Characterization and Isolation of Piperamides from Piper nigrum Cultivated in Costa Rica
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Material
2.2. Reagents and Solvents
2.3. Piperamide Extracts from P. nigrum Fruits
2.4. UPLC-QTOF-ESI MS Analysis
2.5. UPLC-DAD Quantification of Piperamides
2.6. Preparative and Semipreparative HPLC for Piperamides Isolation
2.7. Nuclear Magnetic Resonance Analysis
2.8. Statistical Analysis
3. Results and Discussion
3.1. Profile by UPLC-QTOF-ESI MS Analysis of Piperamides
3.2. Piperamides Quantification
3.3. Semipreparative HPLC Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Shan, B.; Cai, Y.Z.; Sun, M.; Corke, H. Antioxidant Capacity of 26 Spice Extracts and Characterization of Their Phenolic Constituents. J. Agric. Food Chem. 2005, 53, 7749–7759. [Google Scholar] [CrossRef] [PubMed]
- Nair, K.P. The Geography of Black Pepper (Piper nigrum): The “King” of Spices—Volume 1; Springer International Publishing: Cham, Switzerland, 2020; ISBN 978-3-030-52864-5. [Google Scholar]
- Srinivasan, K. Black Pepper (Piper nigrum) and Its Bioactive Compound, Piperine. In Molecular Targets and Therapeutic Uses of Spices; World Scientific: Singapore, 2009; pp. 25–64. ISBN 978-981-283-790-5. [Google Scholar]
- Katarina, S.; Darinka, A.G.; Aleksandar, C.; Tatjana, R.; Bojana, V.; Mustafa, A. Piperine: Old Spice and New Nutraceutical? Curr. Pharm. Des. 2019, 25, 1729–1739. [Google Scholar] [CrossRef]
- Wilhelm-Romero, K.; Quirós-Fallas, M.I.; Vega-Baudrit, J.R.; Guillén-Girón, T.; Vargas-Huertas, F.; Navarro-Hoyos, M.; Araya-Sibaja, A.M. Evaluation of Piperine as Natural Coformer for Eutectics Preparation of Drugs Used in the Treatment of Cardiovascular Diseases. AAPS PharmSciTech 2022, 23, 127. [Google Scholar] [CrossRef] [PubMed]
- Takooree, H.; Aumeeruddy, M.Z.; Rengasamy, K.R.R.; Venugopala, K.N.; Jeewon, R.; Zengin, G.; Mahomoodally, M.F. A Systematic Review on Black Pepper (Piper nigrum L.): From Folk Uses to Pharmacological Applications. Crit. Rev. Food Sci. Nutr. 2019, 59, S210–S243. [Google Scholar] [CrossRef] [PubMed]
- Yoon, M.; Jung, J.; Kim, M.; Lee, C.; Cho, S.; Um, M. Effect of Black Pepper (Piper nigrum) Extract on Caffeine-Induced Sleep Disruption and Excitation in Mice. Nutrients 2022, 14, 2249. [Google Scholar] [CrossRef] [PubMed]
- Salehi, B.; Zakaria, Z.A.; Gyawali, R.; Ibrahim, S.A.; Rajkovic, J.; Shinwari, Z.K.; Khan, T.; Sharifi-Rad, J.; Ozleyen, A.; Turkdonmez, E.; et al. Piper Species: A Comprehensive Review on Their Phytochemistry, Biological Activities and Applications. Molecules 2019, 24, 1364. [Google Scholar] [CrossRef] [PubMed]
- Onyesife, C.O.; Chukwuma, I.F.; Okagu, I.U.; Ndefo, J.C.; Amujiri, N.A.; Ogugua, V.N. Nephroprotective Effects of Piper nigrum Extracts against Monosodium Glutamate-Induced Renal Toxicity in Rats. Sci. Afr. 2023, 19, e01453. [Google Scholar] [CrossRef]
- Lasso, P.; Rojas, L.; Arévalo, C.; Urueña, C.; Murillo, N.; Nossa, P.; Sandoval, T.; Chitiva, L.C.; Barreto, A.; Costa, G.M.; et al. Piper nigrum Extract Suppresses Tumor Growth and Enhances the Antitumor Immune Response in Murine Models of Breast Cancer and Melanoma. Cancer Immunol. Immunother. 2023, 72, 3279–3292. [Google Scholar] [CrossRef]
- Turrini, E.; Sestili, P.; Fimognari, C. Overview of the Anticancer Potential of the “King of Spices” Piper nigrum and Its Main Constituent Piperine. Toxins 2020, 12, 747. [Google Scholar] [CrossRef]
- Mitra, S.; Anand, U.; Jha, N.K.; Shekhawat, M.S.; Saha, S.C.; Nongdam, P.; Rengasamy, K.R.R.; Proćków, J.; Dey, A. Anticancer Applications and Pharmacological Properties of Piperidine and Piperine: A Comprehensive Review on Molecular Mechanisms and Therapeutic Perspectives. Front. Pharmacol. 2022, 12, 772418. [Google Scholar] [CrossRef]
- Nicolussi, S.; Viveros-Paredes, J.M.; Gachet, M.S.; Rau, M.; Flores-Soto, M.E.; Blunder, M.; Gertsch, J. Guineensine is a novel inhibitor of endocannabinoid uptake showing cannabimimetic behavioral effects in BALB/c mice. Pharmacol. Res. 2014, 80, 52–65. [Google Scholar] [CrossRef] [PubMed]
- Reynoso-Moreno, I.; Najar-Guerrero, I.; Escareño, N.; Flores-Soto, M.E.; Gertsch, J.; Viveros-Paredes, J.M. An Endocannabinoid Uptake Inhibitor from Black Pepper Exerts Pronounced Anti-Inflammatory Effects in Mice. J. Agric. Food Chem. 2017, 65, 9435–9442. [Google Scholar] [CrossRef] [PubMed]
- Chatterjee, S.; Jain, S.; Jangid, R.; Sharma, M.K. Cytochrome P450 and P-Gp Mediated Herb–Drug Interactions of Some Common Indian Herbs. In Studies in Natural Products Chemistry; Elsevier: Amsterdam, The Netherlands, 2022; Volume 72, pp. 225–258. ISBN 978-0-12-823944-5. [Google Scholar]
- Lieder, B.; Zaunschirm, M.; Holik, A.-K.; Ley, J.P.; Hans, J.; Krammer, G.E.; Somoza, V. The Alkamide Trans-Pellitorine Targets PPARγ via TRPV1 and TRPA1 to Reduce Lipid Accumulation in Developing 3T3-L1 Adipocytes. Front. Pharmacol. 2017, 8, 316. [Google Scholar] [CrossRef] [PubMed]
- Lee, W.; Ku, S.-K.; Min, B.-W.; Lee, S.; Jee, J.-G.; Kim, J.A.; Bae, J.-S. Vascular Barrier Protective Effects of Pellitorine in LPS-Induced Inflammation In Vitro and In Vivo. Fitoterapia 2014, 92, 177–187. [Google Scholar] [CrossRef] [PubMed]
- Morikawa, T.; Matsuda, H.; Yamaguchi, I.; Pongpiriyadacha, Y.; Yoshikawa, M. New Amides and Gastroprotective Constituents from the Fruit of Piper chaba. Planta Med. 2004, 70, 152–159. [Google Scholar] [CrossRef]
- Friedman, M.; Levin, C.E.; Lee, S.U.; Lee, J.S.; Ohnisi-Kameyama, M.; Kozukue, N. Analysis by HPLC and LC/MS of pungent piperamides in commercial black, white, green, and red whole and ground peppercorns. J. Agric. Food Chem. 2008, 56, 3028–3036. [Google Scholar] [CrossRef]
- Li, K.; Fan, Y.; Wang, H.; Fu, Q.; Jin, Y.; Liang, X. Qualitative and quantitative analysis of an alkaloid fraction from Piper longum L. using ultra-high performance liquid chromatography-diode array detector-electrospray ionization mass spectrometry. J. Pharm. Biomed. Anal. 2015, 109, 28–35. [Google Scholar] [CrossRef]
- Chithra, S.; Jasim, B.; Anisha, C.; Mathew, J.; Radhakrishnan, E.K. LC-MS/MS Based Identification of Piperine Production by Endophytic Mycosphaerella sp. PF13 from Piper nigrum. Appl. Biochem. Biotechnol. 2014, 173, 30–35. [Google Scholar] [CrossRef]
- Zaugg, J.; Baburin, I.; Strommer, B.; Kim, H.J.; Hering, S.; Hamburger, M. HPLC-based activity profiling: Discovery of piperine as a positive GABAA receptor modulator targeting a benzodiazepine-independent binding site. J. Nat. Prod. 2010, 73, 185–191. [Google Scholar] [CrossRef]
- Li, K.; Zhu, W.; Fu, Q.; Ke, Y.; Jin, Y.; Liang, X. Purification of amide alkaloids from Piper longum L. using preparative two-dimensional normal-phase liquid chromatography reversed-phase liquid chromatography. Analyst 2013, 138, 3313–3320. [Google Scholar] [CrossRef]
- Rao, V.R.S.; Raju, S.S.; Sarma, V.U.; Sabine, F.; Babu, K.H.; Babu, K.S.; Rao, J.M. Simultaneous determination of bioactive compounds in Piper nigrum L. and a species comparison study using HPLC-PDA. Nat. Prod. Res. 2011, 25, 1288–1294. [Google Scholar] [CrossRef] [PubMed]
- Scott, I.M.; Jensen, H.R.; Philogène, B.J.R.; Arnason, J.T. A review of Piper spp. (Piperaceae) phytochemistry, insecticidal activity and mode of action. Phytochem. Rev. 2008, 7, 65–75. [Google Scholar] [CrossRef]
- Banerji, A.; Sarkar, M.; Datta, R.; Sengupta, P.; Abraham, K. Amides from Piper brachystachyum and Piper retrofractum. Phytochemistry 2002, 59, 897–901. [Google Scholar] [CrossRef] [PubMed]
- Okwute, S.K.; Egharevba, H.O. Piperine-Type Amides: Review of the Chemical and Biological Characteristics. Int. J. Chem. 2013, 5, 99–122. [Google Scholar] [CrossRef]
- Dawid, C.; Henze, A.; Frank, O.; Glabasnia, A.; Rupp, M.; Büning, K.; Orlikowski, D.; Bader, M.; Hofmann, T. Structural and Sensory Characterization of Key Pungent and Tingling Compounds from Black Pepper (Piper nigrum L.). J. Agric. Food Chem. 2012, 60, 2884–2895. [Google Scholar] [CrossRef] [PubMed]
- Ramesh, B.; Sarma, V.; Kumar, K.; Babu, K.S.; Devi, P.S. Simultaneous Determination of Six Marker Compounds in Piper nigrum L. and Species Comparison Study Using High-Performance Thin-Layer Chromatography–Mass Spectrometry. J. Planar Chromatogr. 2015, 28, 280–286. [Google Scholar] [CrossRef]
- Liu, H.L.; Luo, R.; Chen, X.Q.; Ba, Y.Y.; Zheng, L.; Guo, W.W.; Wu, X. Identification and simultaneous quantification of five alkaloids in Piper longum L. by HPLC-ESI-MSn and UFLC-ESI-MS/MS and their application to Piper nigrum L. Food Chem. 2015, 177, 191–196. [Google Scholar] [CrossRef] [PubMed]
- De Araujo, J.X.; Da-Cunha, E.V.L.; Maria, M.C.; Gray, A.I. Piperdardine, a piperidine alkaloid from Piper tuberculatum. Phytochemistry 1997, 44, 559–561. [Google Scholar] [CrossRef]
- Shi, Y.N.; Liu, F.F.; Jacob, M.R.; Li, X.C.; Zhu, H.T.; Wang, D.; Cheng, R.R.; Yang, C.R.; Xu, M.; Zhang, Y.J. Antifungal Amide Alkaloids from the Aerial Parts of Piper flaviflorum and Piper sarmentosum. Planta Med. 2017, 83, 143–150. [Google Scholar] [CrossRef]
- Scott, I.M.; Puniani, E.; Jensen, H.; Livesey, J.F.; Poveda, L.; Sánchez-Vindas, P.; Durst, T.; Arnason, J.T. Analysis of Piperaceae Germplasm by HPLC and LCMS: A Method for Isolating and Identifying Unsaturated Amides from Piper spp. Extracts. J. Agric. Food Chem. 2005, 53, 1907–1913. [Google Scholar] [CrossRef]
- Da Luz, S.; Yamaguchi, L.; Kato, M.; De Lemos, O.; Xavier, L.; Maia, J.; Ramos, A.; Setzer, W.; Da Silva, J. Secondary Metabolic Profiles of Two Cultivars of Piper nigrum (Black Pepper) Resulting from Infection by Fusarium solani f. sp. Piperis. Int. J. Mol. Sci. 2017, 18, 2434. [Google Scholar] [CrossRef]
- Kikuzaki, H.; Kawabata, M.; Ishida, E.; Akazawa, Y.; Takei, Y.; Nakatani, N. LC-MS Analysis and Structural Determination of New Amides from Javanese Long Pepper (Piper retrofractum). Biosci. Biotechnol. Biochem. 1993, 57, 1329–1333. [Google Scholar] [CrossRef]
- Wei, K.; Li, W.; Koike, K.; Pei, Y.; Chen, Y.; Nikaido, T. New Amide Alkaloids from the Roots of Piper nigrum. J. Nat. Prod. 2004, 67, 1005–1009. [Google Scholar] [CrossRef] [PubMed]
- Tou, W.I.; Chang, S.-S.; Lee, C.-C.; Chen, C.Y.-C. Drug Design for Neuropathic Pain Regulation from Traditional Chinese Medicine. Sci. Rep. 2013, 3, 844. [Google Scholar] [CrossRef]
- Mgbeahuruike, E.E.; Yrjönen, T.; Vuorela, H.; Holm, Y. Bioactive Compounds from Medicinal Plants: Focus on Piper Species. S. Afr. J. Bot. 2017, 112, 54–69. [Google Scholar] [CrossRef]
- Li, D.; Wang, R.; Cheng, X.; Yang, J.; Yang, Y.; Qu, H.; Li, S.; Lin, S.; Wei, D.; Bai, Y.; et al. Chemical Constituents from the Fruits of Piper longum L. and Their Vascular Relaxation Effect on Rat Mesenteric Arteries. Nat. Prod. Res. 2020, 36, 674–679. [Google Scholar] [CrossRef]
- Siddiqui, B.S.; Gulzar, T.; Mahmood, A.; Begum, S.; Khan, B.; Afshan, F. New Insecticidal Amides from Petroleum Ether Extract of Dried Piper nigrum L. Whole Fruits. Chem. Pharm. Bull. 2004, 52, 1349–1352. [Google Scholar] [CrossRef]
- Matsuda, H.; Ninomiya, K.; Morikawa, T.; Yasuda, D.; Yamaguchi, I.; Yoshikawa, M. Hepatoprotective Amide Constituents from the Fruit of Piper chaba: Structural Requirements, Mode of Action, and New Amides. Bioorg. Med. Chem. 2009, 17, 7313–7323. [Google Scholar] [CrossRef]
- Duan, Z.; Xie, H.; Yu, S.; Wang, S.; Yang, H. Piperine Derived from Piper nigrum L. Inhibits LPS-Induced Inflammatory through the MAPK and NF-κB Signalling Pathways in RAW264.7 Cells. Foods 2022, 11, 2990. [Google Scholar] [CrossRef]
- Ku, S.-K.; Lee, I.-C.; Kim, J.A.; Bae, J.-S. Anti-Septic Effects of Pellitorine in HMGB1-Induced Inflammatory Responses In Vitro and In Vivo. Inflammation 2014, 37, 338–348. [Google Scholar] [CrossRef]
- Veryser, L.; Bracke, N.; Wynendaele, E.; Joshi, T.; Tatke, P.; Taevernier, L.; De Spiegeleer, B. Quantitative In Vitro and In Vivo Evaluation of Intestinal and Blood-Brain Barrier Transport Kinetics of the Plant N-Alkylamide Pellitorine. Biomed Res. Int. 2016, 2016, 5497402. [Google Scholar] [CrossRef] [PubMed]
- Ee, G.C.L.; Lim, C.M.; Rahmani, M.; Shaari, K.; Bong, C.F.J. Pellitorine, a Potential Anti-Cancer Lead Compound against HL60 and MCT-7 Cell Lines and Microbial Transformation of Piperine from Piper nigrum. Molecules 2010, 15, 2398–2404. [Google Scholar] [CrossRef] [PubMed]
- Ku, S.-K.; Lee, I.-C.; Kim, J.A.; Bae, J.-S. Antithrombotic Activities of Pellitorine In Vitro and In Vivo. Fitoterapia 2013, 91, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Panthong, S.; Imai, Y.; Matsuoka, T.; Suzuki, W.; Watanabe, T.; Terada, Y.; Kurohane, K.; Sekiguchi, K.; Ogawa, E.; Endo, Y.; et al. The Role of Piper chaba Hunt. and Its Pure Compound, Piperine, on TRPV1 Activation and Adjuvant Effect. BMC Complement. Med. Ther. 2020, 20, 134. [Google Scholar] [CrossRef] [PubMed]
- Okumura, Y.; Narukawa, M.; Iwasaki, Y.; Ishikawa, A.; Matsuda, H.; Yoshikawa, M.; Watanabe, T. Activation of TRPV1 and TRPA1 by Black Pepper Components. Biosci. Biotechnol. Biochem. 2010, 74, 1068–1072. [Google Scholar] [CrossRef] [PubMed]
- Brito, R.; Sheth, S.; Mukherjea, D.; Rybak, L.; Ramkumar, V. TRPV1: A Potential Drug Target for Treating Various Diseases. Cells 2014, 3, 517–545. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Matsuda, H.; Nakamura, S.; Yoshikawa, M. Effects of Amide Constituents from Pepper on Adipogenesis in 3T3-L1 Cells. Bioorganic Med. Chem. Lett. 2008, 18, 3272–3277. [Google Scholar] [CrossRef]
- Yu, L.; Hu, X.; Xu, R.; Ba, Y.; Chen, X.; Wang, X.; Cao, B.; Wu, X. Amide Alkaloids Characterization and Neuroprotective Properties of Piper nigrum L.: A Comparative Study with Fruits, Pericarp, Stalks and Leaves. Food Chem. 2022, 368, 130832. [Google Scholar] [CrossRef]
- Park, I.-K.; Lee, S.-G.; Shin, S.-C.; Park, J.-D.; Ahn, Y.-J. Larvicidal Activity of Isobutylamides Identified in Piper nigrum Fruits against Three Mosquito Species. J. Agric. Food Chem. 2002, 50, 1866–1870. [Google Scholar] [CrossRef]
- Ngo, Q.T.; Tran, P.T.; Tran, M.H.; Kim, J.A.; Rho, S.S.; Lim, C.-H.; Kim, J.-C.; Woo, M.H.; Choi, J.S.; Lee, J.-H.; et al. Alkaloids from Piper nigrum Exhibit Antiinflammatory Activity via Activating the Nrf2/HO1 Pathway: Alkaloids from Piper nigrum Activate the Nrf2/HO1 Pathway. Phytother. Res. 2017, 31, 663–670. [Google Scholar] [CrossRef]
- Venkat Reddy, S.; Srinivas, P.V.; Praveen, B.; Hara Kishore, K.; China Raju, B.; Suryanarayana Murthy, U.; Madhusudana Rao, J. Antibacterial Constituents from the Berries of Piper nigrum. Phytomedicine 2004, 11, 697–700. [Google Scholar] [CrossRef] [PubMed]
Peak | Tentative Identification | Rt (min) | [M + H]+ (Da) | Molecular Formula | Error (ppm) | MS2 Fragments |
---|---|---|---|---|---|---|
1 | Piperlonguminine | 11.17 | 274.1420 | C16H20NO3 | −8.46 | 201, 173,135 |
2 | Piperylline | 11.33 | 272.1327 | C16H18NO3 | 4.81 | 201, 171, 143, 135 |
3 | Dihydropiperlonguminine | 13.26 | 276.1586 | C16H22NO3 | −4.96 | 173, 145, 135 |
4 | Piperanine | 14.12 | 288.1602 | C17H22NO3 | 0.80 | 203, 175, 145, 161, 135 |
5 | Piperine | 14.32 | 286.1273 | C17H20NO3 | −9.48 | 201, 171, 143, 135 |
6 | Piperdardine | 17.22 | 314.1794 | C19H24NO3 | 2.04 | 199, 161 |
7 | (2E,4E,8E)-Piperamide-C9:3 | 17.53 | 326.1804 | C20H24NO3 | 4.66 | 227, 197 |
8 | Piperettine | 18.44 | 312.1655 | C19H22NO3 | 17.72 | 227, 199, 169 |
9 | Retrofractamide A | 18.90 | 328.1944 | C20H26NO3 | 9.54 | 255, 227, 161, 135 |
10 | Pipercallosine | 20.07 | 330.2108 | C20H28NO3 | 1.75 | 229, 135 |
11 | Pellitorina | 20.17 | 224.2015 | C14H26NO | 0.27 | 208, 168, 154 |
12 | Dehydropipernonaline | 20.65 | 340.1971 | C21H26NO3 | 7.14 | 255, 227, 179, 161, 135 |
13 | Pipernonaline | 21.90 | 342.2122 | C21H28NO3 | 5.43 | 229, 227, 199, 161, 135 |
14 | Retrofractamide B | 22.86 | 356.2261 | C22H30NO3 | 9.91 | 283, 255, 161, 135 |
15 | Piperolein B | 23.45 | 344.2272 | C21H30NO3 | 3.45 | 201, 135 |
16 | Piperchabamide D | 24.13 | 358.2411 | C22H32NO3 | 8.04 | 285, 227, 135 |
17 | Piperundecalidine | 24.97 | 368.2231 | C23H30NO3 | 1.44 | 255, 135 |
18 | Piperchabamide B | 26.39 | 370.2446 | C22H32NO3 | 8.72 | 285, 161, 135 |
19 | Brachiamide A | 26.54 | 382.2458 | C24H32NO3 | 9.83 | 311, 283, 161, 135 |
20 | Guineensine | 26.95 | 384.2591 | C24H34NO3 | 3.61 | 311, 283, 161, 135 |
21 | Piperflaviflorin A | 27.99 | 386.2699 | C24H36NO3 | 0.99 | 313, 135 |
22 | Piperflaviflorin B | 28.35 | 398.2727 | C25H36NO3 | 7.99 | 283, 161, 135 |
23 | Piperchabamide C | 29.09 | 396.2575 | C25H34NO3 | 9.16 | 311,283, 161, 135 |
24 | Brachistamide B | 30.49 | 412.2857 | C26H38NO3 | 1.29 | 339, 311, 161, 135 |
25 | 1-(octadeca-2E,4E,12/13Z-trienoyl)pyrrolidine | 32.14 | 332.2957 | C22H38NO | 1.08 | 304, 261, 233 |
26 | Brachistamide D | 34.75 | 426.3001 | C27H40NO3 | −1.69 | 135 |
27 | (2E,4E,13Z)-N-isobutyl-2,4,13-octadecatrienamide | 35.18 | 334.3147 | C22H40NO | 1.10 | 306, 261 |
28 | 1-(octadeca-2E,4E,12/13Z-trienoyl)pyrrolidine | 36.20 | 332.2957 | C22H38NO | 1.08 | 304, 261, 233 |
29 | (2E,4E)-N-isobutyl-2,4-octadecadienamide | 36.76 | 336.3070 | C22H42NO | −8.40 | 320, 280, 263 |
30 | 1-(octadeca-2E,4E,13Z-trienoyl)piperidine | 38.56 | 346.3136 | C23H40NO | 7.54 | 318, 261 |
31 | (2E,4E,14Z)-N-Isobutyl-2,4,14-eicosatrienamide | 39.92 | 362.3423 | C24H44NO | 0.03 | 306, 289 |
Compound | Sample 1,2 | ||
---|---|---|---|
Pn-d | Pn-j | Pn-f | |
Piperylline | 79.8 h,i ± 1.0 (1.6) | 137.3 e,f ± 4.7 (1.6) | 84 g ± 3.4 (1.4) |
Piperlonguminine | 48 i ± 0.6 (0.9) | 80.8 f ± 3.8 (0.9) | 70.4 g ± 4.4 (1.2) |
Piperanine | n.q. 3 | 116.2 f ± 2.9 (1.4) | 72.6 g ± 1.8 (1.2) |
Piperine 4 | 2759 a ± 107 (54.0) | 4514 a ± 94 (53.0) | 2612 a ± 153 (44.0) |
Pellitorine | 414.4 c ± 5.2 (8.1) | 725 b ± 35 (8.5) | 570 c ± 38 (9.6) |
Piperettine | 178.1 f,g ± 1.9 (3.5) | 185.9 e ± 5.9 (2.2) | 119.6 f,g ± 2.1 (2.0) |
(2E,4E,8E)-Piperamida-C9:3 | 105.7 h,i ± 1.3 (2.1) | 141.5 e, f ± 4.4 (1.7) | 121 f,g ± 10 (2.0) |
Retrofractamide A | n.q. | 84.8 f ± 6.3 (1.0) | 82.9 g ± 2.7 (1.4) |
Dehydropipernoline | 123.3 g,h ± 1.1 (2.4) | 201.5 e ± 5.7 (2.4) | 165 e,f,g ± 7.0 (2.8) |
Retrofractamide B | 169 f,g ± 11 (3.3) | 294.3 d ± 7.0 (3.5) | 225 e,f ± 7.3 (3.8) |
Piperolein B | n.q. | 98.1 f ± 2.8 (1.2) | 71.8 g ± 4.9 (1.2) |
Guineensine | 276.5 d ± 3.6 (5.4) | 421 c ± 26 (4.9) | 378.8 d ± 7.1 (6.4) |
(2E,4E,13Z)-N-isobutyl-octadeca-2,4,13-trienamide | 517.3 b ± 6.4 (10.1) | 754 b ± 60 (8.9) | 722 b ± 41 (12.2) |
(2E,4E)-N-isobutyloctadecadienamide | 189 e,f ± 14 (3.7) | 315 d ± 11 (3.7) | 264 d,e ± 23 (4.4) |
1-(octadeca-2E,4E,12Z-trienoyl)piperidine | 249.3 d,e ± 2.9 (4.9) | 445 c ± 24 (5.2) | 374 d ± 25 (6.3) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vargas-Huertas, L.F.; Alvarado-Corella, L.D.; Sánchez-Kopper, A.; Araya-Sibaja, A.M.; Navarro-Hoyos, M. Characterization and Isolation of Piperamides from Piper nigrum Cultivated in Costa Rica. Horticulturae 2023, 9, 1323. https://doi.org/10.3390/horticulturae9121323
Vargas-Huertas LF, Alvarado-Corella LD, Sánchez-Kopper A, Araya-Sibaja AM, Navarro-Hoyos M. Characterization and Isolation of Piperamides from Piper nigrum Cultivated in Costa Rica. Horticulturae. 2023; 9(12):1323. https://doi.org/10.3390/horticulturae9121323
Chicago/Turabian StyleVargas-Huertas, Luis Felipe, Luis Diego Alvarado-Corella, Andrés Sánchez-Kopper, Andrea Mariela Araya-Sibaja, and Mirtha Navarro-Hoyos. 2023. "Characterization and Isolation of Piperamides from Piper nigrum Cultivated in Costa Rica" Horticulturae 9, no. 12: 1323. https://doi.org/10.3390/horticulturae9121323
APA StyleVargas-Huertas, L. F., Alvarado-Corella, L. D., Sánchez-Kopper, A., Araya-Sibaja, A. M., & Navarro-Hoyos, M. (2023). Characterization and Isolation of Piperamides from Piper nigrum Cultivated in Costa Rica. Horticulturae, 9(12), 1323. https://doi.org/10.3390/horticulturae9121323