Effects of Seed Priming and Foliar Treatment with Ascorbate, Cysteine, and Triacontanol on Canola (Brassica napus L.) under Field Conditions
Abstract
:1. Introduction
2. Materials and Methods
2.1. Location and Conditions
2.1.1. Climate
Sielianinov’s Hydrothermal Index * | |||||||||
---|---|---|---|---|---|---|---|---|---|
Years | Aug. | Sept. | Oct. | Mar. | Apr. | May | June | July | Mean |
2017–2018 | 0.60 | 0.90 | 1.70 | 4.80 | 0.40 | 1.30 | 2.20 | 1.04 | 1.61 |
2018–2019 | 0.20 | 0.70 | 0.70 | 0.70 | 0.80 | 3.00 | 0.70 | 1.34 | 1.02 |
2019–2020 | 0.80 | 1.10 | 1.00 | 1.40 | 0.40 | 1.50 | 2.20 | 1.41 | 1.23 |
2.1.2. Soil and Seeding Bed Preparation
2.2. Biologic Material
2.3. Experimental Design
- H1—”Factor”;
- H2—”Hybrirock”.
- Cys—seed treatment with 10 mM + foliar application at BBCH 16 and BBCH 30;
- AsA—seed treatment with 10 mM + foliar application at BBCH 16 and BBCH 30;
- Tria—seed treatment with 10 ppm + foliar application at BBCH 16 and BBCH 30;
- Tap water (Control).
2.4. Measurement of Plant Growth Parameters and Yield
- Data about plant growth were collected at different development stages:
- In autumn (in the early vegetation period)—plant height (PHA-cm), number of leaves per plant (NL);
- In spring—plant height (PHS-cm) and the number of branches per plant (NBS);
- At harvest time—plant height (PHH-cm) and plant fresh weight (PFW-g), number of branches per plant (NBH), root length (RL-cm), root neck diameter (RND-mm), and root fresh weight (RFW-g). Furthermore, data regarding the productivity of the plants were collected: number and weight of siliquae (NS and WS-g) per plant, thousand seed weight (TSW-g), seed yield per plant (SYP-g/plant), and estimated seed yield (ESY-t/ha). The oil content of the seed (OC-%) was also examined.
2.5. Statistical Analysis
3. Results
4. Discussion
4.1. The First Growing Season
4.2. The Second Growing Season
4.3. The Third Growing Season
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations:
References
- FAOSTAT. Available online: http://www.fao.org/faostat/en/#data/QCL (accessed on 24 September 2021).
- Friedt, W.; Tu, J.; Fu, T. Academic and Economic Importance of Brassica napus Rapeseed. In The Brassica napus Genome. Compendium of Plant Genomes; Liu, S., Snowdon, R., Chalhoub, B., Eds.; Springer: Cham, Switzerland, 2018; pp. 1–20. [Google Scholar] [CrossRef]
- Wu, W.; Ma, B.; Whalen, J.K. Enhancing Rapeseed Tolerance to Heat and Drought Stresses in a Changing Climate: Perspectives for Stress Adaptation from Root System Architecture. In Advances in Agronomy; Donald, L.S., Ed.; Elsevier: Amsterdam, The Netherlands, 2018; Volume 151, pp. 87–157. [Google Scholar] [CrossRef]
- Thakur, P.; Kumar, S.; Malik, J.A.; Berger, J.D.; Nayyar, H. Cold Stress Effects on Reproductive Development in Grain Crops: An Overview. Environ. Exp. Bot. 2010, 67, 429–443. [Google Scholar] [CrossRef]
- Sanghera, G.S.; Wani, S.; Hussain, W. Engineering Cold Stress Tolerance in Crop Plants. Curr. Genom. 2011, 12, 30–43. [Google Scholar] [CrossRef]
- Farooq, M.; Wahid, A.; Basra, S.M.A.; Rehman, A.; Siddique, K.H.M. Improving Crop Resistance to Abiotic Stresses through Seed Invigoration. In Handbook of Plant and Crop Stress, 4th ed.; Pessarakli, M., Ed.; CRC Press: Boca Raton, FL, USA, 2019; pp. 775–792. [Google Scholar]
- Bose, B.; Kumar, M.; Singhal, R.K.; Mondal, S. Impact of Seed Priming on the Modulation of Physico-Chemical and Molecular Processes during Germination, Growth, and Development of Crops. In Advances in Seed Priming; Rakshit, A., Singh, H.B., Eds.; Springer: Singapore, 2018; pp. 23–40. ISBN 9789811300325. [Google Scholar]
- Jisha, K.C.; Vijayakumari, K.; Puthur, J.T. Seed Priming for Abiotic Stress Tolerance: An Overview. Acta Physiol. Plant. 2013, 35, 1381–1396. [Google Scholar] [CrossRef]
- Sen, A.; Puthur, J. Seed Priming-Induced Physiochemical and Molecular Events in Plants Coupled to Abiotic Stress Tolerance: An Overview. In Priming-Mediated Stress and Cross-Stress Tolerance in Crop Plants; Academic Press: Cambridge, MA, USA, 2020; pp. 303–316. ISBN 978-0-12-817892-8. [Google Scholar] [CrossRef]
- Abdelkader, M.; Voronina, L.; Puchkov, M.; Shcherbakova, N.; Pakina, E.; Zargar, M.; Lyashko, M. Seed Priming with Exogenous Amino Acids Improves Germination Rates and Enhances Photosynthetic Pigments of Onion Seedlings (Allium cepa L.). Horticulturae 2023, 9, 80. [Google Scholar] [CrossRef]
- Hernándiz, A.E.; Aucique-Perez, C.E.; Ćavar Zeljković, S.; Štefelová, N.; Salcedo Sarmiento, S.; Spíchal, L.; De Diego, N. Priming with Small Molecule-Based Biostimulants to Improve Abiotic Stress Tolerance in Arabidopsis thaliana. Plants 2022, 11, 1287. [Google Scholar] [CrossRef] [PubMed]
- Franzoni, G.; Cocetta, G.; Prinsi, B.; Ferrante, A.; Espen, L. Biostimulants on Crops: Their Impact under Abiotic Stress Conditions. Horticulturae 2022, 8, 189. [Google Scholar] [CrossRef]
- Yoshimura, K.; Ishikawa, T. Chemistry and Metabolism of Ascorbic Acid in Plants. In Ascorbic Acid in Plant Growth, Development and Stress Tolerance; Hossain, M.A., Munné-Bosch, S., Burritt, D.J., Diaz-Vivancos, P., Fujita, M., Lorence, A., Eds.; Springer International Publishing: Cham, Switzerland, 2017; pp. 1–23. ISBN 978-3-319-74057-7. [Google Scholar]
- Baig, Z.; Khan, N.; Sahar, S.; Sattar, S.; Zehra, R. Effects of Seed Priming with Ascorbic Acid to Mitigate Salinity Stress on Three Wheat (Triticum aestivum L.) Cultivars. Acta Ecol. Sin. 2021, 41, 491–498. [Google Scholar] [CrossRef]
- Akram, N.A.; Shafiq, F.; Ashraf, M. Ascorbic Acid-A Potential Oxidant Scavenger and Its Role in Plant Development and Abiotic Stress Tolerance. Front. Plant Sci. 2017, 8, 613–630. [Google Scholar] [CrossRef]
- Khan, N.; Khan, M.; Asgher, M.; Mehar, F.; Masood, A.; Syeed, S. Salinity Tolerance in Plants: Revisiting the Role of Sulfur Metabolites. J. Plant Biochem. Physiol. 2014, 2, 2. [Google Scholar] [CrossRef]
- Raza, A. Eco-Physiological and Biochemical Responses of Rapeseed (Brassica Napus L.) to Abiotic Stresses: Consequences and Mitigation Strategies. J. Plant Growth Regul. 2021, 40, 1368–1388. [Google Scholar] [CrossRef]
- Zagorchev, L.; Seal, C.E.; Kranner, I.; Odjakova, M. A Central Role for Thiols in Plant Tolerance to Abiotic Stress. Int. J. Mol. Sci. 2013, 14, 7405–7432. [Google Scholar] [CrossRef] [PubMed]
- Hussein, H.-A.A.; Alshammari, S.O. Cysteine Mitigates the Effect of NaCl Salt Toxicity in Flax (Linum usitatissimum L.) Plants by Modulating Antioxidant Systems. Sci. Rep. 2022, 12, 11359. [Google Scholar] [CrossRef]
- Teixeira, W.F.; Fagan, E.B.; Soares, L.H.; Umburanas, R.C.; Reichardt, K.; Neto, D.D. Foliar and Seed Application of Amino Acids Affects the Antioxidant Metabolism of the Soybean Crop. Front. Plant Sci. 2017, 8, 327. [Google Scholar] [CrossRef] [PubMed]
- Tompa, B.; Jakab, K.; Fodorpataki, L. Triacontanol Compensates for Cadmium Toxicity Effects on Growth and Photosynthesis. Ann. Univ. Oradea Biol. Ser. 2020, 27, 123–128. [Google Scholar]
- Ahmad, J.; Ali, A.A.; Al-Huqail, A.A.; Qureshi, M.I. Triacontanol Attenuates Drought-Induced Oxidative Stress in Brassica juncea L. by Regulating Lignification Genes, Calcium Metabolism and the Antioxidant System. Plant Physiol. Biochem. 2021, 166, 985–998. [Google Scholar] [CrossRef]
- Islam, S.; Zaid, A.; Mohammad, F. Role of Triacontanol in Counteracting the Ill Effects of Salinity in Plants: A Review. J. Plant Growth Regul. 2021, 40, 1–10. [Google Scholar] [CrossRef]
- Dresselhaus, T.; Hückelhoven, R. Biotic and Abiotic Stress Responses in Crop Plants. Agronomy 2018, 8, 267. [Google Scholar] [CrossRef]
- Rajput, V.D.; Minkina, T.; Kumari, A.; Harish; Singh, V.K.; Verma, K.K.; Mandzhieva, S.; Sushkova, S.; Srivastava, S.; Keswani, C. Coping with the Challenges of Abiotic Stress in Plants: New Dimensions in the Field Application of Nanoparticles. Plants 2021, 10, 1221. [Google Scholar] [CrossRef]
- Mittler, R. ROS and Redox Signaling in Cell-to-Cell and Systemic Responses of Plants. Free. Radic. Biol. Med. 2022, 189, 1. [Google Scholar] [CrossRef]
- dos Santos, T.B.; Ribas, A.F.; de Souza, S.G.H.; Budzinski, I.G.F.; Domingues, D.S. Physiological Responses to Drought, Salinity, and Heat Stress in Plants: A Review. Stresses 2022, 2, 113–135. [Google Scholar] [CrossRef]
- Aboutalebian, M.A.; Nazari, S. Seedling Emergence and Activity of Some Antioxidant Enzymes of Canola (Brassica napus) Can Be Increased by Seed Priming. J. Agric. Sci. 2017, 155, 1541–1552. [Google Scholar] [CrossRef]
- Aymen, E.M. Seed Priming with Plant Growth Regulators to Improve Crop Abiotic Stress Tolerance. In Advances in Seed Priming; Rakshit, A., Singh, H.B., Eds.; Springer: Singapore, 2018; pp. 95–106. ISBN 9789811300325. [Google Scholar]
- Waqas, M.; Korres, N.E.; Khan, M.D.; Nizami, A.-S.; Deeba, F.; Ali, I.; Hussain, H. Advances in the Concept and Methods of Seed Priming. In Priming and Pretreatment of Seeds and Seedlings: Implication in Plant Stress Tolerance and Enhancing Productivity in Crop Plants; Hasanuzzaman, M., Fotopoulos, V., Eds.; Springer: Singapore, 2019; pp. 11–41. ISBN 9789811386251. [Google Scholar]
- Zulfiqar, F. Effect of Seed Priming on Horticultural Crops. Sci. Hortic. 2021, 286, 110197. [Google Scholar] [CrossRef]
- Farooq, M.; Irfan, M.; Aziz, T.; Ahmad, I.; Alam, S. Seed Priming with Ascorbic Acid Improves Drought Resistance of Wheat. J. Agron. Crop. Sci. 2013, 199, 11–22. [Google Scholar] [CrossRef]
- Alves, R.; Rossatto, D.; Silva, J.; Checchio, M.; Oliveira, K.; Oliveira, F.; Queiroz, S.; Cruz, M.; Gratão, P. Seed Priming with Ascorbic Acid Enhances Salt Tolerance in Micro-Tom Tomato Plants by Modifying the Antioxidant Defense System Components. Biocatal. Agric. Biotechnol. 2021, 31, 101927. [Google Scholar] [CrossRef]
- Shahbaz, M.; Noreen, N.; Perveen, S. Triacontanol Modulates Photosynthesis and Osmoprotectants in Canola (Brassica napus L.) under Saline Stress. J. Plant Interact. 2013, 8, 350–359. [Google Scholar] [CrossRef]
- Perveen, S.; Iqbal, M.; Parveen, A.; Akram, M.S.; Shahbaz, M.; Akber, S.; Mehboob, A. Exogenous Triacontanol-Mediated Increase in Phenolics, Proline, Activity of Nitrate Reductase, and Shoot K+ Confers Salt Tolerance in Maize (Zea mays L.). Braz. J. Bot. 2017, 40, 1–11. [Google Scholar] [CrossRef]
- Khanam, D.; Mohammad, F. Plant Growth Regulators Ameliorate the Ill Effect of Salt Stress through Improved Growth, Photosynthesis, Antioxidant System, Yield and Quality Attributes in Mentha piperita L. Acta Physiol. Plant. 2018, 40, 188. [Google Scholar] [CrossRef]
- Shafiq, S.; Aisha, N.; Ashraf, M.; Arshad, A. Synergistic Effects of Drought and Ascorbic Acid on Growth, Mineral Nutrients and Oxidative Defense System in Canola (Brassica napus L.) Plants. Acta Physiol. Plant. 2014, 36, 1539–1553. [Google Scholar] [CrossRef]
- Genisel, M.; Erdal, S.; Kizilkaya, M. The Mitigating Effect of Cysteine on Growth Inhibition in Salt-Stressed Barley Seeds Is Related to Its Own Reducing Capacity Rather than Its Effects on Antioxidant System. Plant Growth Regul. 2015, 75, 187–197. [Google Scholar] [CrossRef]
- Nasibi, F.; Kalantari, K.; Zanganeh, R.; Mohammadi-Nejad, G.; Oloumi, H. Seed Priming with Cysteine Modulates the Growth and Metabolic Activity of Wheat Plants under Salinity and Osmotic Stresses at Early Stages of Growth. Indian J. Plant Physiol. 2016, 21, 279–286. [Google Scholar] [CrossRef]
- Fodorpataki, L.; Molnár, K.; Sebastian, P.; Tompa, B. Priming with Vitamin U Enhances Cold Tolerance of Lettuce (Lactuca sativa). Not. Bot. 2019, 47, 592–598. [Google Scholar]
- Zhu, Z.H.; Sami, A.; Xu, Q.Q.; Wu, L.L.; Zheng, W.Y.; Chen, Z.P.; Jin, X.Z.; Zhang, H.; Li, Y.; Yu, Y.; et al. Effects of Seed Priming Treatments on the Germination and Development of Two Rapeseed (Brassica napus L.) Varieties under the Co-Influence of Low Temperature and Drought. PLoS ONE 2021, 16, e0257236. [Google Scholar] [CrossRef] [PubMed]
- Mittler, R. Abiotic Stress, the Field Environment and Stress Combination. Trends Plant Sci. 2006, 11, 15–19. [Google Scholar] [CrossRef] [PubMed]
- Suzuki, N.; Rivero, R.M.; Shulaev, V.; Blumwald, E.; Mittler, R. Abiotic and Biotic Stress Combinations. New Phytol. 2014, 203, 32–43. [Google Scholar] [CrossRef] [PubMed]
- Jędrszczyk, E.; Skowera, B.; Kopcińska, J.; Ambroszczyk, A. The Influence of Weather Conditions During Vegetation Period on Yielding of Twelve Determinate Tomato Cultivars. Not. Bot. Horti Agrobot. Cluj-Napoca 2012, 40, 203–209. [Google Scholar] [CrossRef]
- Skowera, B. Changes of Hydrothermal Conditions in the Polish Area (1971–2010). Fragm. Agron. 2014, 31, 74–87. [Google Scholar]
- FACTOR KWS-Rapiţă-Produse-KWS SAAT SE & Co. KGaA. Available online: https://www.kws.com/md/ro/produse/rapita/factor-kws/ (accessed on 5 December 2022).
- Molnár, K.; Biró-Janka, B.; Nyárádi, I.-I.; Fodorpataki, L.; Varga, B.-E.; Bálint, J.; Duda, M.-M. Effects of Priming with Ascorbic Acid, L-Cystein and Triacontanol on Germination of Rapeseed (Brassica napus L.). Acta Biol. Marisiensis 2020, 3, 48–55. [Google Scholar] [CrossRef]
- Meier, U. Growth Stages of Mono- and Dicotyledonous Plants: BBCH Monograph; Julius Kühn-Institut (JKI): Quedlinburg, Germany, 2018. [Google Scholar] [CrossRef]
- Nagy, N.; Pepó, P. Comparative Study of Different Soybean Genotypes in Irrigation Technology. Acta Agrar. Debr. 2019, 1, 91–95. [Google Scholar] [CrossRef]
- Ortiz-Espín, A.; Sánchez-Guerrero, A.; Sevilla, F.; Jiménez, A. The Role of Ascorbate in Plant Growth and Development. In Ascorbic Acid in Plant Growth, Development and Stress Tolerance; Hossain, M.A., Munné-Bosch, S., Burritt, D.J., Diaz-Vivancos, P., Fujita, M., Lorence, A., Eds.; Springer International Publishing: Cham, Switzerland, 2017; pp. 25–45. ISBN 978-3-319-74057-7. [Google Scholar]
- Draganic, I.; lekić, S. Seed Priming with Antioxidants Improves Sunflower Seed Germination and Seedling Growth under Unfavorable Germination Conditions. Turk. J. Agric. For. 2012, 36, 421–428. [Google Scholar] [CrossRef]
- Afzal, I.; Basra, S.; Farooq, M.; Nawaz, A. Alleviation of Salinity Stress in Spring Wheat by Hormonal Priming with ABA, Salicylic Acid and Ascorbic Acid. Int. J. Agric. Biol. 2006, 8, 8530. [Google Scholar]
- Sadak, M.S.; Abd El-Hameid, A.R.; Zaki, F.S.A.; Dawood, M.G.; El-Awadi, M.E. Physiological and Biochemical Responses of Soybean (Glycine max L.) to Cysteine Application under Sea Salt Stress. Bull. Natl. Res. Cent. 2020, 44, 1. [Google Scholar] [CrossRef]
- Ma, B.-L.; Zheng, Z.; Whalen, J.K.; Caldwell, C.; Vanasse, A.; Pageau, D.; Scott, P.; Earl, H.; Smith, D.L. Uptake and Nutrient Balance of Nitrogen, Sulfur, and Boron for Optimal Canola Production in Eastern Canada. J. Plant Nutr. Soil Sci. 2019, 182, 252–264. [Google Scholar] [CrossRef]
- Lucas, F.T.; Coutinho, E.L.M.; Paes, J.M.V.; Barbosa, J.C. Yield and Quality of Canola Grains Due to Nitrogen and Sulfur Fertilization. Semin. Ciências Agrárias 2013, 34, 3205–3218. [Google Scholar] [CrossRef]
- Varga, L.; Ložek, O.; Ducsay, L.; Kováčik, P.; Lošák, T.; Hlušek, J. Effect of Topdressing with Nitrogen and Boron on the Yield and Quality of Rapeseed. Acta Univ. Agric. Et Silvic. Mendel. Brun. 2010, 58, 391–398. [Google Scholar] [CrossRef]
- Ahmadi SA, K.; Ebadi, A.; Daneshian, J.; Siadat, S.A.; Jahanbakhsh, S. Effect of Drought Stress and Foliar Application of Growth Regulators on Photosynthetic Pigments and Seed Yield of Rapeseed (Brassica napus L. Cv. Hyola 401). Iran. J. Crop Sci. 2016, 18, 196–217. [Google Scholar]
- Sikorska, A.; Gugała, M.; Zarzecka, K. The Impact of Foliar Feeding on the Yield Components of Three Winter Rape Morphotypes (Brassica napus L.). Open Agric. 2020, 5, 107–116. [Google Scholar] [CrossRef]
- Malhi, S.S.; Raza, M.; Schoenau, J.J.; Mermut, A.R.; Kutcher, R.; Johnston, A.M.; Gill, K.S. Feasibility of Boron Fertilization for Yield, Seed Quality and B Uptake of Canola in Northeastern Saskatchewan. Can. J. Soil. Sci. 2003, 83, 99–108. [Google Scholar] [CrossRef]
- Weymann, W.; Böttcher, U.; Sieling, K.; Kage, H. Effects of Weather Conditions during Different Growth Phases on Yield Formation of Winter Oilseed Rape. Field Crops Res. 2015, 173, 41–48. [Google Scholar] [CrossRef]
- Gugała, M.; Sikorska, A.; Findura, P.; Kapela, K.; Malaga-Toboła, U.; Zarzecka, K.; Domański, Ł. Effect of Selected Plant Preparations Containing Biologically Active Compounds on Winter Rape (Brassica napus L.) Yielding. Appl. Ecol. Environ. Res. 2019, 17, 2779–2789. [Google Scholar] [CrossRef]
- Luo, T.; Sheng, Z.; Zhang, C.; Li, Q.; Liu, X.; Qu, Z.; Xu, Z. Seed Characteristics Affect Low-Temperature Stress Tolerance Performance of Rapeseed (Brassica napus L.) during Seed Germination and Seedling Emergence Stages. Agronomy 2022, 12, 1969. [Google Scholar] [CrossRef]
- Bhandari, S.; Bhandari, A.; Shrestha, J. Effect of Different Doses of Triacontanol on Growth and Yield of Kohlrabi (Brassica oleracea L. var. gongylodes). Heliyon 2021, 7, e08242. [Google Scholar] [CrossRef] [PubMed]
- Chandra, S.; Roychoudhury, A. Penconazole, Paclobutrazol, and Triacontanol in Overcoming Environmental Stress in Plants. In Protective Chemical Agents in the Amelioration of Plant Abiotic Stress; John Wiley & Sons, Ltd.: Hoboken, NJ, USA, 2020; pp. 510–534. ISBN 978-1-119-55215-4. [Google Scholar]
- Perveen, S.; Shahbaz, M.; Ashraf, M. Triacontanol-Induced Changes in Growth, Yield, Leaf Water Relations, Oxidative Defense System, Minerals, and Some Key Osmoprotectants in Triticum aestivum under Saline Conditions. Turk. J. Bot. 2014, 38, 896–913. [Google Scholar] [CrossRef]
- Razaji, A.; Farzanian, M.; Sayfzadeh, S. The Effects of Seed Priming by Ascorbic Acid on Some Morphological and Biochemical Aspects of Rapeseed (Brassica napus L.) under Drought Stress Condition. J. Biodivers. Environ. Sci. 2014, 4, 432–442. [Google Scholar]
- El-Sabagh, A.; Abdelaal, K.A.A.; Barutcular, C. Impact of Antioxidants Supplementation on Growth, Yield and Quality Traits of Canola (Brassica napus L.) under Irrigation Intervals in North Nile Delta of Egypt. J. Exp. Biol. Agric. Sci. 2017, 5, 163–172. [Google Scholar] [CrossRef]
- Raza, M.A.S.; Shahid, A.M.; Saleem, M.F.; Khan, I.H.; Ahmad, S.; Ali, M.; Iqbal, R. Effects and Management Strategies to Mitigate Drought Stress in Oilseed Rape (Brassica napus L.): A Review. Zemdirb. Agric. 2017, 104, 85–94. [Google Scholar] [CrossRef]
- El Kelish, A.; El-Mogy, M.; Niedbała, G.; Piekutowska, M.; Omar, M.A.; Hamada, M.; Shahin, M.; Mukherjee, S.; Abou El-Yazied, A.; Shebl, M.; et al. Roles of Exogenous α-Lipoic Acid and Cysteine in Mitigation of Drought Stress and Restoration of Grain Quality in Wheat. Plants 2021, 10, 2318. [Google Scholar] [CrossRef]
- Alam, M.M.; Nahar, K.; Hasanuzzaman, M.; Fujita, M. Alleviation of Osmotic Stress in Brassica napus, B. campestris, and B. juncea by Ascorbic Acid Application. Biol. Plant. 2014, 58, 697–708. [Google Scholar] [CrossRef]
- Brown, J.K.M.; Beeby, R.; Penfield, S. Yield Instability of Winter Oilseed Rape Modulated by Early Winter Temperature. Sci. Rep. 2019, 9, 6953. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Eőri, T.; Wenszky, Á. Versenyképes Repcetermesztés: A Jövedelmezőség Kulcstényezői a Szántóföldi Gyakorlatban; Magyar Agrárkamara: Budapest, Hungary, 2012; ISBN 978-963-286-667-3. [Google Scholar]
Monthly Temperature (°C) | Deviation from Long-Term Average (°C) | ||||||
---|---|---|---|---|---|---|---|
Months | 2017–2018 | 2018–2019 | 2019–2020 | Long-Term 1981–2010 | 2017–2018 | 2018–2019 | 2019–2020 |
VIII | 21.3 | 21.8 | 21.0 | 19.6 | +1.7 | +2.2 | +1.4 |
IX | 15.6 | 15.5 | 16.3 | 14.6 | +1.0 | +0.9 | +1.7 |
X | 9.6 | 11.0 | 10.8 | 9.3 | +0.3 | +1.7 | +1.5 |
XI | 4.9 | 6.1 | 9.4 | 3.4 | +1.5 | +2.7 | +6.0 |
XII | 1.3 | −0.7 | 1.2 | −1.4 | +2.7 | +0.7 | +2.6 |
I | 0.3 | −1.8 | −2.8 | −2.9 | +3.2 | +1.1 | +0.1 |
II | 0.3 | 1.1 | 2.5 | −1.5 | +1.8 | +2.6 | +4.0 |
III | 3.2 | 6.3 | 6.2 | 4.2 | −1.0 | +2.1 | +2.0 |
IV | 14.4 | 11.2 | 8.7 | 10.3 | +4.1 | +0.9 | −1.6 |
V | 17.4 | 14.2 | 13.7 | 15.7 | +1.7 | −1.5 | −2.0 |
VI | 19.1 | 20.6 | 19.7 | 18.5 | +0.6 | +2.1 | +1.2 |
VII | 19.5 | 19.4 | 20.7 | 20.2 | −0.7 | −0.8 | +0.5 |
Mean | 10.6 | 10.4 | 10.6 | 9.2 | +1.4 | +1.2 | +1.5 |
Monthly Precipitation (mm) | Deviation from Long-Term Average (mm) | ||||||
---|---|---|---|---|---|---|---|
Months | 2017–2018 | 2018–2019 | 2019–2020 | Long-Term 1981–2010 | 2017–2018 | 2018–2019 | 2019–2020 |
VIII | 39.2 | 10.4 | 56.2 | 66 | −26.8 | −55.6 | −9.8 |
IX | 42.4 | 35.6 | 53.4 | 51.2 | −8.8 | −15.6 | +2.2 |
X | 52.0 | 27.2 | 38.4 | 40.2 | +11.8 | −13 | −1.8 |
XI | 53.6 | 27.2 | 20.2 | 32.7 | +20.9 | −5.5 | −12.5 |
XII | 47.6 | 56.0 | 49.0 | 36.3 | +11.3 | +19.7 | −16.1 |
I | 33.6 | 42.6 | 4.2 | 26 | +7.6 | +16.6 | −21.8 |
II | 42.2 | 26.8 | 60.8 | 23.9 | +18.3 | +2.9 | +36.9 |
III | 67.2 | 13.6 | 29.4 | 30.6 | +36.6 | −17 | −1.2 |
IV | 15.4 | 28.0 | 8.4 | 48 | −32.6 | −20 | −39.6 |
V | 73.4 | 134.8 | 60.2 | 65.1 | +8.3 | +69.7 | −4.9 |
VI | 129.4 | 45.4 | 131.8 | 84.8 | +44.6 | −39.4 | +47 |
VII | 64.8 | 79.8 | 78 | 76.6 | −11.8 | +3.2 | +1.4 |
Mean | 55.1 | 44.0 | 49.2 | 48.5 | +6.6 | −4.5 | −1.7 |
Attributes/Cultivar | Factor KWS (H1) | Hybrirock KWS (H2) |
---|---|---|
Maturity | Semi-early | Semi-early |
Plant height | Medium/high | Medium |
Yield potential | Excellent | Excellent |
Oil potential | High | High |
Plant vigour | Rapid | Rapid |
Resistance/tolerance | High winter hardiness Excellent resistance to shaking RLM7 phoma tolerance | High winter hardiness Good disease resistance |
PHH | Years | Cultivars | ||||
---|---|---|---|---|---|---|
Treatments | 2017–2018 | 2018–2019 | 2019–2020 | H1 | H2 | Means |
AsA | 126 ab | 118.5 a | 126.7 a | 119.6 a | 126.3 a | 122.9 A |
Cys | 133.9 a | 114.7 a | 124.2 a | 117.9 a | 124.2 a | 121 AB |
Tria | 112.3 c | 115.7 a | 126.8 a | 117.8 a | 122.7 a | 120.2 AB |
Cont | 125.7 b | 112.8 a | 120.1 a | 113.2 a | 121.6 a | 117.4 C |
Means | 124.4 A | 115.4 B | 124.4 A | 117.2 B | 123.7 A |
OC | Years | Cultivars | Means | |||
---|---|---|---|---|---|---|
Treatments | 2017–2018 | 2018–2019 | 2019–2020 | H1 | H2 | |
AsA | 33.12 a | 39.51 a | 36.71 a | 34.57 a | 38.32 a | 36.44 A |
Cys | 33.27 a | 39.19 a | 36.50 a | 36.08 a | 36.56 ab | 36.32 A |
Tria | 31.54 ab | 37.70 a | 35.55 a | 34.71 a | 35.15 b | 34.93 B |
Cont | 31.45 b | 37.69 a | 36.33 a | 34.56 a | 35.75 ab | 35.15 B |
Means | 32.34 C | 38.52 A | 36.27 B | 34.98 B | 36.45 A |
Biometrics Parameters | Autumn | Spring | |||
---|---|---|---|---|---|
Years | Treatments | Plant Height (cm) | No. of Leaves/ Plant | Plant Height (cm) | No. of Branches/ Plant |
PHA | NL | PHS | NBS | ||
2017–2018 | H1 AsA | 8.01 a | 3.55 a | 42.25 a | 7.80 cd |
H1 Cys | 7.21 bc | 3.33 b | 42.70 a | 7.20 de | |
H1 Tria | 6.40 d | 3.16 b | 40.05 ab | 7.45 d | |
H1 Cont | 6.71 cd | 3.36 b | 42.12 a | 6.40 ef | |
H2 AsA | 7.36 b | 3.59 a | 40.80 ab | 8.85 abc | |
H2 Cys | 7.15 b | 3.66 a | 39.05 ab | 9.60 a | |
H2 Tria | 6.58 d | 3.48 b | 39.78 ab | 8.90 ab | |
H2 Cont | 6.46 d | 3.34 b | 36.80 b | 5.75 f | |
2018–2019 | H1 AsA | 21.47 a | 5.08 cd | 47.37 a | 6.95 bcd |
H1 Cys | 19.53 bcd | 5.87 a | 44.45 ab | 8.85 a | |
H1 Tria | 19.27 bcd | 5.43 b | 36.50 d | 8.15 ab | |
H1 Cont | 19.61 bc | 4.83 e | 44.60 ab | 6.65 cde | |
H2 AsA | 20.56 a | 4.92 d | 47.30 a | 7.70 bc | |
H2 Cys | 19.46 bc | 5.24 bc | 42.46 bc | 7.75 b | |
H2 Tria | 18.63 d | 5.21 bc | 38.28 cd | 6.15 de | |
H2 Cont | 19.49 e | 5.20 bcd | 39.30 cd | 5.85 e | |
2019–2020 | H1 AsA | 25.99 b | 5.29 e | 45.10 a | 7.55 b |
H1 Cys | 26.74 a | 6.47 a | 41.35 ab | 7.85 ab | |
H1 Tria | 25.57 b | 6.26 b | 36.33 b | 8.50 a | |
H1 Cont | 26.40 ab | 6.01 cd | 41.20 ab | 7.00 bc | |
H2 AsA | 25.67 b | 5.33 e | 41.20 ab | 6.75 bc | |
H2 Cys | 27.25 a | 6.62 a | 37.35 b | 7.20 b | |
H2 Tria | 25.19 b | 6.15 bc | 40.01 ab | 6.15 c | |
H2 Cont | 25.69 b | 5.80 d | 41.01 ab | 6.50 bc |
Biometrics Parameters | Harvest Time | ||||||
---|---|---|---|---|---|---|---|
Years | Treatments | Plant Height (cm) | No. of Branches/ Plant | Plant Fresh Weight (g) | Root Length (cm) | Root Neck Diameter (cm) | Root Fresh Weight (g) |
PHH | NBH | PFW | RL | RND | RFW | ||
2017–2018 | H1 AsA | 122.20 bcd | 12.0 a | 280.0 a | 23.96 a | 24.91 a | 18.0 b |
H1 Cys | 130.20 ab | 11.6 a | 117.0 b | 24.57 a | 25.26 a | 22.0 a | |
H1 Tria | 116.00 de | 10.4 a | 112.0 bc | 21.14 a | 25.78 a | 11.40 d | |
H1 Cont | 125.0 bcd | 10.0 abc | 148.0 bc | 18.72 b | 25.74 a | 12.40 d | |
H2 AsA | 129.80 abc | 10.2 ab | 132.20 bc | 22.96 a | 22.27 a | 10.20 d | |
H2 Cys | 137.60 a | 8.40 c | 152.0 bc | 24.08 a | 24.39 a | 14.0 c | |
H2 Tria | 108.60 e | 4.80 d | 60.0 c | 23.20 a | 22.74 a | 12.0 b | |
H2 Cont | 126.40 abcd | 8.80 bc | 108.0 bc | 22.27 a | 23.45 a | 9.30 e | |
2018–2019 | H1 AsA | 115.10 ab | 7.65 bcd | 63.15 ab | 22.89 ab | 21.92 a | 7.59 abc |
H1 Cys | 114.85 ab | 9.00 a | 63.60 b | 23.17 ab | 61.81 a | 9.50 a | |
H1 Tria | 112.50 ab | 8.55 ab | 61.50 b | 20.98 ab | 22.14 a | 6.80 abc | |
H1 Cont | 108.95 b | 7.73 cd | 116.50 ab | 18.05 b | 22.10 a | 5.84 c | |
H2 AsA | 122.0 a | 7.20 d | 99.90 a | 22.05 ab | 19.17 a | 6.71 abc | |
H2 Cys | 114.50 ab | 7.95 bcd | 56.05 b | 24.63 a | 20.93 a | 8.70 ab | |
H2 Tria | 119.05 a | 8.25 abc | 100.60 ab | 23.01 ab | 19.32 a | 6.17 c | |
H2 Cont | 116.55 ab | 8.18 bc | 55.40 b | 21.31 ab | 20.35 a | 7.56 abc | |
2019–2020 | H1 AsA | 123.55 ab | 8.20 a | 292.25 ab | 19.98 a | 21.18 ab | 6.24 ab |
H1 Cys | 117.95 ab | 7.50 ab | 328.50 ab | 20.15 a | 21.06 ab | 8.18 a | |
H1 Tria | 123.60 ab | 8.40 a | 328.50 ab | 17.79 a | 21.40 a | 5.63 ab | |
H1 Cont | 114.70 b | 7.05 ab | 267.15 b | 15.69 b | 21.36 a | 5.04 b | |
H2 AsA | 129.75 a | 7.0 ab | 305.0 ab | 19.22 a | 18.52 b | 5.52 ab | |
H2 Cys | 130.50 a | 7.20 b | 372.50 a | 19.70 a | 20.19 ab | 7.09 a | |
H2 Tria | 129.90 a | 5.90 ab | 341.45 ab | 19.73 a | 19.15 ab | 5.23 b | |
H2 Cont | 125.65 ab | 6.60 ab | 337.0 ab | 18.53 a | 19.49 ab | 6.39 ab |
Yield Parameters | |||||||
---|---|---|---|---|---|---|---|
Years | Treatments | No. of Siliquae/ Plant | Weight of Siliquae/ Plant (g) | Thousand Seed Weight (g) | Oil Content (%) | Seed Yield/ Plant (g) | Estimated Seed Yield (t∙ha−1) |
NS | WS | TSW | OC | SYP | ESY | ||
2017–2018 | H1 AsA | 324.80 a | 64.61 a | 3.55 de | 31.05 c | 32.89 a | 6.58 a |
H1 Cys | 207.60 ab | 65.36 a | 4.07 bc | 34.56 a | 26.36 ab | 5.27 ab | |
H1 Tria | 147.60 b | 51.17 ab | 3.67 e | 31.08 c | 19.59 c | 3.93 c | |
H1 Cont | 160.40 b | 57.17 ab | 3.81 cd | 31.49 bc | 25.70 abc | 5.14 abc | |
H2 AsA | 150.0 b | 33.60 ab | 4.31 a | 35.18 a | 20.75 bc | 4.15 bc | |
H2 Cys | 150.60 b | 48.66 ab | 3.95 bc | 31.98 b | 30.62 a | 6.13 a | |
H2 Tria | 70.80 b | 17.74 b | 3.75 d | 32.00 b | 11.68 e | 2.32 e | |
H2 Cont | 101.40 b | 33.76 ab | 3.99 ab | 31.41 bc | 14.52 d | 2.90 d | |
2018–2019 | H1 AsA | 288.80 ab | 30.0 ab | 4.05 cd | 37.71 bc | 15.48 c | 3.68 abc |
H1 Cys | 312.20 b | 27.0 ab | 4.53 b | 37.22 bc | 10.48 cde | 2.59 bc | |
H1 Tria | 263.90 bcd | 25.35 ab | 4.07 d | 37.34 bc | 16.17 bc | 2.44 cd | |
H1 Cont | 282.85 abcd | 42.80 ab | 4.19 c | 36.80 c | 21.27 bc | 3.06 abc | |
H2 AsA | 390.45 a | 37.30 a | 4.98 a | 41.32 a | 23.31 ab | 3.87 a | |
H2 Cys | 176.95 d | 24.20 ab | 4.55 b | 41.16 a | 12.58 cd | 3.45 ab | |
H2 Tria | 181.35 cd | 30.60 ab | 4.31 bc | 38.06 bc | 8.16 de | 1.59 d | |
H2 Cont | 217.65 cd | 19.90 b | 4.39 b | 38.57 b | 10.28 cd | 1.87 cd | |
2019–2020 | H1 AsA | 231.75 abc | 62.84 abc | 3.90 cde | 34.96 e | 27.97 b | 5.60 c |
H1 Cys | 211.65 abc | 63.93 abc | 4.48 b | 36.46 bc | 30.01 a | 6.00 ab | |
H1 Tria | 245.05 a | 63.23 a | 4.03 de | 35.70 cde | 27.18 ab | 4.41 d | |
H1 Cont | 234.45 abc | 63.88 abc | 3.81 e | 35.40 de | 23.59 cd | 5.03 bcd | |
H2 AsA | 170.45 c | 45.57 c | 4.75 a | 38.46 a | 21.29 e | 4.26 d | |
H2 Cys | 225.65 abc | 63.84 abc | 4.34 b | 36.54 bc | 29.09 abc | 5.82 abc | |
H2 Tria | 190.60 bc | 45.84 bc | 4.12 c | 35.40 de | 22.01 de | 4.41 d | |
H2 Cont | 167.50 bc | 43.74 bc | 3.99 cd | 37.26 b | 25.14 abcde | 5.03 abcd |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Molnár, K.; Biró-Janka, B.; Domokos, E.; Nyárádi, I.-I.; Fodorpataki, L.; Stoie, A.; Duda, M.M. Effects of Seed Priming and Foliar Treatment with Ascorbate, Cysteine, and Triacontanol on Canola (Brassica napus L.) under Field Conditions. Horticulturae 2023, 9, 207. https://doi.org/10.3390/horticulturae9020207
Molnár K, Biró-Janka B, Domokos E, Nyárádi I-I, Fodorpataki L, Stoie A, Duda MM. Effects of Seed Priming and Foliar Treatment with Ascorbate, Cysteine, and Triacontanol on Canola (Brassica napus L.) under Field Conditions. Horticulturae. 2023; 9(2):207. https://doi.org/10.3390/horticulturae9020207
Chicago/Turabian StyleMolnár, Katalin, Béla Biró-Janka, Erzsébet Domokos, Imre-István Nyárádi, László Fodorpataki, Andrei Stoie, and Matei Marcel Duda. 2023. "Effects of Seed Priming and Foliar Treatment with Ascorbate, Cysteine, and Triacontanol on Canola (Brassica napus L.) under Field Conditions" Horticulturae 9, no. 2: 207. https://doi.org/10.3390/horticulturae9020207
APA StyleMolnár, K., Biró-Janka, B., Domokos, E., Nyárádi, I. -I., Fodorpataki, L., Stoie, A., & Duda, M. M. (2023). Effects of Seed Priming and Foliar Treatment with Ascorbate, Cysteine, and Triacontanol on Canola (Brassica napus L.) under Field Conditions. Horticulturae, 9(2), 207. https://doi.org/10.3390/horticulturae9020207