Box-Behnken Design for Optimizing Ultrasonic-Assisted Enzymatic Extraction of Soluble Dietary Fiber from Pleurotus citrinopilestus
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Sample Pretreatment
2.3. Extraction of SDF from P. citrinopilestus
2.4. Yield Determination
2.5. Single-Factor Experiment
2.6. RSM Design to Optimize the Extraction Yield
2.7. Statistical Analysis
3. Results and Discussion
3.1. Single-Factor Experiment Analysis
3.2. Statistical Analysis and Model Fitting Using RSM
3.3. Optimizing the UAE Extraction of SDF
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Dai, Y.-C. A revised checklist of corticioid and hydnoid fungi in China for 2010. Mycoscience 2013, 52, 69–79. [Google Scholar] [CrossRef]
- Tao, Z.; Zheng, Q. Examining the Cultivation, Degradation Characteristics and Health Effects of the Golden Oyster Mushroom Pleurotus citrinopileatus (Agaricomycetes): A Review. Int. J. Med. Mushrooms 2023, 25, 17–26. [Google Scholar] [CrossRef] [PubMed]
- Wu, C.-Y.; Liang, Z.-C. Characteristics of Exopolysaccharides from the Citrine Oyster Mushroom, Pleurotus citrinopileatus (Agaricomycetes), Depend on the Nitrogen Source in the Medium. Int. J. Med. Mushrooms 2018, 20, 647–655. [Google Scholar] [CrossRef] [PubMed]
- Yin, C.; Fan, X.; Fan, Z.; Shi, D.; Yao, F.; Gao, H. Comparison of non-volatile and volatile flavor compounds in six Pleurotus mushrooms. J. Sci. Food Agric. 2018, 99, 1691–1699. [Google Scholar] [CrossRef] [PubMed]
- Bao, H.N.D.; Ushio, H.; Ohshima, T. Antioxidative activity and antidiscoloration efficacy of ergothioneine in mushroom (Flammulina velutipes) extract added to beef and fish meats. J. Agric. Food Chem. 2008, 56, 10032–10040. [Google Scholar] [CrossRef] [PubMed]
- Dubost, N.J.; Beelman, R.B.; Peterson, D.; Royse, D.J. Identification and Quantification of Ergothioneine in Cultivated Mushrooms by Liquid Chromatography-Mass Spectroscopy. Int. J. Med. Mushrooms 2006, 8, 215–222. [Google Scholar] [CrossRef]
- Jayakumar, T.; Thomas, P.A.; Geraldine, P. In-vitro antioxidant activities of an ethanolic extract of the oyster mushroom, Pleurotus ostreatus. Innov. Food Sci. Emerg. Technol. 2008, 10, 228–234. [Google Scholar] [CrossRef]
- Puttaraju, N.G.; Venkateshaiah, S.U.; Dharmesh, S.M.; Urs, S.M.N.; Somasundaram, R. Antioxidant activity of indigenous edible mushrooms. J. Agric. Food Chem. 2006, 54, 9764–9772. [Google Scholar] [CrossRef] [PubMed]
- Sawabe, A.; Morita, M.; Kiso, T.; Kishine, H.; Ohtsubo, Y.; Ouchi, S.; Okamoto, T. Structural analyses of a precursory substance of bitterness: New polyisoprenepolyols isolated from an edible mushroom (Hypsizigusmarmoreus) by fast atom bombardment mass spectrometry. J. Agric. Food Chem. 1999, 47, 588–593. [Google Scholar] [CrossRef]
- Sawabe, A.; Morita, M.; Ouchi, S.; Okamoto, T. Fast atom bombardment mass spectrometry and linked scan analyses at constant B/E in the structural characterization of new polyisoprenepolyols isolated from an edible mushroom (Hypsizigus marmoreus). J. Mass Spectrom. 1996, 31, 921–925. [Google Scholar] [CrossRef]
- Hao, Y.; Sun, H.; Zhang, X.; Wu, L.; Zhu, Z. A novel polysaccharide from Pleurotus citrinopileatus mycelia: Structural characterization, hypoglycemic activity and mechanism. Food Biosci. 2020, 37, 100735. [Google Scholar] [CrossRef]
- Lin, S.-Y.; Chen, Y.-K.; Yu, H.-T.; Barseghyan, G.S.; Asatiani, M.D.; Wasser, S.P.; Mau, J.-L. Comparative study of contents of several bioactive components in fruiting bodies and mycelia of culinary-medicinal mushrooms. Int. J. Med. Mushrooms 2013, 15, 315–323. [Google Scholar] [CrossRef] [PubMed]
- Minato, K.-I.; Laan, L.C.; van Die, I.; Mizuno, M. Pleurotus citrinopileatus polysaccharide stimulates anti-inflammatory properties during monocyte-to-macrophage differentiation. Int. J. Biol. Macromol. 2018, 122, 705–712. [Google Scholar] [CrossRef]
- Sheng, Y.; Zhao, C.; Zheng, S.; Mei, X.; Huang, K.; Wang, G.; He, X. Anti-obesity and hypolipidemic effect of water extract from Pleurotus citrinopileatus in C57BL/6J mice. Food Sci. Nutr. 2019, 7, 1295–1301. [Google Scholar] [CrossRef] [PubMed]
- Wang, Q.; Niu, L.-L.; Liu, H.-P.; Wu, Y.-R.; Li, M.-Y.; Jia, Q. Structural characterization of a novel polysaccharide from Pleurotus citrinopileatus and its antitumor activity on H22 tumor-bearing mice. Int. J. Biol. Macromol. 2020, 168, 251–260. [Google Scholar] [CrossRef]
- Freitas, A.C.; Antunes, M.B.; Rodrigues, D.; Sousa, S.; Amorim, M.; Barroso, M.F.; Carvalho, A.; Ferrador, S.M.; Gomes, A.M. Use of coffee by-products for the cultivation of Pleurotus citrinopileatus and Pleurotus salmoneo-stramineus and its impact on biological properties of extracts thereof. Int. J. Food Sci. Technol. 2018, 53, 1914–1924. [Google Scholar] [CrossRef]
- Mudgil, D.; Barak, S. Composition, properties and health benefits of indigestible carbohydrate polymers as dietary fiber: A review. Int. J. Biol. Macromol. 2013, 61, 1–6. [Google Scholar] [CrossRef]
- Rodrigues, D.M.F.; Freitas, A.C.; Rocha-Santos, T.A.P.; Vasconcelos, M.W.; Roriz, M.; Rodríguez-Alcalá, L.M.; Gomes, A.M.P.; Duarte, A.C. Chemical composition and nutritive value of Pleurotus citrinopileatus var cornucopiae, P. eryngii, P. salmoneo stramineus, Pholiota nameko and Hericium erinaceus. J. Food Sci. Technol. 2015, 52, 6927–6939. [Google Scholar] [CrossRef]
- Bader Ul Ain, H.; Saeed, F.; Khan, M.A.; Niaz, B.; Khan, S.G.; Anjum, F.M.; Tufail, T.; Hussain, S. Comparative study of chemical treatments in combination with extrusion for the partial conversion of wheat and sorghum insoluble fiber into soluble. Food Sci. Nutr. 2019, 7, 2059–2067. [Google Scholar] [CrossRef]
- Catriona, T.; Ada, L.G.; Christine, A.E. Interactions between dietary fibre and the gut microbiota. Proc. Nutr. Soc. 2021, 80, 398–408. [Google Scholar] [CrossRef]
- Warrilow, A.; Mellor, D.; McKune, A.; Pumpa, K. Dietary fat, fibre, satiation, and satiety-a systematic review of acute studies. Eur. J. Clin. Nutr. 2018, 73, 333–344. [Google Scholar] [CrossRef]
- Zhu, Y.; Chu, J.; Lu, Z.; Lv, F.; Bie, X.; Zhang, C.; Zhao, H. Physicochemical and functional properties of dietary fiber from foxtail millet (Setaria italic) bran. J. Cereal Sci. 2018, 79, 456–461. [Google Scholar] [CrossRef]
- Eriksen, K.T.; Halkjær, J.; Sørensen, M.; Meliker, J.R.; McElroy, J.A.; Tjønneland, A.; Raaschou-Nielsen, O. Dietary cadmium intake and risk of breast, endometrial and ovarian cancer in Danish postmenopausal women: A prospective cohort study. PLoS ONE 2014, 9, e100815. [Google Scholar] [CrossRef]
- Han, S.; Jiao, J.; Zhang, W.; Xu, J.; Wan, Z.; Zhang, W.; Gao, X.; Qin, L. Dietary fiber prevents obesity-related liver lipotoxicity by modulating sterol-regulatory element binding protein pathway in C57BL/6J mice fed a high-fat/cholesterol diet. Sci. Rep. 2015, 5, 15256. [Google Scholar] [CrossRef]
- Hu, Y.-C.; Hu, J.-L.; Li, J.; Wang, J.; Zhang, X.-Y.; Wu, X.-Y.; Li, X.; Guo, Z.-B.; Zou, L.; Wu, D.-T. Physicochemical characteristics and biological activities of soluble dietary fibers isolated from the leaves of different quinoa cultivars. Food Res. Int. 2022, 163, 112166. [Google Scholar] [CrossRef] [PubMed]
- Xu, Y.; Zhang, C.; Liao, Z.; Li, Z.; Xu, X.; Sui, Z.; Corke, H. Optimization of soluble dietary fiber extraction from hulless barley grass. Cereal Chem. 2021, 99, 482–492. [Google Scholar] [CrossRef]
- Basanta, M.F.; Ponce, N.M.A.; Rojas, A.M.; Stortz, C.A. Effect of extraction time and temperature on the characteristics of loosely bound pectins from Japanese plum. Carbohydr. Polym. 2012, 89, 230–235. [Google Scholar] [CrossRef] [PubMed]
- Jacquemin, L.; Zeitoun, R.; Sablayrolles, C.; Pontalier, P.-Y.; Rigal, L. Evaluation of the technical and environmental performances of extraction and purification processes of arabinoxylans from wheat straw and bran. Process. Biochem. 2012, 47, 373–380. [Google Scholar] [CrossRef]
- Naghshineh, M.; Olsen, K.; Georgiou, C.A. Sustainable production of pectin from lime peel by high hydrostatic pressure treatment. Food Chem. 2012, 136, 472–478. [Google Scholar] [CrossRef]
- Nguyen, S.N.; Vien, M.D.; Le, T.T.T.; Tran, T.T.T.; Ton, N.M.N.; Le, V.V.M. Effects of enzymatic treatment conditions on dietary fibre content of wheat bran and use of cellulase-treated bran in cookie. Int. J. Food Sci. Technol. 2021, 56, 4017–4025. [Google Scholar] [CrossRef]
- Thomassen, L.V.; Vigsnæs, L.K.; Licht, T.R.; Mikkelsen, J.D.; Meyer, A.S. Maximal release of highly bifidogenic soluble dietary fibers from industrial potato pulp by minimal enzymatic treatment. Appl. Microbiol. Biotechnol. 2011, 90, 873–884. [Google Scholar] [CrossRef]
- Wang, W.; Ma, X.; Xu, Y.; Cao, Y.; Jiang, Z.; Ding, T.; Ye, X.; Liu, D. Ultrasound-assisted heating extraction of pectin from grapefruit peel: Optimization and comparison with the conventional method. Food Eng. 2015, 126, 72–81. [Google Scholar] [CrossRef]
- Zhao, L.; Fu, Y.; Chen, C.; Yang, W.; Hu, Q. Ultrasonic-Assisted Extraction and Chromatography Separation of Polysaccharides from the Base of Flammulina velutipes Stipe. Sep. Sci. Technol. 2014, 50, 824–832. [Google Scholar] [CrossRef]
- Zhang, J.; Wen, C.; Qin, W.; Qin, P.; Zhang, H.; Duan, Y. Ultrasonic-enhanced subcritical water extraction of polysaccharides by two steps and its characterization from Lentinus edodes. Int. J. Biol. Macromol. 2018, 118, 2269–2277. [Google Scholar] [CrossRef] [PubMed]
- Wan, Y.; Espinoza Rodezno, L.A.; Solval, K.M.; Li, J.; Sathivel, S. Optimization of Soluble Dietary Fiber Extraction from Defatted Rice Bran Using Response Surface Methodology. J. Food Process. Preserv. 2012, 38, 441–448. [Google Scholar] [CrossRef]
- Maran, J.P.; Priya, B. Ultrasound-assisted extraction of polysaccharide from Nephelium lappaceum L. fruit peel. Int. J. Biol. Macromol. 2014, 70, 530–536. [Google Scholar] [CrossRef] [PubMed]
- Jia, F.; Liu, X.; Gong, Z.; Cui, W.; Wang, Y.; Wang, W. Extraction, modification, and property characterization of dietary fiber from Agrocybe cylindracea. Food Sci. Nutr. 2020, 8, 6131–6143. [Google Scholar] [CrossRef] [PubMed]
- Shirsath, S.R.; Sonawane, S.H.; Gogate, P.R. Intensification of extraction of natural products using ultrasonic irradiations—A review of current status. Chem. Eng. Process. Process Intensif. 2012, 53, 10–23. [Google Scholar] [CrossRef]
- Ponmurugan, K.; Al-Dhabi, N.A.; Maran, J.P.; Karthikeyan, K.; Moothy, I.G.; Sivarajasekar, N.; Manoj, J.J.B. Ultrasound assisted pectic polysaccharide extraction and its characterization from waste heads of Helianthus annus. Carbohydr. Polym. 2017, 173, 707–713. [Google Scholar] [CrossRef]
- Wang, J.; Cao, Y.; Wang, C.; Sun, B. Low-frequency and low-intensity ultrasound accelerates alliinase-catalysed synthesis of allicin in freshly crushed garlic. J. Sci. Food Agric. 2011, 91, 1766–1772. [Google Scholar] [CrossRef]
- Jibril, S.; Basar, N.; Sirat, H.M.; Wahab, R.A.; Mahat, N.A.; Nahar, L.; Sarker, S.D. Application of Box-Behnken design for ultrasound-assisted extraction and recycling preparative HPLC for isolation of anthraquinones from Cassia singueana. Phytochem. Anal. 2018, 30, 101–109. [Google Scholar] [CrossRef]
- Wang, L.; Cheng, L.; Liu, F.; Li, T.; Yu, Z.; Xu, Y.; Yang, Y. Optimization of Ultrasound-Assisted Extraction and Structural Characterization of the Polysaccharide from Pumpkin (Cucurbita moschata) Seeds. Molecules 2018, 23, 1207. [Google Scholar] [CrossRef]
- Yang, Y.; Yang, M.; Zhou, X.; Chen, H. Optimization of Extraction Process of Polysaccharides MAP-2 from Opuntia Milpa Alta by Response Surface Methodology and Evaluation of Its Potential as α-Glucosidase Inhibitor. Foods 2022, 11, 3530. [Google Scholar] [CrossRef]
- Samavati, V.; Manoochehrizade, A. Dodonaea viscosa var. angustifolia leaf: New source of polysaccharide and its anti-oxidant activity. Carbohydr. Polym. 2013, 98, 199–207. [Google Scholar] [CrossRef]
- Thirugnanasambandham, K.; Sivakumar, V.; Maran, J.P. Microwave-assisted extraction of polysaccharides from mulberry leaves. Int. J. Biol. Macromol. 2014, 72, 1–5. [Google Scholar] [CrossRef]
- Chen, Y.; Zhang, J.; Li, Q.; Wu, J.; Sun, F.; Liu, Z.; Zhao, C.; Liang, S. Response Surface Methodology for Optimizing the Ultrasound-Assisted Extraction of Polysaccharides from Acanthopanax giraldii. Chem. Pharm. Bull. 2018, 66, 785–793. [Google Scholar] [CrossRef] [PubMed]
- Song, J.; Dongqi, S.; Hang, S.; Yongxia, F.; Wei, T. Optimization of ultrasonic extraction of Lycium barbarum polysaccharides using response surface methodology. Int. J. Food Eng. 2020, 11, 1752–1760. [Google Scholar] [CrossRef]
- Yu, G.; Zhang, S.-J.; Fan, M.-C.; Sun, Y.-N.; Hu, X.-L.; Li, W.-X. Ultrasound-assisted extraction and comparison of extraction methods based on antioxidant activities of polysaccharides from Flammulina velutipes. J. Food Meas. Charact. 2017, 11, 1752–1760. [Google Scholar] [CrossRef]
- Tepsongkroh, B.; Thaihuttakij, C.; Supawong, S.; Jangchud, K. Impact of high pressure pre-treatment and hot water extraction on chemical properties of crude polysaccharide extract obtained from mushroom (Volvariella volvacea). Food Chem. X 2023, 19, 100864. [Google Scholar] [CrossRef]
- Hussain, S.; Sharma, M.; Bhat, R. Valorisation of Sea Buckthorn Pomace by Optimization of Ultrasonic-Assisted Extraction of Soluble Dietary Fibre Using Response Surface Methodology. Foods 2021, 10, 1330. [Google Scholar] [CrossRef]
- Liu, Y.; Gong, G.; Zhang, J.; Jia, S.; Li, F.; Wang, Y.; Wu, S. Response surface optimization of ultrasound-assisted enzymatic extraction polysaccharides from Lycium barbarum. Carbohydr. Polym. 2014, 110, 278–284. [Google Scholar] [CrossRef]
- Minjares-Fuentes, R.; Femenia, A.; Garau, M.C.; Candelas-Cadillo, M.G.; Simal, S.; Rosselló, C. Ultrasound-assisted extraction of hemicelluloses from grape pomace using response surface methodology. Carbohydr. Polym. 2016, 138, 180–191. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Sun, B.; Liu, Y.; Zhang, H. Optimisation of ultrasound-assisted enzymatic extraction of arabinoxylan from wheat bran. Food Chem. 2013, 150, 482–488. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Wang, M. Optimization of deep eutectic solvent-based ultrasound-assisted extraction of polysaccharides from Dioscorea opposita Thunb. Int. J. Biol. Macromol. 2016, 95, 675–681. [Google Scholar] [CrossRef] [PubMed]
Independent Variables | Symbol | Levels | ||
---|---|---|---|---|
−1 | 0 | 1 | ||
Liquid–solid ratio (mL/g) | X1 | 35 | 45 | 55 |
α-Amylase concentration (%) | X2 | 0.5 | 1.5 | 2.5 |
Complex protease concentration (%) | X3 | 0.4 | 1.2 | 2 |
Ultrasonic time (min) | X4 | 15 | 35 | 55 |
Coded Variable Levels | Yield of SDF (%) | ||||
---|---|---|---|---|---|
Run | X1 | X2 | X3 | X4 | |
1 | 45 | 1.5 | 0.4 | 15 | 6.43% (6.51%) |
2 | 45 | 2.5 | 2.0 | 35 | 5.80% (5.96%) |
3 | 45 | 0.5 | 0.4 | 35 | 6.00% (5.96%) |
4 | 45 | 1.5 | 2.0 | 15 | 6.33% (6.36%) |
5 | 45 | 2.5 | 1.2 | 55 | 6.22% (6.27%) |
6 | 35 | 0.5 | 1.2 | 35 | 6.54% (6.32%) |
7 | 35 | 1.5 | 2.0 | 35 | 6.02% (6.08%) |
8 | 45 | 2.5 | 1.2 | 15 | 7.34% (7.21%) |
9 | 45 | 0.5 | 1.2 | 55 | 7.14% (7.32%) |
10 | 55 | 1.5 | 0.4 | 35 | 6.72% (6.72%) |
11 | 45 | 0.5 | 1.2 | 15 | 6.29% (6.30%) |
12 | 45 | 0.5 | 2.0 | 35 | 6.52% (6.50%) |
13 | 55 | 0.5 | 1.2 | 35 | 7.59% (7.52%) |
14 | 35 | 2.5 | 1.2 | 35 | 6.86% (6.73%) |
15 | 45 | 1.5 | 2.0 | 55 | 6.91% (6.63%) |
16 | 55 | 2.5 | 1.2 | 35 | 7.21% (7.10%) |
17 | 55 | 1.5 | 1.2 | 15 | 7.42% (7.42%) |
18 | 45 | 1.5 | 1.2 | 35 | 9.95% (10.09%) |
19 | 55 | 1.5 | 1.2 | 55 | 7.62% (7.74%) |
20 | 35 | 1.5 | 0.4 | 35 | 6.45% (6.50%) |
21 | 45 | 2.5 | 0.4 | 35 | 6.23% (6.36%) |
22 | 45 | 1.5 | 1.2 | 35 | 9.99% (10.08%) |
23 | 45 | 1.5 | 1.2 | 35 | 10.25% (10.08%) |
24 | 35 | 1.5 | 1.2 | 15 | 6.99% (6.98%) |
25 | 35 | 1.5 | 1.2 | 55 | 6.63% (6.74%) |
26 | 45 | 1.5 | 1.2 | 35 | 10.06% (10.07%) |
27 | 55 | 1.5 | 2.0 | 35 | 7.25% (7.28%) |
28 | 45 | 1.5 | 0.4 | 55 | 6.54% (6.45%) |
29 | 45 | 1.5 | 1.2 | 35 | 10.16% (10.08%) |
Source | Sum of Squares | DF | Mean Square | F Value | p Value |
---|---|---|---|---|---|
Model | 52.96 | 14 | 3.78 | 148.05 | <0.0001 |
X1 | 1.56 | 1 | 1.56 | 60.87 | <0.0001 |
X2 | 0.015 | 1 | 0.015 | 0.58 | 0.4607 |
X3 | 0.018 | 1 | 0.018 | 0.69 | 0.4201 |
X4 | 5.633 × 10−3 | 1 | 5.633 × 10−3 | 0.22 | 0.6459 |
X1X2 | 0.12 | 1 | 0.12 | 4.79 | 0.0460 |
X1X3 | 0.23 | 1 | 0.23 | 9.02 | 0.0095 |
X1X4 | 0.078 | 1 | 0.078 | 3.07 | 0.1017 |
X2X3 | 0.23 | 1 | 0.23 | 8.83 | 0.0101 |
X2X4 | 0.97 | 1 | 0.97 | 37.97 | <0.0001 |
X3X4 | 0.055 | 1 | 0.055 | 2.16 | 0.1636 |
X12 | 11.63 | 1 | 11.63 | 455.12 | <0.0001 |
X22 | 20.64 | 1 | 20.64 | 807.93 | <0.0001 |
X32 | 28.64 | 1 | 28.64 | 1121.11 | <0.0001 |
X42 | 14.97 | 1 | 14.97 | 585.72 | <0.0001 |
Residual | 0.36 | 14 | 0.026 | — | — |
Lack of Fit | 0.30 | 10 | 0.030 | 1.96 | 0.2704 |
Pure Error | 0.061 | 4 | 0.015 | — | — |
Cor Total | 53.32 | 28 | — | — | — |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yu, P.; Yu, C.; Chen, M.; Dong, Q.; Hu, D.; Zhang, B.; Zhang, M.; Ma, J.; Xu, B.; Zhao, Y. Box-Behnken Design for Optimizing Ultrasonic-Assisted Enzymatic Extraction of Soluble Dietary Fiber from Pleurotus citrinopilestus. Horticulturae 2023, 9, 1322. https://doi.org/10.3390/horticulturae9121322
Yu P, Yu C, Chen M, Dong Q, Hu D, Zhang B, Zhang M, Ma J, Xu B, Zhao Y. Box-Behnken Design for Optimizing Ultrasonic-Assisted Enzymatic Extraction of Soluble Dietary Fiber from Pleurotus citrinopilestus. Horticulturae. 2023; 9(12):1322. https://doi.org/10.3390/horticulturae9121322
Chicago/Turabian StyleYu, Panling, Changxia Yu, Mingjie Chen, Qin Dong, Die Hu, Baosheng Zhang, Mengke Zhang, Jianshuai Ma, Baoting Xu, and Yan Zhao. 2023. "Box-Behnken Design for Optimizing Ultrasonic-Assisted Enzymatic Extraction of Soluble Dietary Fiber from Pleurotus citrinopilestus" Horticulturae 9, no. 12: 1322. https://doi.org/10.3390/horticulturae9121322
APA StyleYu, P., Yu, C., Chen, M., Dong, Q., Hu, D., Zhang, B., Zhang, M., Ma, J., Xu, B., & Zhao, Y. (2023). Box-Behnken Design for Optimizing Ultrasonic-Assisted Enzymatic Extraction of Soluble Dietary Fiber from Pleurotus citrinopilestus. Horticulturae, 9(12), 1322. https://doi.org/10.3390/horticulturae9121322