Ectopic Expression of PgF3′5′H in Commercial Gypsophila paniculata Cultivar through Optimized Agrobacterium-Mediated Transformation
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Materials and Culture Conditions
2.2. Establishment of Regeneration System of G. paniculata
2.3. Determination of Hygromycin (Hyg) Selection Pressure
2.4. A. tumefaciens-Based Transformation
2.5. Effects of Different Factors on Transformation
2.6. β-glucuronidase Test
2.7. Verification of Transgenic Plantlets Using PCR
2.8. Statistical Analasis
3. Results and Discussion
3.1. Establishing the Regeneration System of G. paniculata Cultivar ‘YX4’
3.2. Determination of Hyg Screening Pressure
3.3. Optimization of Transformation Conditions and Exogenous Gene Transformation
3.4. Construction of Transgenic Blue G. paniculata
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Jin, C.; Sun, D.; Wei, C.; Guo, Z.; Yang, C.; Li, F. Gas Chromatography-Mass Spectrometry Analysis of Natural Products in Gypsophila paniculata. Hortscience 2021, 56, 1195–1198. [Google Scholar] [CrossRef]
- Li, F.; Wang, G.; Yu, R.; Wu, M.; Shan, Q.; Wu, L.; Ruan, J.; Yang, C. Effects of Seasonal Variation and Gibberellic Acid Treatment on the Growth and Development of Gypsophila paniculata. Hortscience 2019, 54, 1370–1374. [Google Scholar] [CrossRef] [Green Version]
- Li, F.; Mo, X.; Wu, L.; Yang, C. A Novel Double-flowered Cultivar of Gypsophila paniculata Mutagenized by 60Co γ-Ray. Hortscience 2020, 55, 1531–1532. [Google Scholar] [CrossRef]
- Kozai, T. Smart Plant Factory: The Next Generation Indoor Vertical Farms, 1st ed.; Springer Nature Singapore Pte Ltd.: Singapore, 2018. [Google Scholar] [CrossRef]
- Huang, L.; Wu, L.; He, F.; Yang, C.; Yu, R.; Shan, Q.; Ruan, J.; Wang, G.; Qu, Y. Optimization of chromosome sectioning technique and polyploidy induction in Gypsophila paniculata. Southwest China J. Agricult. Sci. 2017, 30, 2327–2333. [Google Scholar]
- Ahroni, A.; Zuker, A.; Rozen, Y.; Shejtman, H.; Vainstein, A. An efficient method for adventitious shoot regeneration from stem-segment explants of gypsophila. Plant Cell Tissue Organ Cult. 1997, 49, 101–106. [Google Scholar] [CrossRef]
- Zuker, A.; Ahroni, A.; Shejtman, H.; Vainstein, A. Adventitious shoot regeneration from leaf explants of Gypsophila paniculata L. Plant Cell Rep. 1997, 16, 775–778. [Google Scholar] [CrossRef] [PubMed]
- Ben Zvi, M.M.; Zuker, A.; Ovadis, M.; Shklarman, E.; Ben-Meir, H.; Zenvirt, S.; Vainstein, A. Agrobacterium-mediated transformation of gypsophila (Gypsophila paniculata L.). Mol. Breed. 2008, 22, 543–553. [Google Scholar] [CrossRef]
- Ayeh, K.O.; Selliah, R.; Hvoslef-Eide, A.K. Effect of Media on Some in vitro and ex-vitro Parameters in Micropropagation of Gypsophila paniculata L. Acad. J. Plant Sci. 2009, 2, 260–266. [Google Scholar]
- Nakatsuka, T.; Mishiba, K.-I.; Kubota, A.; Abe, Y.; Yamamura, S.; Nakamura, N.; Tanaka, Y.; Nishihara, M. Genetic engineering of novel flower colour by suppression of anthocyanin modification genes in gentian. J. Plant Physiol. 2010, 167, 231–237. [Google Scholar] [CrossRef]
- Noda, N.; Yoshioka, S.; Kishimoto, S.; Nakayama, M.; Douzono, M.; Tanaka, Y.; Aida, R. Generation of blue chrysanthemums by anthocyanin B-ring hydroxylation and glucosylation and its coloration mechanism. Sci. Adv. 2017, 3, e1602785. [Google Scholar] [CrossRef] [Green Version]
- Zhao, D.; Tao, J. Recent advances on the development and regulation of flower color in ornamental plants. Front. Plant Sci. 2015, 6, 261. [Google Scholar] [CrossRef] [Green Version]
- Urs, A.N.N.; Hu, Y.; Li, P.; Yuchi, Z.; Chen, Y.; Zhang, Y. Cloning and Expression of a Nonribosomal Peptide Synthetase to Generate Blue Rose. ACS Synth. Biol. 2018, 8, 1698–1704. [Google Scholar] [CrossRef]
- Van Huylenbroeck, J. Ornamental Crops; Springer: Berlin/Heidelberg, Germany, 2018; Volume 11. [Google Scholar]
- Tanaka, Y.; Brugliera, F.; Chandler, S. Recent Progress of Flower Colour Modification by Biotechnology. Int. J. Mol. Sci. 2009, 10, 5350–5369. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Qian, J.; Li, J.; Xing, M.; Grierson, D.; Sun, C.; Xu, C.; Li, X.; Chen, K. Hydroxylation decoration patterns of flavonoids in horticultural crops: Chemistry, bioactivity, and biosynthesis. Hortic. Res. 2022, 9, uhab068. [Google Scholar] [CrossRef] [PubMed]
- Sunil, L.; Shetty, N.P. Biosynthesis and regulation of anthocyanin pathway genes. Appl. Microbiol. Biotechnol. 2022, 106, 1783–1798. [Google Scholar] [CrossRef] [PubMed]
- Noda, N. Recent advances in the research and development of blue flowers. Breed. Sci. 2018, 68, 79–87. [Google Scholar] [CrossRef] [Green Version]
- Bai, L.; Jia, J.; Sun, J.; Li, P.; Zhao, M.; Pan, A. Cloning, expression and immunological identification of F3’5’H gene in transgenic carnation. Plant Physiol. Commun. 2009, 46, 205–209. [Google Scholar]
- Katsumoto, Y.; Fukuchi-Mizutani, M.; Fukui, Y.; Brugliera, F.; Holton, T.; Karan, M.; Nakamura, N.; Yonekura-Sakakibara, K.; Togami, J.; Pigeaire, A.; et al. Engineering of the Rose Flavonoid Biosynthetic Pathway Successfully Generated Blue-Hued Flowers Accumulating Delphinidin. Plant Cell Physiol. 2007, 48, 1589–1600. [Google Scholar] [CrossRef]
- Brugliera, F.; Tao, G.-Q.; Tems, U.; Kalc, G.; Mouradova, E.; Price, K.; Stevenson, K.; Nakamura, N.; Stacey, I.; Katsumoto, Y.; et al. Violet/Blue Chrysanthemums—Metabolic Engineering of the Anthocyanin Biosynthetic Pathway Results in Novel Petal Colors. Plant Cell Physiol. 2013, 54, 1696–1710. [Google Scholar] [CrossRef] [Green Version]
- Li, F.; Gao, Y.; Jin, C.; Wen, X.; Geng, H.; Cheng, Y.; Qu, H.; Liu, X.; Feng, S.; Zhang, F.; et al. The chromosome-level genome of Gypsophila paniculata reveals the molecular mechanism of floral development and ethylene insensitivity. Hortic. Res. 2022, 9, uhac176. [Google Scholar] [CrossRef]
- Okinaka, Y.; Shimada, Y.; Nakano-Shimada, R.; Ohbayashi, M.; Kiyokawa, S.; Kikuchi, Y. Selective accumulation of delphinidin derivatives in tobacco using a putative flavonoid 3’, 5’-hydroxylase cDNA from Campanula medium. Biosci. Biotech. Bioch. 2003, 67, 161–165. [Google Scholar] [CrossRef] [PubMed]
- Ma, L.; Jia, W.; Duan, Q.; Wang, X.; Jiang, Y.; Guo, Y.; Li, J.; Wang, J. Clone and expression analysis of PgF3′5′H gene in Platycodon grandiflorus. Acta Bot. Boreali Occident. Sin. 2014, 34, 40–46. [Google Scholar]
- Ma, L.; Duan, Q.; Du, W.; Cui, G.; Jia, W.; Wang, X.; Wang, J. Differential Expression Analysis of Platycodon grandiflorus PgF3’5’H and Its Mutant Gene in Pichia pasteris. Mol. Plant Breed. 2021, 19, 2256–2264. [Google Scholar]
- Classic Murashige, T.; Skoog, F. A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol. Plant 1962, 15, 473–497. [Google Scholar] [CrossRef]
- Janssen, B.-J.; Gardner, R.C. Localized transient expression of GUS in leaf discs following cocultivation with Agrobacterium. Plant Mol. Biol. 1990, 14, 61–72. [Google Scholar] [CrossRef] [PubMed]
- Li, F.; Cheng, Y.; Zhao, X.; Yu, R.; Li, H.; Wang, L.; Li, S.; Shan, Q. Haploid induction via unpollinated ovule culture in Gerbera hybrida. Sci. Rep. 2020, 10, 1702. [Google Scholar] [CrossRef] [PubMed] [Green Version]
NO. | PGRs’ Combination | NO. | PGRs’ Combination |
---|---|---|---|
T1 | 0.5 mg·L−1 TDZ + 0.1 mg·L−1 NAA | B1 | 0.5 mg·L−1 6-BA + 0.1 mg·L−1 NAA |
T2 | 1.0 mg·L−1 TDZ + 0.1 mg·L−1 NAA | B2 | 1.0 mg·L−1 6-BA + 0.1 mg·L−1 NAA |
T3 | 1.5 mg·L−1 TDZ + 0.1 mg·L−1 NAA | B3 | 1.5 mg·L−1 6-BA + 0.1 mg·L−1 NAA |
T4 | 2.0 mg·L−1 TDZ + 0.1 mg·L−1 NAA | B4 | 2.0 mg·L−1 6-BA + 0.1 mg·L−1 NAA |
T5 | 2.5 mg·L−1 TDZ + 0.1 mg·L−1 NAA | B5 | 2.5 mg·L−1 6-BA + 0.1 mg·L−1 NAA |
T6 | 3.0 mg·L−1 TDZ + 0.1 mg·L−1 NAA | B6 | 3.0 mg·L−1 6-BA + 0.1 mg·L−1 NAA |
Medium Number | Composition |
---|---|
Pre-culture: M2 | MS + 2.5 mg·L−1 TDZ + 0.1 mg·L−1 NAA |
Co-culture: M3 | MS + 2.5 mg·L−1 TDZ + 0.1 mg·L−1 NAA + 10 mg·L−1 AS |
First selection: M4 | MS + 2.5 mg·L−1 TDZ + 0.1 mg·L−1 NAA + 200 mg·L−1 Cef + 10 mg·L−1 Hyg |
Second selection: M5 | MS + 1.0 mg·L−1 6-BA + 0.1 mg·L−1 NAA + 200 mg·L−1 Cef + 10 mg·L−1 Hyg |
Recover: M6 | MS + 1.0 mg·L−1 6-BA + 0.1 mg·L−1 NAA + 200 mg·L−1 Cef |
Rooting: M7 | MS + 0.2 mg·L−1 IAA + 0.3 mg·L−1 NAA |
Medium Number | Number of Explants | Number of Explants Forming Callus 1 | Number of Explants with Adventitious Buds | Number of Adventitious Buds 2 | Bud Induction Rates 3 | Induction Coefficient 4 |
---|---|---|---|---|---|---|
MS1 | 30 | 30 | 27.33 ± 0.58 ab | 37.33 ± 1.53 f | 0.91 ± 0.02 ab | 1.37 ± 0.07 fg |
T1 | 30 | 30 | 27.00 ± 2.00 ab | 80.67 ± 4.51 b | 0.90 ± 0.07 ab | 3.00 ± 0.33 b |
T2 | 30 | 30 | 27.33 ± 1.15 ab | 66.00 ± 3.61 cd | 0.91 ± 0.04 ab | 2.42 ± 0.22 cd |
T3 | 30 | 30 | 26.33 ± 1.53 ab | 55.33 ± 2.52 de | 0.88 ± 0.05 ab | 2.10 ± 0.03 de |
T4 | 30 | 30 | 25.00 ± 1.73 abc | 69.00 ± 18.68 bc | 0.83 ± 0.06 abc | 2.74 ± 0.56 bc |
T5 | 30 | 30 | 23.00 ± 3.46 c | 95.00 ± 13.57 a | 0.77 ± 0.12 c | 4.14 ± 0.22 a |
T6 | 30 | 30 | 27.67 ± 1.53 a | 80.00 ± 3.00 b | 0.92 ± 0.05 a | 2.89 ± 0.12 b |
B1 | 30 | 30 | 25.33 ± 2.08 abc | 44.33 ± 8.14 ef | 0.84 ± 0.07 abc | 1.74 ± 0.19 ef |
B2 | 30 | 30 | 24.33 ± 1.53 bc | 43.00 ± 5.57 ef | 0.81 ± 0.05 bc | 1.76 ± 0.12 ef |
B3 | 30 | 30 | 26.67 ± 2.52 ab | 45.67 ± 7.37 ef | 0.89 ± 0.08 ab | 1.72 ± 0.26 efg |
B4 | 30 | 30 | 27.33 ± 0.58 ab | 35.67 ± 8.02 f | 0.91 ± 0.02 ab | 1.31 ± 0.31 g |
B5 | 30 | 30 | 26.33 ± 2.08 ab | 43.33 ± 1.53 ef | 0.88 ± 0.07 ab | 1.65 ± 0.09 fg |
B6 | 30 | 30 | 26.67 ± 0.58 ab | 46.67 ± 1.53 ef | 0.89 ± 0.02 ab | 1.75 ± 0.07 ef |
Concentration of Hyg (mg·L−1) | Number of Explants | Number of Explants Forming Callus | Number of Explants Forming Survived Adventitious Buds | Survival Ratio (%) |
---|---|---|---|---|
0 | 20 | 20 | 20 | 100 |
5 | 20 | 20 | 13 | 65.0 |
10 | 20 | 20 | 5 | 25.0 |
15 | 20 | 20 | 2 | 10.0 |
20 | 20 | 20 | 0 | 0 |
Test Number | Number of Explants | Pre-culture Period (d) | Co-culture Period (d) | Infection Period (min) | AS Concentration (mg·L−1) | Number of Explants Forming Buds | Differentiation Ratio |
---|---|---|---|---|---|---|---|
1 | 60 | 1 | 3 | 10 | 10 | 50 | 0.83 |
2 | 60 | 1 | 4 | 20 | 20 | 41 | 0.68 |
3 | 60 | 1 | 5 | 30 | 30 | 47 | 0.78 |
4 | 60 | 2 | 3 | 20 | 30 | 30 | 0.50 |
5 | 60 | 2 | 4 | 30 | 10 | 35 | 0.58 |
6 | 60 | 2 | 5 | 10 | 20 | 53 | 0.88 |
7 | 60 | 3 | 3 | 30 | 20 | 33 | 0.55 |
8 | 60 | 3 | 4 | 10 | 30 | 55 | 0.92 |
9 | 60 | 3 | 5 | 20 | 10 | 36 | 0.60 |
T Value | Pre-culture Period | Co-culture Period | Infection Period | AS Concentration |
---|---|---|---|---|
T1 | 138 | 113 | 158 | 121 |
T2 | 118 | 131 | 107 | 127 |
T3 | 124 | 136 | 115 | 132 |
t1 | 46.00 | 37.67 | 52.67 | 40.33 |
t2 | 39.33 | 43.67 | 35.67 | 42.33 |
t3 | 41.33 | 45.33 | 38.33 | 44.00 |
R | 6.67 | 7.66 | 14.34 | 3.67 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jin, C.; Sun, D.; Ma, L.; Mo, X.; Yang, C.; Li, F. Ectopic Expression of PgF3′5′H in Commercial Gypsophila paniculata Cultivar through Optimized Agrobacterium-Mediated Transformation. Horticulturae 2023, 9, 321. https://doi.org/10.3390/horticulturae9030321
Jin C, Sun D, Ma L, Mo X, Yang C, Li F. Ectopic Expression of PgF3′5′H in Commercial Gypsophila paniculata Cultivar through Optimized Agrobacterium-Mediated Transformation. Horticulturae. 2023; 9(3):321. https://doi.org/10.3390/horticulturae9030321
Chicago/Turabian StyleJin, Chunlian, Dan Sun, Lulin Ma, Xijun Mo, Chunmei Yang, and Fan Li. 2023. "Ectopic Expression of PgF3′5′H in Commercial Gypsophila paniculata Cultivar through Optimized Agrobacterium-Mediated Transformation" Horticulturae 9, no. 3: 321. https://doi.org/10.3390/horticulturae9030321
APA StyleJin, C., Sun, D., Ma, L., Mo, X., Yang, C., & Li, F. (2023). Ectopic Expression of PgF3′5′H in Commercial Gypsophila paniculata Cultivar through Optimized Agrobacterium-Mediated Transformation. Horticulturae, 9(3), 321. https://doi.org/10.3390/horticulturae9030321