Variability in the Agronomic Behavior of 12 White Grapevine Varieties Grown under Severe Water Stress Conditions in the La Mancha Wine Region
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Site and Plant Material
2.2. Soil and Meteorological Data
2.3. Phenology
2.4. Water Regime
2.5. Yield Components and Pruning Weight
2.6. Must Composition
2.7. Carbon Isotopic Composition (δ13C)
2.8. Oxygen Isotopic Composition (δ18O)
2.9. Statistical Analysis
3. Results
3.1. Phenology
3.2. Yield Components and Pruning Weight
3.3. Must Quality Parameters
3.4. Must Carbon Isotope Ratio
3.5. Must Oxygen Isotope Ratio
3.6. Analysis of the Agronomic Behavior of the Varieties Using PCA
4. Discussion
4.1. Productive Response
4.2. Must Quality Response
4.3. Must Isotope Ratios
4.4. Synthesis of Results Classifying Varieties under Severe Water Stress Conditions Based on Their Agronomic Behavior
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Cretazzo, E. Respuesta al déficit hídrico de la vid: Maneras de adaptarse a la sequía al incrementar la eficiencia en el uso del agua. Encuentros Biol. 2015, 9, 38–43. [Google Scholar]
- Fraga, H.; García De Cortázar Atauri, I.; Santos, J.A. Viticultural irrigation demands under climate change scenarios in Portugal. Agric. Water Manag. 2018, 196, 66–74. [Google Scholar] [CrossRef]
- Van Leeuwen, C.; Destrac-Irvine, A.; Dubernet, M.; Duchêne, E.; Gowdy, M.; Marguerit, E.; Pieri, P.; Parker, A.; De Rességuier, L.; Ollat, N. An update on the impact of climate change in viticulture and potential adaptations. Agronomy 2019, 9, 514. [Google Scholar] [CrossRef]
- Santos, J.A.; Fraga, H.; Malheiro, A.C.; Moutinho-Pereira, J.; Dinis, L.T.; Correia, C.; Moriondo, M.; Leolini, L.; Dibari, C.; Costafreda-Aumedes, S.; et al. A review of the potential climate change impacts and adaptation options for european viticulture. Appl. Sci. 2020, 10, 3092. [Google Scholar] [CrossRef]
- Gambetta, G.A.; Herrera, J.C.; Dayer, S.; Feng, Q.; Hochberg, U.; Castellarin, S.D. The Physiology of drought stress in grapevine: Towards an integrative definition of drought tolerance. J. Exp. Bot. 2020, 71, 4658–4676. [Google Scholar] [CrossRef] [PubMed]
- Ojeda, H.; Andary, C.; Kraeva, E.; Carbonneau, A.; Deloire, A. Influence of pre- and postveraison water deficit on synthesis and concentration of skin phenolic compounds during berry growth of Vitis vinifera cv. shiraz. Am. J. Enol. Vitic. 2002, 53, 261–267. [Google Scholar]
- Van Leeuwen, C.; Tregoat, O.; Choné, X.; Bois, B.; Pernet, D.; Gaudillére, J.P. Vine water status is a key factor in grape ripening and vintage quality for red bordeaux wine. How can it be assessed for vineyard management purposes? OENO One 2009, 43, 121–134. [Google Scholar] [CrossRef]
- Chacón-Vozmediano, J.L.; Martínez-Gascueña, J.; García-Navarro, F.J.; Jiménez-Ballesta, R. Effects of water stress on vegetative growth and ‘merlot’ grapevine yield in a semi-arid mediterranean climate. Horticulturae 2020, 6, 95. [Google Scholar] [CrossRef]
- Guilpart, N.; Metay, A.; Gary, C. Grapevine bud fertility and number of berries per bunch are determined by water and nitrogen stress around flowering in the previous year. Eur. J. Agron. 2014, 54, 9–20. [Google Scholar] [CrossRef]
- Chaves, M.M.; Zarrouk, O.; Francisco, R.; Costa, J.M.; Santos, T.; Regalado, A.P.; Rodrigues, M.L.; Lopes, C.M. Grapevine under deficit irrigation: Hints from physiological and molecular data. Ann. Bot. 2010, 105, 661–676. [Google Scholar] [CrossRef]
- Mira de Orduña, R. Climate change associated effects on grape and wine quality and production. Food Res. Int. 2010, 43, 1844–1855. [Google Scholar] [CrossRef]
- Mozell, M.R.; Thachn, L. The impact of climate change on the global wine industry: Challenges & solutions. Wine Econ. Policy 2014, 3, 81–89. [Google Scholar] [CrossRef] [Green Version]
- Pons, A.; Allamy, L.; Schüttler, A.; Rauhut, D.; Thibon, C.; Darriet, P. What is the expected impact of climate change on wine aroma compounds and their precursors in grape? OENO One 2017, 51, 141–146. [Google Scholar] [CrossRef]
- Van Leeuwen, C.; Destrac-Irvine, A.; Van Leeuwen, C.; Destrac-Irvine, A. Modified grape composition under climate change conditions requires adaptations in the vineyard. OENO One 2017, 51, 147–154. [Google Scholar] [CrossRef]
- Schultz, H.R. Climate change and viticulture: Research needs for facing the future. J. Wine Res. 2010, 21, 113–116. [Google Scholar] [CrossRef]
- Romero, P.; Navarro, J.M.; Ordaz, P.B. Towards a sustainable viticulture: The combination of deficit irrigation strategies and agroecological practices in mediterranean vineyards. A review and update. Agric. Water Manag. 2022, 259, 107216. [Google Scholar] [CrossRef]
- Costa, J.M.; Vaz, M.; Escalona, J.; Egipto, R.; Lopes, C.; Medrano, H.; Chaves, M.M. Modern viticulture in Southern Europe: Vulnerabilities and strategies for adaptation to water scarcity. Agric. Water Manag. 2016, 164, 5–18. [Google Scholar] [CrossRef]
- Intrigliolo, D.S.; Castel, J.R. Trunk diameter variations as water stress indicator in plum and grapevine. Acta Hortic. 2008, 792, 363–369. [Google Scholar] [CrossRef]
- Medrano, H.; Tomás, M.; Martorell, S.; Escalona, J.M.; Pou, A.; Fuentes, S.; Flexas, J.; Bota, J. Improving water use efficiency of vineyards in semi-arid regions. A review. Agron. Sustain. Dev. 2015, 35, 499–517. [Google Scholar] [CrossRef]
- Leavitt, S.W.; Long, A. Drought indicated in Carbon-13/Carbon-12 ratios of southwestern tree RINGS1. J. Am. Water Resour. Assoc. 1989, 25, 341–347. [Google Scholar] [CrossRef]
- Anderson, W.T.; Bernasconi, S.M.; McKenzie, J.A.; Saurer, M. Oxygen and carbon isotopic record of climatic variability in tree ring cellulose (Picea Abies): An example from central Switzerland (1913–1995). J. Geophys. Res. Atmos. 1998, 103, 31625–31636. [Google Scholar] [CrossRef]
- Roden, J.S.; Farquhar, G.D. A controlled test of the dual-isotope approach for the interpretation of stable carbon and oxygen isotope ratio variation in tree rings. Tree Physiol. 2012, 32, 490–503. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gómez-Alonso, S.; García-Romero, E. Effect of irrigation and variety on oxygen (Δ18O) and carbon (Δ13C) stable isotope composition of grapes cultivated in a warm climate. Aust. J. Grape Wine Res. 2010, 16, 283–289. [Google Scholar] [CrossRef]
- Santesteban, L.G.; Miranda, C.; Barbarin, I.; Royo, J.B. Application of the measurement of the natural abundance of stable isotopes in viticulture: A review. Aust. J. Grape Wine Res. 2015, 21, 157–167. [Google Scholar] [CrossRef]
- Serrano, A.S.; Martínez-Gascueña, J.; Alonso, G.L.; Cebrián-Tarancón, C.; Carmona, M.D.; Mena, A.; Chacón-Vozmediano, J.L. Agronomic response of 13 Spanish red grapevine (Vitis vinifera L.) cultivars under drought conditions in a semi-arid mediterranean climate. Agronomy 2022, 12, 2399. [Google Scholar] [CrossRef]
- Bchir, A.; Escalona, J.M.; Gallé, A.; Hernández-Montes, E.; Tortosa, I.; Braham, M.; Medrano, H. Carbon isotope discrimination (Δ13C) as an indicator of vine water status and water use efficiency (WUE): Looking for the most representative sample and sampling time. Agric. Water Manag. 2016, 167, 11–20. [Google Scholar] [CrossRef]
- Brillante, L.; Martínez-Lüscher, J.; Yu, R.; Kurtural, S.K. Carbon isotope discrimination (Δ13 C) of grape musts is a reliable tool for zoning and the physiological ground-truthing of sensor maps in precision viticulture. Front. Environ. Sci. 2020, 8, 561477. [Google Scholar] [CrossRef]
- Gowdy, M.; Destrac-Irvine, A.; Haines, M.; Gambetta, G.; Pieri, P.; Marguerit, E.; Van Leeuwen, C. Varietal responses to soil water deficit: First results from a common-garden vineyard near Bordeaux France. E3S Web Conf. 2018, 50, 23–26. [Google Scholar] [CrossRef]
- Wang, Y.; Liu, F.; Andersen, M.N.; Jensen, C.R. Improved plant nitrogen nutrition contributes to higher water use efficiency in tomatoes under alternate partial root-zone irrigation. Funct. Plant Biol. 2010, 37, 175–182. [Google Scholar] [CrossRef]
- Pascual, M.; Lordan, J.; Villar, J.M.; Fonseca, F.; Rufat, J. Stable carbon and nitrogen isotope ratios as indicators of water status and nitrogen effects on peach trees. Sci. Hortic. 2013, 157, 99–107. [Google Scholar] [CrossRef]
- Huglin, M. Nouveau mode d’évaluation des possibilités héliothermiques d’un milieu viticole. Académie Agric. Fr. 1978, 64, 1117–1126. [Google Scholar]
- Lorenz, D.; Eichhorn, K.; Bleiholder, H.; Klose, R.; Meier, U.; Weber, E. Growth stages of the grapevine: Phenological growth stages of the grapevine (Vitis vinifera L. ssp. vinifera)—Codes and descriptions according to the extended BBCH scale. Aust. J. Grape Wine Res. 1995, 1, 100–103. [Google Scholar] [CrossRef]
- OIV Compendio de Los Métodos Internacionales de Análisis de Los Vinos y de Los Mostos. Available online: https://www.oiv.int/es/normas-y-documentos-tecnicos/metodos-de-analisis/compendio-de-los-metodos-internacionales-de-analisis-de-los-vinos-y-de-los-mostos (accessed on 13 March 2022).
- Bravdo, B.; Hepner, Y.; Loinger, C.; Cohen, S.; Tabacman, H. Effect of crop level and crop load on growth, yield, must and wine composition, and quality of cabernet sauvignon. Am. J. Enol. Vitic. 1985, 36, 125–131. [Google Scholar] [CrossRef]
- Reynolds, A.G. ‘Riesling’ grapes respond to cluster thinning and shoot density manipulation. J. Am. Soc. Hortic. Sci. 1989, 114, 364–368. [Google Scholar] [CrossRef]
- Smart, R.E.; Dick, J.K.; Gravett, I.M.; Fisher, B.M. Canopy management to improve grape yield and wine quality—Principles and Practices. S. Afr. J. Enol. Vitic. 1990, 11, 3–17. [Google Scholar] [CrossRef]
- Vilanova, M.; Rodríguez-Nogales, J.M.; Vila-Crespo, J.; Yuste, J. Influence of water regime on yield components, must composition and wine volatile compounds of Vitis vinifera cv. verdejo. Aust. J. Grape Wine Res. 2019, 25, 83–91. [Google Scholar] [CrossRef]
- Cordonnier, R.; Bayonove, C. Etude de la phase prefermentaire de la vinification: Extraction et formation de certains composes de l’arome; cas des termenols, des aldehydes et des alcools en C6. OENO One 1981, 15, 269–286. [Google Scholar] [CrossRef]
- Acevedo-Opazo, C.; Ortega-Farias, S.; Fuentes, S. Effects of grapevine (Vitis vinifera L.) water status on water consumption, vegetative growth and grape quality: An irrigation scheduling application to achieve regulated deficit irrigation. Agric. Water Manag. 2010, 97, 956–964. [Google Scholar] [CrossRef]
- Sofo, A.; Nuzzo, V.; Tataranni, G.; Manfra, M.; De Nisco, M.; Scopa, A. Berry morphology and composition in irrigated and non-irrigated grapevine (Vitis vinifera L.). J. Plant Physiol. 2012, 169, 1023–1031. [Google Scholar] [CrossRef]
- Bota, J.; Tomás, M.; Flexas, J.; Medrano, H.; Escalona, J.M. Differences among grapevine cultivars in their stomatal behavior and water use efficiency under progressive water stress. Agric. Water Manag. 2016, 164, 91–99. [Google Scholar] [CrossRef]
- Ferrio, J.P.; Voltas, J. Carbon and oxygen isotope ratios in wood constituents of pinus halepensis as indicators of precipitation, temperature and vapour pressure deficit. Tellus B Chem. Phys. Meteorol. 2017, 57, 164–173. [Google Scholar] [CrossRef]
- Tardaguila, J.; Bertamini, M.; Reniero, F.; Versini, G. Oxygen isotope composition of must-water in grapevine: Effects of water deficit and rootstock. Aust. J. Grape Wine Res. 1997, 3, 84–89. [Google Scholar] [CrossRef]
Variety | |
---|---|
Widely grown varieties | Airén |
Jaén Blanco (syn. Pardina) | |
Macabeo (syn. Viura) | |
Moscatel de Grano Menudo | |
Pedro Ximénez | |
Verdejo | |
Minority varieties | Alarije (syn. Malvasía Riojana) |
Albillo Real | |
Coloraillo | |
Malvar | |
Merseguera (syn. Exquitsagos) | |
Pardillo (syn. Marisancho) |
Month | 2018 | 2019 | 2020 | |||||
---|---|---|---|---|---|---|---|---|
Mean Temperature (°C) | Rainfall (mm) | Mean Temperature (°C) | Rainfall (mm) | Mean Temperature (°C) | Rainfall (mm) | |||
Oct. | 17.2 | 20.0 | 14.6 | 39.3 | 16.5 | 18.0 | ||
Nov. | 8.9 | 22.5 | 9.7 | 59.0 | 9.1 | 57.4 | ||
Dec. | 4.6 | 33.5 | 6.1 | 11.8 | 7.6 | 36.0 | ||
Jan. | 5.5 | 35.2 | 4.6 | 7.8 | 5.6 | 32.2 | ||
Feb. | 4.4 | 74.3 | 7.9 | 10.6 | 9.9 | 4.4 | ||
Mar. | 8.1 | 116.5 | 10.9 | 10.8 | 10.5 | 64.4 | ||
Apr. | 12.3 | 37.6 | 11.5 | 124.0 | 13.1 | 52.6 | ||
May | 15.9 | 39.8 | 18.0 | 19.2 | 19.1 | 37.6 | ||
Jun. | 21.5 | 27.6 | 23.6 | 0.2 | 22.8 | 1.0 | ||
Jul. | 25.8 | 0.0 | 27.5 | 7.6 | 28.0 | 13.3 | ||
Aug. | 27.0 | 0.0 | 26.0 | 9.8 | 26.0 | 15.5 | ||
Sep. | 22.6 | 0.0 | 21.0 | 33.2 | 20.7 | 6.0 | ||
Total | 14.5 | 407.0 | 15.1 | 333.3 | 15.7 | 338.4 |
Two-Way ANOVA | Yield | Bunch Weight | Berry Weight | Pruning Weight | Ravaz Index |
---|---|---|---|---|---|
Year effect | p < 0.001 | p < 0.001 | p < 0.001 | p < 0.001 | p < 0.001 |
Variety effect | p < 0.001 | p < 0.001 | p < 0.001 | p < 0.001 | p < 0.001 |
Year–variety interaction | p < 0.05 | p < 0.001 | p < 0.001 | p < 0.05 | n.s. |
Variety | Total Soluble Solids ** (°Brix) | Total Acidity *** (g L−1) | pH *** | |||||
---|---|---|---|---|---|---|---|---|
Mean | SD | Mean | SD | Mean | SD | |||
Merseguera | 19.68 a | 1.33 | 3.79 ab | 0.35 | 3.21 a | 0.18 | ||
Alarije | 19.94 ab | 1.69 | 3.27 a | 0.53 | 3.43 cde | 0.18 | ||
Airén | 20.00 ab | 1.58 | 3.42 a | 0.31 | 3.54 e | 0.21 | ||
Pardillo | 20.17 ab | 1.15 | 3.38 a | 0.53 | 3.48 de | 0.15 | ||
Malvar | 20.22 ab | 1.41 | 3.47 a | 0.27 | 3.38 bcd | 0.09 | ||
Coloraillo | 20.28 ab | 2.09 | 5.80 e | 1.04 | 3.25 ab | 0.14 | ||
Jaén Blanco | 20.56 ab | 1.87 | 4.13 b | 0.47 | 3.47 de | 0.25 | ||
Macabeo | 20.77 abc | 2.31 | 4.61 c | 0.86 | 3.30 ab | 0.10 | ||
Albillo Real | 20.99 abc | 1.85 | 5.12 d | 0.55 | 3.28 ab | 0.17 | ||
Verdejo | 21.38 bc | 1.61 | 5.75 e | 0.60 | 3.33 abc | 0.16 | ||
Moscatel de Grano Menudo | 21.48 bc | 1.61 | 7.55 f | 1.33 | 3.22 a | 0.21 | ||
Pedro Ximénez | 22.15 c | 2.30 | 3.57 a | 0.59 | 3.45 cde | 0.15 | ||
Two-way ANOVA | Significance | |||||||
Year effect | p < 0.001 | p < 0.001 | p < 0.001 | |||||
Variety effect | p < 0.001 | p < 0.001 | p < 0.001 | |||||
Year x variety interaction | p < 0.05 | p < 0.05 | p < 0.05 |
Variety | δ13C (‰) | |||
---|---|---|---|---|
Mean | SD | Min | Max | |
Albillo Real | −23.445 a | 0.882 | −25.519 | −21.559 |
Pardillo | −23.424 a | 0.835 | −24.527 | −22.200 |
Macabeo | −23.351 ab | 0.511 | −24.558 | −22.420 |
Coloraillo | −23.315 abc | 0.552 | −24.347 | −22.581 |
Merseguera | −23.202 abcd | 0.594 | −24.100 | −22.149 |
Verdejo | −23.140 abcd | 0.364 | −23.969 | −22.587 |
Pedro Ximénez | −23.123 abcd | 0.454 | −23.899 | −22.168 |
Moscatel de Grano Menudo | −22.930 bcd | 0.609 | −23.834 | −21.793 |
Alarije | −22.883 bcd | 0.428 | −23.658 | −22.150 |
Malvar | −22.847 cd | 0.390 | −23.662 | −22.204 |
Airén | −22.734 d | 0.674 | −24.123 | −21.720 |
Jaén Blanco | −22.729 d | 0.724 | −24.040 | −21.793 |
Two-way ANOVA | Significance | |||
Year effect | p < 0.001 | |||
Variety effect | p < 0.001 | |||
Year–variety interaction | p < 0.01 |
Variety | δ18O (‰) | |||
---|---|---|---|---|
Mean | SD | Min | Max | |
Merseguera | 9.026 a | 1.833 | 6.324 | 12.112 |
Alarije | 9.266 a | 1.563 | 6.821 | 11.881 |
Malvar | 9.354 ab | 1.927 | 6.677 | 12.384 |
Macabeo | 9.386 ab | 1.634 | 6.813 | 11.751 |
Pardillo | 9.551 ab | 0.846 | 8.144 | 10.964 |
Jaén Blanco | 9.709 abc | 1.162 | 8.336 | 11.955 |
Verdejo | 10.356 bc | 1.398 | 8.328 | 12.639 |
Airén | 10.629 cd | 0.647 | 9.501 | 12.040 |
Pedro Ximénez | 10.642 cd | 1.689 | 8.328 | 13.624 |
Moscatel de Grano Menudo | 10.694 cd | 1.243 | 8.372 | 12.299 |
Coloraillo | 11.623 de | 0.995 | 10.240 | 13.163 |
Albillo Real | 12.098 e | 0.413 | 11.150 | 12.665 |
Two-way ANOVA | Significance | |||
Year effect | p < 0.001 | |||
Variety effect | p < 0.001 | |||
Year–variety interaction | p < 0.01 |
Trait | Category A (Good) | Category B (Medium) | Category C (Poor) |
---|---|---|---|
Yield | (>3.5 kg vine−1) Jaén Blanco, Merseguera, Pardillo | (2.0–3.5 kg vine−1) Airén, Alarije, Albillo Real, Coloraillo, Macabeo, Malvar, Verdejo | (<2.0 kg vine−1) Moscatel de Grano Menudo, Pedro Ximénez |
Berry weight | (<1.5 g) Alarije, Albillo Real, Macabeo, Moscatel de Grano Menudo | (1.5–2 g) Coloraillo, Malvar, Merseguera, Pardillo, Pedro Ximénez, Verdejo | (>2 g) Airén, Jaén Blanco |
Pruning weight | (>0.50 kg vine−1) Albillo Real, Coloraillo, Pardillo, Verdejo | (0.35–0.50 kg vine−1) Airén, Jaén Blanco, Macabeo, Malvar, Merseguera | (<0.35 kg vine−1) Alarije, Moscatel de Grano Menudo, Pedro Ximénez |
Total soluble solids | (>21.0 °Brix) Moscatel de Grano Menudo, Pedro Ximénez, Verdejo | (20.0–21.0 °Brix) Airén, Albillo Real, Coloraillo, Jaén Blanco, Macabeo, Malvar, Pardillo | (<20.0 °Brix) Alarije, Merseguera |
Total acidity | (>5.5 g L−1) Coloraillo, Moscatel de Grano Menudo, Verdejo | (4.0–5.5 g L−1) Albillo Real, Jaén Blanco, Macabeo | (<4.0 g L−1) Airén, Alarije, Malvar, Merseguera, Pardillo, Pedro Ximénez |
pH | (<3.3) Albillo Real, Coloraillo, Macabeo, Merseguera, Moscatel de Grano Menudo | (3.3–3.5) Alarije, Jaén Blanco, Malvar, Pardillo, Pedro Ximénez, Verdejo | (>3.5) Airén |
δ13C | (>−22.8‰) Airén, Jaén Blanco | (−22.8 to −23.3‰) Alarije, Malvar, Merseguera, Moscatel de Grano Menudo, Pedro Ximénez, Verdejo | (<−23.3‰) Albillo Real, Coloraillo, Macabeo, Pardillo |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Serrano, A.S.; Martínez-Gascueña, J.; Alonso, G.L.; Cebrián-Tarancón, C.; Carmona, M.D.; Mena Morales, A.; Chacón-Vozmediano, J.L. Variability in the Agronomic Behavior of 12 White Grapevine Varieties Grown under Severe Water Stress Conditions in the La Mancha Wine Region. Horticulturae 2023, 9, 243. https://doi.org/10.3390/horticulturae9020243
Serrano AS, Martínez-Gascueña J, Alonso GL, Cebrián-Tarancón C, Carmona MD, Mena Morales A, Chacón-Vozmediano JL. Variability in the Agronomic Behavior of 12 White Grapevine Varieties Grown under Severe Water Stress Conditions in the La Mancha Wine Region. Horticulturae. 2023; 9(2):243. https://doi.org/10.3390/horticulturae9020243
Chicago/Turabian StyleSerrano, A. Sergio, Jesús Martínez-Gascueña, Gonzalo L. Alonso, Cristina Cebrián-Tarancón, M. Dolores Carmona, Adela Mena Morales, and Juan L. Chacón-Vozmediano. 2023. "Variability in the Agronomic Behavior of 12 White Grapevine Varieties Grown under Severe Water Stress Conditions in the La Mancha Wine Region" Horticulturae 9, no. 2: 243. https://doi.org/10.3390/horticulturae9020243
APA StyleSerrano, A. S., Martínez-Gascueña, J., Alonso, G. L., Cebrián-Tarancón, C., Carmona, M. D., Mena Morales, A., & Chacón-Vozmediano, J. L. (2023). Variability in the Agronomic Behavior of 12 White Grapevine Varieties Grown under Severe Water Stress Conditions in the La Mancha Wine Region. Horticulturae, 9(2), 243. https://doi.org/10.3390/horticulturae9020243