Evaluation of Compost and Biochar as Partial Substitutes of Peat in Growing Media and Their Influence in Microbial Counts, Enzyme Activity and Lactuca sativa L. Seedling Growth
Abstract
:1. Introduction
2. Materials and Methods
2.1. Elaboration of Growing Media
2.2. Initial Physical and Chemical Characterization
2.3. Experimental Design
2.4. Evaluation of Biological Conditions of Growing Media (Treatments)
2.5. Determination of Aerial and Root Growth
2.6. Statistical Analysis
3. Results
3.1. Initial Physical and Chemical Characterization of the Substrates
3.2. Phytotoxicity Test
3.3. Biological Conditions of Growing Media (Treatments)
3.4. Plant Aerial and Root Growth
Plant Aerial and Root Growth
3.5. Relationship between Biological Properties of Growing Media and Lactuca sativa L. (Oak Leaf variety) Seedling Traits
4. Discussion
4.1. Physical and Chemical Characterization of Growing Media
4.2. Evaluation of the Biological Properties of the Growing Media Tested
4.3. Relationship between the Biological Properties of Growing Media and Lactuca sativa L. (Oak Leaf variety) Seedling Traits
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Borrero, C.; Ordovas, J.; Trillas, M.I.; Aviles, M. Tomato Fusarium wilt suppressiveness. The relationship between the organic plant growth media and their microbial communities as characterized by Biolog (R). Soil. Biol. Biochem. 2006, 38, 1631–1637. [Google Scholar] [CrossRef]
- Ozores-Hampton, M.; Obreza, T.A.; Stoffella, P.J. Weed control in vegetable crops with composted organic mulches. In Compost Utilization in Horticultural Cropping Systems; CRC Press: Boca Raton, FL, USA, 2001; pp. 275–286. [Google Scholar]
- Verdonck, O.; Rd, P.; De Boodt, M. The physical properties of different horticultural substrates. In Proceedings of the International Symposium on Substrates in Horticulture other than Soils In Situ; Acta Horticulturae: Barcelona, Spain, 1983; Volume 150, pp. 155–160. [Google Scholar]
- Amha, Y.; Bohne, H.; Schmilewski, G.; Picken, P.; Reinikainen, O. Physical, chemical and botanical characteristics of peats used in the horticultural industry. Eur. J. Hortic. Sci. 2010, 75, 177–183. [Google Scholar]
- Ceglie, F.; Bustamante, M.; Amara, M.; Tittarelli, F. The challenge of peat substitution in organic seedling production: Optimization of growing media formulation through mixture design and response surface analysis. PLoS ONE 2015, 10, e0128600. [Google Scholar] [CrossRef] [PubMed]
- Agarwal, P.; Saha, S.; Hariprasad, P. Agro-industrial-residues as potting media: Physicochemical and biological characters and their influence on plant growth. Biomass Convers. Biorefinery 2021, 1–24. [Google Scholar] [CrossRef]
- Barrett, G.E.; Alexander, P.D.; Robinson, J.S.; Bragg, N.C. Achieving environmentally sustainable growing media for soilless plant cultivation systems—A review. Sci. Hortic. 2016, 212, 220–234. [Google Scholar] [CrossRef] [Green Version]
- Pascual, J.; Ceglie, F.; Tuzel, Y.; Koller, M.; Koren, A.; Hitchings, R.; Tittarelli, F. Organic substrate for transplant production in organic nurseries. A review. Agron. Sustain. Dev. 2018, 38, 35. [Google Scholar] [CrossRef] [Green Version]
- Prasad, M.; Ni Chualain, D.; Maher, M.J. The effect of addition of composted greenwaste and biowaste on enzyme activity of peats of two degrees of decomposition. Acta Hortic. 2008, 779, 59–67. [Google Scholar] [CrossRef]
- Jayasinghe, G. Composted sewage sludge as an alternative potting media for lettuce cultivation. Commun. Soil Sci. Plant Anal. 2012, 43, 2878–2887. [Google Scholar] [CrossRef]
- Kern, J.; Tammeorg, P.; Shanskiy, M.; Sakrabani, R.; Knicker, H.; Kammann, C.; Tuhkanen, E.M.; Smidt, G.; Prasad, M.; Tiilikkala, K.; et al. Synergistic use of peat and charred material in growing media–an option to reduce the pressure on peatlands. J. Environ. Eng. Landsc. Manag. 2017, 25, 160–174. [Google Scholar] [CrossRef] [Green Version]
- Huang, L.; Gu, M. Effects of biochar on container substrate properties and growth of plants—A review. Horticulturae 2019, 5, 14. [Google Scholar] [CrossRef] [Green Version]
- Zulfiqar, F.; Allaire, S.E.; Akram, N.A.; Méndez, A.; Younis, A.; Peerzada, A.M.; Shaukat, N.; Wright, S.R. Challenges in organic component selection and biochar as an opportunity in potting substrates: A review. J. Plant Nutr. 2019, 42, 1386–1401. [Google Scholar] [CrossRef]
- Nemati, M.R.; Simard, F.; Fortin, J.-P.; Beaudoin, J. Potential use of biochar in growing media. Vadose Zone J. 2015, 14, vzj2014.06.0074. [Google Scholar] [CrossRef]
- Méndez, A.; Cárdenas-Aguiar, E.; Paz-Ferreiro, J.; Plaza, C.; Gascó, G. The effect of sewage sludge biochar on peat-based growing media. Biol. Agric. Hortic. 2017, 33, 40–51. [Google Scholar] [CrossRef]
- Chrysargyris, A.; Prasad, M.; Kavanagh, A.; Tzortzakis, N. Biochar type, ratio, and nutrient levels in growing media affects seedling production and plant performance. Agronomy 2020, 10, 1421. [Google Scholar] [CrossRef]
- Jindo, K.; Sánchez-Monedero, M.A.; Mastrolonardo, G.; Audette, Y.; Satoshi Higashikawa, F.; Silva, C.A.; Akashi, K.; Mondini, C. Role of biochar in promoting circular economy in the agriculture sector. Part 2: A review of the biochar roles in growing media, composting and as soil amendment. Chem. Biol. Technol. Agric 2020, 7, 16. [Google Scholar] [CrossRef]
- Grunert, O.; Reheul, D.; Van Labeke, M.; Perneel, M.; Hernandez-Sanabria, E.; Vlaeminck, S.E.; Boon, N. Growing media constituents determine the microbial nitrogen conversions in organic growing media for horticulture. Microb. Biotechnol. 2016, 9, 389–399. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Grunert, O.; Robles-Aguilar, A.A.; Hernandez-Sanabria, E.; Schrey, S.D.; Reheul, D.; Labeke, M.-C.V.; Vlaeminck, S.E.; Vandekerckhove, T.G.L.; Mysara, M.; Monsieurs, P.; et al. Tomato plants rather than fertilizers drive microbial community structure in horticultural growing media. Sci. Rep. 2019, 9, 9561. [Google Scholar] [CrossRef] [Green Version]
- Kasozi, N.; Abraham, B.; Kaiser, H.; Wilhelmi, B. The complex microbiome in aquaponics: Significance of the bacterial ecosystem. Ann. Microbiol. 2021, 71, 1. [Google Scholar] [CrossRef]
- Sinsabaugh, R.L.; Lauber, C.L.; Weintraub, M.N.; Ahmed, B.; Allison, S.D.; Crenshaw, C.; Contosta, A.R.; Cusack, D.; Frey, S.; Gallo, M.E.; et al. Stoichiometry of soil enzyme activity at global scale. Ecol. Lett. 2008, 11, 1252–1264. [Google Scholar] [CrossRef]
- Mooshammer, M.; Wanek, W.; Zechmeister-Boltenstern, S.; Richter, A. Stoichiometric imbalances between terrestrial decomposer communities and their resources: Mechanisms and implications of microbial adaptations to their resources. Front. Microbiol. 2014, 5, 22. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vandecastelee, B.; Van Loo, K.; Ommeslag, S.; Vierendeels, S.; Rooseleer, M.; Vandaele, E. Sustainable Growing Media Blends with Woody Green Composts: Optimizing the N Release with Organic Fertilizers and Interaction with Microbial Biomass. Agronomy 2022, 12, 422. [Google Scholar] [CrossRef]
- Sadzawka, A.; Carrasco, M.; Grez, R.; De La Luz, M. Métodos de Análisis de Compost; Serie Actas INIA, no. 30; Instituto de Investigaciones Agropecuarias (INIA): Santiago, Chile, 2005; ISSN 0717-4810. [Google Scholar]
- De la Rosa, P.M.; Miller, Z.A.; Knicker, H. Relating physical and chemical properties of four different biochars and their application rate to biomass production of Lolium perenne on a Calcic Cambisol during a pot experiment of 79 days. Sci. Total Environ. 2014, 499, 175–184. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nocentini, M.; Panettieri, M.; García, J.; Mastrolonardo, G.; Knicker, H. Recycling pyrolyzed organic waste from plant nurseries, rice production and shrimp industry as peat substitute in potting substrates. J. Environ. Manag. 2021, 277, 111436. [Google Scholar] [CrossRef] [PubMed]
- Zucconi, F. Evaluating toxicity of immature compost. Biocycle 1981, 22, 54–57. [Google Scholar]
- Maier, R.M.; Pepper, I.L.; Gerba, C.P. Environmental Microbiology, 2nd ed.; Academic Press, Elsevier: London, UK, 2009. [Google Scholar]
- Alef, K.; Nannipieri, P. Enzyme activities. In Methods in Applied Soil Microbiology and Biochemistry; Academic Press, Elsevier: Amsterdam, The Netherlands, 1995; pp. 311–373. [Google Scholar] [CrossRef]
- Kandeler, E.; Gerber, H. Short-term assay of soil urease activity using colorimetric determination of ammonium. Biol. Fertil. Soils 1988, 6, 68–72. [Google Scholar] [CrossRef]
- Zobel, R.; Waisel, Y. A plant root system architectural taxonomy: A framework for root nomenclature. Plant Biosyst. 2010, 144, 507–512. [Google Scholar] [CrossRef]
- de Mendiburu, F. Agricolae: Statistical Procedures for Agricultural Research. R package version 1.4.0, 2020. Available online: https://cran.r-project.org/package=agricolae (accessed on 23 November 2022).
- Stewart, S. Efficacy of organic amendments used in containerized plant production: Part 1–Compost-based amendments. Sci. Hortic. 2020, 266, 108856. [Google Scholar] [CrossRef]
- Fryda, L.; Visser, R.; Schmidt, J. Biochar replaces peat in horticulture: Environmental impact assessment of combined biochar & bioenergy production. Detritus 2019, 5, 1. [Google Scholar] [CrossRef] [Green Version]
- Abujabhah, I.; Bound, S.; Doyle, R.; Bowman, J. Effects of biochar and compost amendments on soil physico-chemical properties and the total community within a temperate agricultural soil. Appl. Soil Ecol. 2015, 98, 243–253. [Google Scholar] [CrossRef]
- Banitalebi, G.; Mosaddeghi, M.R.; Shariatmadari, H. Feasibility of agricultural residues and their biochars for plant growing media: Physical and hydraulic properties. Waste Manag. 2019, 87, 577–589. [Google Scholar] [CrossRef]
- Perdana, L.R.; Ratnasari, N.G.; Ramadhan, M.L.; Palamba, P.; Nasruddin; Nugroho, Y.S. Hydrophilic and hydrophobic characteristics of dry peat. In IOP Conference Series: Earth and Environmental Science; Institute of Physics Publishing: Bali, Indonesia, 2018; Volume 105. [Google Scholar]
- Steiner, C.; Harttung, T. Biochar as a growing media additive and peat substitute. Solid Earth 2014, 5, 995–999. [Google Scholar] [CrossRef]
- Flynn, R.P.; Wood, C.W.; Guertal, E.A. Lettuce response to composted broiler litter as a potting substrate component. J. Am. Soc. Hortic. Sci. 1995, 120, 964–970. [Google Scholar] [CrossRef] [Green Version]
- Zulfiqar, F.; Younis, A.; Chen, J. Biochar or biochar-compost amendment to a peat-based substrate improves growth of Syngonium podophyllum. Agronomy 2019, 9, 460. [Google Scholar] [CrossRef] [Green Version]
- Nair, A.; Carpenter, B. Biochar rate and transplant tray cell number have implications on pepper growth during transplant production. HortTechnology 2016, 26, 713–719. [Google Scholar] [CrossRef] [Green Version]
- Christou, A.; Stylianou, M.; Georgiadou, E.C.; Gedeon, S.; Ioannou, A.; Michael, C.; Fatta-Kassinos, D. Effects of biochar derived from the pyrolysis of either biosolids, manure or spent coffee grounds on the growth, physiology and quality attributes of field-grown lettuce plants. Environ. Technol. Innov. 2022, 26, 102263. [Google Scholar]
- Suwor, P.; Jeakkhajorn, S.; Kramchote, S. Effects of different compost manures application on growth of lettuces (Lactuca sativa L.). Int. J. Agric. Technol. 2020, 16, 1257–1266. [Google Scholar]
- Nobile, C.; Denier, J.; Houben, D. Linking biochar properties to biomass of basil, lettuce and pansy cultivated in growing media. Sci. Hortic. 2020, 261, 109001. [Google Scholar]
- Abad, M.; Noguera, P.; Burés, S. National inventory of organic wastes for use as growing media for ornamental potted plant production: Case study in Spain. Bioresour. Technol. 2001, 77, 197–200. [Google Scholar] [CrossRef]
- de Falco, E.; Vitti, A.; Celano, G.; Ronga, D. Suitability of On-Farm Green Compost for the Production of Baby Leaf Species. Horticulturae 2021, 7, 512. [Google Scholar] [CrossRef]
- Emino, E.; Warman, P. Biological Assay for Compost Quality. Compost. Sci. Util. 2004, 12, 342–348. [Google Scholar] [CrossRef]
- Luo, Y.; Liang, J.; Zeng, G.; Chen, M.; Mo, D.; Li, G.; Zhang, D. Seed germination test for toxicity evaluation of compost: Its roles, problems and prospects. Waste Manag. 2018, 71, 109–114. [Google Scholar] [CrossRef] [PubMed]
- Palansooriya, K.N.; Wong, J.T.F.; Hashimoto, Y.; Huang, L.; Rinklebe, J.; Chang, S.X.; Bolan, N.; Wang, H.; Ok, Y.S. Response of microbial communities to biochar-amended soils: A critical review. Biochar 2019, 1, 3–22. [Google Scholar] [CrossRef] [Green Version]
- Nannipieri, P.; Giagnoni, L.; Renella, G.; Puglisi, E.; Ceccanti, B.; Masciandaro, G.; Fornadier, F.; Moscatelli, M.; Marinari, S. Soil enzymology: Classical and molecular approaches. Biol. Fertil. Soils 2012, 48, 743–762. [Google Scholar]
- Pokharel, P.; Ma, Z.; Chang, S. Biochar increases soil microbial biomass with changes in extra-and intracellular enzyme activities: A global meta-analysis. Biochar 2020, 2, 65–79. [Google Scholar]
- Aponte, H.; Medina, J.; Butler, B.; Meier, S.; Cornejo, P.; Kuzyakov, Y. Soil quality indices for metal (loid) contamination: An enzymatic perspective. Land Degrad. Dev. 2020, 31, 2700–2719. [Google Scholar]
- Deng, S.; Popova, I. Carbohydrate Hydrolases. In Methods of Soil Enzymology; Soil Science Society of America: Madison, WI, USA, 2011; Volume 9, pp. 185–209. [Google Scholar] [CrossRef]
- Maarit Niemi, R.; Vepsäläinen, M.; Wallenius, K.; Erkomaa, K.; Kukkonen, S.; Palojärvi, A.; Vestberg, M. Conventional versus organic cropping and peat amendment: Impacts on soil microbiota and their activities. Eur. J. Soil Biol. 2008, 44, 419–428. [Google Scholar] [CrossRef]
- Paillat, L.; Cannavo, P.; Barraud, F.; Huché-Thélier, L.; Guénon, R. Growing Medium Type Affects Organic Fertilizer Mineralization and CNPS Microbial Enzyme Activities. Agronomy 2020, 10, 1955. [Google Scholar] [CrossRef]
- Lin, Y.-L.; Zheng, N.-Y.; Lin, C.-S. Repurposing Washingtonia filifera petiole and Sterculia foetida follicle waste biomass for renewable energy through torrefaction. Energy 2021, 223, 120101. [Google Scholar] [CrossRef]
- Moyano, F.E.; Manzoni, S.; Chenu, C. Responses of soil heterotrophic respiration to moisture availability: An exploration of processes and models. Soil Biol. Biochem. 2013, 59, 72–85. [Google Scholar] [CrossRef]
- Pinto, R.; Brito, L.M.; Gonçalves, F.; Mourão, I.; Torres, L.; Coutinho, J. Lettuce growth and nutrient uptake response to winery waste compost and biochar. In III International Symposium on Growing Media, Composting and Substrate Analysis; ISHS: Milan, Italy, 2019; Volume 1305, pp. 233–240. [Google Scholar]
- Marcote, I.; Hernández, T.; García, C.; Polo, A. Influence of one or two successive annual applications of organic fertilisers on the enzyme activity of a soil under barley cultivation. Bioresour. Technol. 2001, 79, 147–154. [Google Scholar] [CrossRef] [PubMed]
- Kim, H.; Rae Kim, K.; Yang, J.-E.; Sik Ok, Y.; Il Kim, W.; Kunhikrishnan, A.; Kim, K.-H. Amelioration of Horticultural Growing Media Properties Through Rice Hull Biochar Incorporation. Waste Biomass Valorization 2017, 8, 483–492. [Google Scholar]
- Zahra, M.B.; Aftab, Z.E.H.; Akhter, A.; Haider, M.S. Cumulative effect of biochar and compost on nutritional profile of soil and maize productivity. J. Plant Nutr. 2021, 44, 1664–1676. [Google Scholar] [CrossRef]
Treatments | Organic (%) | Inorganic (%) | ||
---|---|---|---|---|
Peat | Compost | Biochar | Perlite | |
T1 | 80 | 0 | 0 | 20 |
T2 | 70 | 10 | 0 | 20 |
T3 | 70 | 5 | 5 | 20 |
T4 | 60 | 20 | 0 | 20 |
T5 | 60 | 10 | 10 | 20 |
Treatments | GWC (%) | DM (%) | BD (g/cm) | WHC (%) | pH | EC (dS/m) |
---|---|---|---|---|---|---|
T1 | 55.6 ± 1.1 | 44.4 ± 1.1 | 0.08 ± 0.002 | 405 ± 11.9 | 6.2 ± 0.1 | 0.3 ± 0.02 |
T2 | 51.3 ± 0.4 | 48.7 ± 0.4 | 0.12 ± 0.010 | 287 ± 11.5 | 7.4 ± 0.1 | 0.5 ± 0.03 |
T3 | 50.5 ± 1.4 | 49.5 ± 1.4 | 0.10 ± 0.005 | 332 ± 29.3 | 7.2 ± 0.1 | 0.4 ± 0.04 |
T4 | 47.2 ± 0.8 | 52.8 ± 0.8 | 0.15 ± 0.046 | 233 ± 7.8 | 8.0 ± 0.2 | 0.6 ± 0.03 |
T5 | 47.6 ± 2.2 | 52.4 ± 2.2 | 0.11 ± 0.013 | 283 ± 12.3 | 7.9 ± 0.1 | 0.5 ± 0.03 |
Treatments | Seed Germination Index (%) | |
---|---|---|
1:10 | 1:15 | |
T1 | 330 ± 121.9 | 298 ± 163.8 |
T2 | 366 ± 56.1 | 366 ± 72.2 |
T3 | 314 ± 53.5 | 410 ± 96.0 |
T4 | 442 ± 80.8 | 276 ± 99.4 |
T5 | 555 ± 144.0 | 365 ± 64.7 |
Treatment | Shoot Length (cm) | Aerial Dry Matter (g) |
---|---|---|
T1 | 7.967 ± 0.5 | 1.867 ± 0.03 |
T2 | 7.883 ± 0.2 | 1.889 ± 0.10 |
T3 | 7.800 ± 0.5 | 1.811 ± 0.04 |
T4 | 8.117 ± 0.9 | 1.874 ± 0.10 |
T5 | 7.517 ± 0.9 | 1.794 ± 0.03 |
Treataments | Class 1 Root Diameter Classes 0 to 0.5 mm | Class 2 Root Diameter Classes 0.5 to 0.75 mm | ||||||
---|---|---|---|---|---|---|---|---|
L1 | SA1 | V1 | NT1 | L2 | SA2 | V2 | NT2 | |
T1 | 212.90 ± 38.2 ab | 12.68 ± 2.9 ab | 0.078 ± 0.02 ab | 487.00 ± 225.4 ab | 14.37 ± 6.3 a | 3.27 ± 1.5 a | 0.066 ± 0.03 a | 3.97 ± 3.1 a |
T2 | 216.97 ± 30.4 a | 13.37 ± 2.3 a | 0.083 ± 0.02 a | 330.63 ± 96.9 b | 14.76 ± 5.8 a | 3.43 ± 1.6 a | 0.074 ± 0.05 a | 3.13 ± 2.2 a |
T3 | 220.62 ± 31.3 a | 11.35 ± 1.6 b | 0.064 ± 0.01 c | 617.43 ± 248.3 a | 9.71 ± 2.8 b | 2.33 ± 0.7 b | 0.050 ± 0.01 b | 2.43 ± 1.5 a |
T4 | 213.18 ± 66.6 ab | 11.51 ± 4.3 bc | 0.068 ± 0.03 bc | 518.83 ± 226.3 a | 13.63 ± 5 a | 3.28 ± 1.2 a | 0.070 ± 0.03 a | 2.17 ± 2.0 a |
T5 | 194.25 ± 33.5 b | 9.94 ± 1.7 c | 0.055 ± 0.01 c | 593.6 ± 199.6 a | 8.28 ± 3.2 c | 1.99 ± 0.8 c | 0.042 ± 0.02 c | 1.9 ± 1.2 a |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rozas, A.; Aponte, H.; Maldonado, C.; Contreras-Soto, R.; Medina, J.; Rojas, C. Evaluation of Compost and Biochar as Partial Substitutes of Peat in Growing Media and Their Influence in Microbial Counts, Enzyme Activity and Lactuca sativa L. Seedling Growth. Horticulturae 2023, 9, 168. https://doi.org/10.3390/horticulturae9020168
Rozas A, Aponte H, Maldonado C, Contreras-Soto R, Medina J, Rojas C. Evaluation of Compost and Biochar as Partial Substitutes of Peat in Growing Media and Their Influence in Microbial Counts, Enzyme Activity and Lactuca sativa L. Seedling Growth. Horticulturae. 2023; 9(2):168. https://doi.org/10.3390/horticulturae9020168
Chicago/Turabian StyleRozas, Amanda, Humberto Aponte, Carlos Maldonado, Rodrigo Contreras-Soto, Jorge Medina, and Claudia Rojas. 2023. "Evaluation of Compost and Biochar as Partial Substitutes of Peat in Growing Media and Their Influence in Microbial Counts, Enzyme Activity and Lactuca sativa L. Seedling Growth" Horticulturae 9, no. 2: 168. https://doi.org/10.3390/horticulturae9020168
APA StyleRozas, A., Aponte, H., Maldonado, C., Contreras-Soto, R., Medina, J., & Rojas, C. (2023). Evaluation of Compost and Biochar as Partial Substitutes of Peat in Growing Media and Their Influence in Microbial Counts, Enzyme Activity and Lactuca sativa L. Seedling Growth. Horticulturae, 9(2), 168. https://doi.org/10.3390/horticulturae9020168