 0.0003 b | 7.4987 ± 0.0003 b | 7.4988 ± 0.0002 b | 8.8981 ± 0.0003 a | 8.8987 ± 0.0004 a | 9.8989 ± 0.005 a | 0.0351/0.1063 |
Epicatechin gallate | 0.0002 ± 0 a | 0.0002 ± 0 a | 0.0002 ± 0 a | 0.0002 ± 0 a | 0.0002 ± 0 a | 0.0002 ± 0 a | 0.0002 ± 0 a | 0.0002 ± 0 a | 0.0002 ± 0 a | 0.0001/0.0002 |
Quercetin | 1.0245 ± 0.0001 b | 1.0251 ± 0.0002 b | 1.026 ± 0.0003 b | 1.1005 ± 0.0002 a | 1.1001 ± 0.0002 a | 1.0999 ± 0.0002 a | 0.9245 ± 0.0001 e | 0.9335 ± 0.0001 d | 1.002 ± 0.00033 c | 0.0239/0.0725 |
Kaempferol | 4.0012 ± 0.0001 h | 4.0111 ± 0.0002 f | 4.0115 ± 0.0001 e | 4.1013 ± 0.0002 d | 4.1012 ± 0.0002 d | 4.1016 ± 0.0002 c | 4.0082 ± 0.0003 g | 5.9913 ± 0.0001 a | 5.8992 ± 0.0002 b | 0.0284/0.07860 |
Tests of Between-Subjects Effects | |||
---|---|---|---|
Dependent Variable: Phenolic Compounds/Source Location*Month | |||
Phenolic Compounds | F | Sig. | Partial Eta Squared |
Caffeic acid | 40.236 | 0 | 0.856 |
Caftaric acid | 24.932 | 0 | 0.787 |
Cinnamic acid | 0.265 | 0.898 | 0.038 |
Chlorogenic acid | 5.867 | 0.002 | 0.465 |
Coumaric acid | 40.294 | 0 | 0.857 |
Ellagic acid | 85.685 | 0 | 0.927 |
Ferulic acid | 83.705 | 0 | 0.925 |
Gallic acid | 0.274 | 0.892 | 0.039 |
Syringic acid | 0.084 | 0.987 | 0.012 |
Vanillic acid | - | - | - |
P-hydroxybenzoic acid | 20.36 | 0 | 0.798 |
Catechins | 0.916 | 0.469 | 0.119 |
Epicatechin gallate | 3.071 | 0.033 | 0.313 |
Quercetin | 18.777 | 0 | 0.996 |
Kaempferol | 5.715 | 0.056 | 0.582 |
Bacterial Strains Samples | S. aureus ATCC29213 | E. faecalis ATCC29212 | B. subtilis ATCC23857 | E. coli ATCC 25922 | S. enteritidis ATCC13076 | C. freundii ATCC43864 | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
DD ** | MIC * | DD ** | MIC *** | DD ** | MIC *** | DD * | MIC *** | DD * | MIC *** | DD * | MIC *** | ||
ICR * | September | 20.2 ± 0.1 def | ≤500 | 14.1 ± 0.1 b | 1000 | 12.3 ± 0.1 c | 1000 | 16.2 ± 0.1 b | >500 | 8.2 ± 0.1 b | 1000 | - | |
October | 20.6 ± 0.1 g | ≤500 | 15.1 ± 0.7 b | >500 | 12.3 ± 0.2 c | 1000 | 16.2 ± 0.4 b | >500 | 8.9 ± 0.4 b | 1000 | - | ||
November | 21.3 ± 0.3 h | 500 | 16.4 ± 0.8 ab | >500 | 14.8 ± 2.1 bc | >500 | 17.6 ± 1.4 ab | >500 | 9.1 ± 0.1 b | >1000 | - | ||
BLA * | September | 19.5 ± 0.5 d | ≥500 | 14.1 ± 3.0 b | >1000 | 15.6 ± 0.6 bc | >500 | 17.8 ± 0.6 b | >500 | 10.1 ± 0.8 b | >1000 | - | |
October | 18.4 ± 0.5 h | ≥500 | 15.2 ± 2.6 b | >500 | 16.7 ± 1.2 bc | >500 | 19.0 ± 1.3 b | >500 | 10.3 ± 0.3 b | >1000 | - | ||
November | 20.3 ± 0.3 fg | 500 | 17.1 ± 0.5 b | >500 | 17.0 ± 0.1 bc | >500 | 19.5 ± 0.7 b | >500 | 10.2 ± 0.2 b | >1000 | - | ||
CNP * | September | 18.1 ± 0.1 c | ≥500 | 16.4 ± 1.33 ab | >500 | 13.9 ± 2.7 bc | >1000 | 17.5 ± 1.3 ab | >500 | 10.2 ± 0.2 b | >1000 | - | |
October | 19.8 ± 0.2 de | ≥500 | 15.4 ± 0.4 ab | >500 | 16.2 ± 3.2 bc | >500 | 16.6 ± 0.1 ab | >500 | 10.4 ± 0.3 b | >1000 | - | ||
November | 19.9 ± 0.1 efg | ≥500 | 16.5 ± 1.9 ab | >500 | 18.5 ± 0.3 b | >500 | 16.8 ± 0.1 ab | >500 | 10.3 ± 0.2 b | >1000 | - | ||
A | 24.6 ± 0 b | ≤500 | 19.6 ± 1.5 a | ≤500 | 24.4 ± 5.1 a | <500 | 22.8 ± 5.4 a | <500 | 18.8 ± 7.3 a | <500 | 6.3 ± 3.6 b | >1000 | |
C | 27.1 ± 0 a | ≤500 | 16.7 ± 3.3 ab | >500 | 23.4 ± 3.5 a | 500 | 20.7 ± 4.5 a | >500 | 21.8 ± 1.0 a | 500 | 17.0 ± 6.3 a | >500 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Popescu, D.I.; Botoran, O.R.; Cristea, R.; Mihăescu, C.; Șuțan, N.A. Effects of Geographical Area and Harvest Times on Chemical Composition and Antibacterial Activity of Juniperus communis L. Pseudo-Fruits Extracts: A Statistical Approach. Horticulturae 2023, 9, 325. https://doi.org/10.3390/horticulturae9030325
Popescu DI, Botoran OR, Cristea R, Mihăescu C, Șuțan NA. Effects of Geographical Area and Harvest Times on Chemical Composition and Antibacterial Activity of Juniperus communis L. Pseudo-Fruits Extracts: A Statistical Approach. Horticulturae. 2023; 9(3):325. https://doi.org/10.3390/horticulturae9030325
Chicago/Turabian StylePopescu, Diana Ionela (Stegarus), Oana Romina Botoran, Ramona Cristea, Cristina Mihăescu, and Nicoleta Anca Șuțan. 2023. "Effects of Geographical Area and Harvest Times on Chemical Composition and Antibacterial Activity of Juniperus communis L. Pseudo-Fruits Extracts: A Statistical Approach" Horticulturae 9, no. 3: 325. https://doi.org/10.3390/horticulturae9030325
APA StylePopescu, D. I., Botoran, O. R., Cristea, R., Mihăescu, C., & Șuțan, N. A. (2023). Effects of Geographical Area and Harvest Times on Chemical Composition and Antibacterial Activity of Juniperus communis L. Pseudo-Fruits Extracts: A Statistical Approach. Horticulturae, 9(3), 325. https://doi.org/10.3390/horticulturae9030325