Studies on Seed Germination and Micropropagation of Ebenus sibthorpii, an Endemic Shrub of Greece with Potential Ornamental Use
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Material
2.2. In Vitro Germination
2.3. Establishment of In Vitro Cultures
2.4. Multiplication Stage
2.5. In Vitro Rooting and Ex Vitro Acclimatization
2.6. In Vitro Culture Conditions and Data Collection
2.7. Experimental Design and Statistical Analysis
3. Results
3.1. In Vitro Germination
3.2. Establishment of In Vitro Cultures and Multiplication Stage
3.3. Effect of TDZ Two-Fold Culture on Multiplication
3.4. In Vitro Rooting and Ex Vitro Acclimatization
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Zografidis, A. New floristic records in Greece. Parnass. Arch. 2017, 5, 61–66. [Google Scholar]
- Huxley, A.; Taylor, W. Flowers of Greece and the Aegean; Chatto and Windus: London, UK, 1977; p. 186. [Google Scholar]
- Strid, A. Atlas of the Aegean Flora; Botanischer Garten und Botanisches Museum Berlin-Dahlem: Berlin, Germany, 2016; Volume 33, p. 1578. [Google Scholar]
- Sficas, G. Wildflowers of Greece; Efstathiades Group SA: Athens, Greece, 1987; p. 116. [Google Scholar]
- Darras, A.I.; Spiliopoulos, I.; Kartsonas, E.; Assimomitis, P.; Karras, S. Antioxidant profile, propagation and cultivation of Nepeta camphorata, the endemic species of Mt Taygetos (Greece). S. Afr. J. Bot. 2020, 131, 391–397. [Google Scholar] [CrossRef]
- Chokheli, V.A.; Dmitriev, P.A.; Rajput, V.D.; Bakulin, S.D.; Azarov, A.S.; Varduni, T.V.; Stepanenko, V.V.; Tarigholizadeh, S.; Singh, R.K.; Verma, K.K.; et al. Recent Development in Micropropagation Techniques for Rare Plant Species. Plants 2020, 9, 1733. [Google Scholar] [CrossRef] [PubMed]
- Martini, A.N.; Papafotiou, M. In Vitro Propagation and NaCl Tolerance of the Multipurpose Medicinal Halophyte Limoniastrum monopetalum. HortScience 2020, 55, 436–443. [Google Scholar] [CrossRef]
- Grigoriadou, K.; Krigas, N.; Sarropoulou, V.; Maloupa, E.; Tsoktouridis, G. Propagation and ex-situ conservation of Lomelosia minoana subsp. minoana and Scutellaria hirta—Two ornamental and medicinal Cretan endemics (Greece). Not. Bot. Horti Agrobot. 2021, 49, 12168. [Google Scholar] [CrossRef]
- Vlachou, G.; Papafotiou, Μ.; Bertsouklis, K.F. Studies on seed germination and micropropagation of Clinopodium nepeta a medicinal and aromatic plant. HortScience 2019, 54, 1558–1564. [Google Scholar] [CrossRef]
- Vlachou, G.; Papafotiou, Μ.; Bertsouklis, K.F. Seed germination, micropropagation from adult and juvenile origin explants and address of hyperhydricity of the Cretan endemic herb Calamintha cretica. Not. Bot. Horti Agrobot. 2020, 48, 1504–1518. [Google Scholar] [CrossRef]
- Kostas, S.; Kaplani, A.; Koulaouzidou, E.; Kotoula, A.-A.; Gklavakis, E.; Tsoulpha, P.; Hatzilazarou, S.; Nianiou-Obeidat, I.; Kanellis, A.K.; Economou, A. Sustainable Exploitation of Greek Rosmarinus officinalis L. Populations for Ornamental Use through Propagation by Shoot Cuttings and In Vitro Cultures. Sustainability 2022, 14, 4059. [Google Scholar] [CrossRef]
- Bertsouklis, K.; Tsopela, S. In Vitro Propagation of Three Populations of the Endangered, Greek Endemic Cerastium candidissimum and Short-Term Storability of Alginate-Encapsulated Shoot Explants for Exploitation and Conservation. Horticulturae 2023, 9, 273. [Google Scholar] [CrossRef]
- Papafotiou, M.; Vlachou, G.; Martini, A.N. Investigation of the Effects of the Explant Type and Different Plant Growth Regulators on Micropropagation of Five Mediterranean Salvia spp. Native to Greece. Horticulturae 2023, 9, 96. [Google Scholar] [CrossRef]
- Syros, T.; Yupsanis, T.; Zafiriadis, H.; Economou, A. Activity and isoforms of peroxidases, lignin and anatomy, during adventitious rooting in cuttings of Ebenus cretica L. J. Plant Physiol. 2004, 161, 69–77. [Google Scholar] [CrossRef] [PubMed]
- Varela-Stasinopoulou, D.S.; Nektarios, P.A.; Ntoulas, N.; Trigas, P.; Roukounakis, G.I. Sustainable Growth of Medicinal and Aromatic Mediterranean Plants Growing as Communities in Shallow Substrate Urban Green Roof Systems. Sustainability 2023, 15, 5940. [Google Scholar] [CrossRef]
- Darras, A. Overview of the Dynamic Role of Specialty Cut Flowers in the International Cut Flower Market. Horticulturae 2021, 7, 51. [Google Scholar] [CrossRef]
- Eurostat. Horticultural Products. Flowers and Ornamental Plants. Statistics 2006–2016; Eurostat: Luxembourg, 2017. [Google Scholar]
- Bertsouklis, K.; Papafotiou, M. Seed germination of Arbutus unedo, A. andrachne and their natural hybrid A. andrachnoides in relation to temperature and period of storage. HortScience 2013, 48, 347–351. [Google Scholar] [CrossRef]
- Bertsouklis, K.; Theodorou, P.; Aretaki, P.-E. In Vitro Propagation of the Mount Parnitha Endangered Species Sideritis raeseri subsp. Attica. Horticulturae 2022, 8, 1114. [Google Scholar] [CrossRef]
- Papafotiou, M.; Martini, A.N. In Vitro Seed and Clonal Propagation of the Mediterranean Aromatic and Medicinal Plant Teucrium capitatum. HortScience 2016, 51, 403–411. [Google Scholar] [CrossRef]
- Papafotiou, M.; Bertsouklis, K.F.; Trigka, M. Micropropagation of Arbutus unedo, A. andrachne, and their natural hybrid, A.xandrachnoides from seedling explants. J. Hortic. Sci. Biotechnol. 2013, 6, 768–775. [Google Scholar] [CrossRef]
- Ahmad, N.; Faisal, M.; Ahmad, A.; Alatar, A.A.; Qahtan, A.A.; Alok, A. Thidiazuron Induced In Vitro Clonal Propagation of Lagerstroemia speciosa (L.) Pers.—An Important Avenue Tree. Horticulturae 2022, 8, 359. [Google Scholar] [CrossRef]
- Martini, A.N.; Vlachou, G.; Papafotiou, M. Effect of Explant Origin and Medium Plant Growth Regulators on In Vitro Shoot Proliferation and Rooting of Salvia tomentosa, a Native Sage of the Northeastern Mediterranean Basin. Agronomy 2022, 12, 1889. [Google Scholar] [CrossRef]
- Martini, A.N.; Papafotiou, M.; Massas, I.; Chorianopoulou, N. Growing of the Cretan Therapeutic Herb Origanum Dictamnus in the Urban Fabric: The Effect of Substrate and Cultivation Site on Plant Growth and Potential Toxic Element Accumulation. Plants 2023, 12, 336. [Google Scholar] [CrossRef]
- Sarasan, V.; Kite, G.C.; Sileshi, G.W.; Stevenson, P.C. Applications of phytochemical and in vitro techniques for reducing over-harvesting of medicinal and pesticidal plants and generating income for the rural poor. Plant Cell Rep. 2011, 30, 1163–1172. [Google Scholar] [CrossRef] [PubMed]
- Generoso, A.L.; Carvalho, V.S.; Walter, R.; Campbell, G.; Araújo, L.S.; Santana, J.G.S.; Cunha, M. Mature-embryo culture in the cryopreservation of passion fruit (Passifora edulis Sims) seeds. Sci. Hortic. 2019, 256, 108638. [Google Scholar] [CrossRef]
- Silva, S.S.S.; Souza, E.H.; Souza, F.V.D.; Max, D.A.S.; Rossi, M.L.; Costa, M.A.P.C. Post-seminal development and cryopreservation of endemic or endangered bromeliads. An. Da Acad. Bras. Ciências 2021, 93, 20191133. [Google Scholar] [CrossRef] [PubMed]
- Baskin, J.M.; Baskin, C.C.; Li, X. Taxonomy, anatomy and evolution of physical dormancy in seeds. Plant Species Biol. 2000, 15, 139–152. [Google Scholar] [CrossRef]
- Baskin, C.C.; Baskin, J.M. Classification, biogeography, and phylogenetic relationships of seed dormancy. In Seed Conservation: Turning Science into Practice; Smith, R., Dickie, J., Linington, S., Pritchard, H., Probert, R., Eds.; The Royal Botanic Gardens, Kew: London, UK, 2003; pp. 518–544. [Google Scholar]
- Baskin, J.M.; Baskin, C.C. A classification system for seed dormancy. Seed Sci. Res. 2004, 14, 1–16. [Google Scholar] [CrossRef]
- Auld, T.D.; O’Connell, M.A. Predicting patterns of post-fire germination in 35 eastern Australian Fabaceae. Aust. J. Ecol. 1991, 16, 53–70. [Google Scholar] [CrossRef]
- Pound, L.M.; Ainsley, P.J.; Facelli, M. Dormancy-breaking and germination requirements for seeds of Acacia papyrocarpa, Acacia oswaldii and Senna artemisioides ssp. coriacea, three Australian arid-zone Fabaceae species. Aust. J. Bot. 2014, 62, 546–557. [Google Scholar] [CrossRef]
- Murashige, T.; Skoog, F. A revised medium for rapid growth and bioassays with tobacco tissue cultures. Phys. Plan. 1962, 15, 473–497. [Google Scholar] [CrossRef]
- Vlahos, J.C. Ebenus cretica L.; An attractive endemic plant of Crete with potential for floricultural use. HortScience 1996, 31, 769–774. [Google Scholar] [CrossRef]
- Gbadamosi, A.E.; Hassan, K.O. In vitro propagation of Senna alata (linn) on WPM and MS media with varying PGR. J. Sustain. Dev. 2013, 2, 1997–2007. [Google Scholar] [CrossRef]
- Bertsouklis, K.; Naksi, K.; Aretaki, P.-E. In vitro germination and regeneration of Senna artemisioides, a valuable leguminous ornamental shrub. Not. Bot. Horti Agrobo. 2023, 51, 12992. [Google Scholar] [CrossRef]
- Martini, A.N.; Papafotiou, M. In Vitro Seed and Clonal Propagation of the Mediterranean Bee Friendly Plant Anthyllis hermanniae L. Sustainability 2023, 15, 4025. [Google Scholar] [CrossRef]
- Vlahos, J.C.; Dragassaki, M. In vitro regeneration of Ebenus cretica L. Acta Hortic. 2000, 541, 305–309. [Google Scholar] [CrossRef]
- Gupta, S.; Mao, A.A.; Sarma, S. Effects of Thidiazuron (TDZ) on Direct Shoot Organogenesis of Gymnocladus assamicus: A Threatened and Critically Endangered Species from Northeast India. Natl. Acad. Sci. Lett. 2020, 43, 85–91. [Google Scholar] [CrossRef]
- Erland, L.A.E.; Giebelhaus, R.T.; Victor, J.M.R.; Murch, S.J.; Saxena, P.K. The Morphoregulatory Role of Thidiazuron: Metabolomics-Guided Hypothesis Generation for Mechanisms of Activity. Biomolecules 2020, 10, 1253. [Google Scholar] [CrossRef] [PubMed]
- Kougioumoutzis, K.; Kokkoris, I.P.; Panitsa, M.; Strid, A.; Dimopoulos, P. Extinction risk assessment of the Greek endemic flora. Βiology 2021, 10, 195. [Google Scholar] [CrossRef]
- Baskin, C.C.; Baskin, J.M. Seeds: Ecology, Biogeography, and Evolution of Dormancy and Germination; Academic Press: San Diego, CA, USA, 1998; p. 666. [Google Scholar]
- Ιnternational Seed Testing Association. International rules for seed testing. Seed Sci. Tech. 1999, 27, 333. [Google Scholar]
- Soltani, A.; Galeshi, S.; Zeinali, E.; Latifi, N. Genetic variation for and interrelationships among seed vigor traits in wheat from the Caspian Sea coasts of Iran. Seed Sci. Technol. 2001, 29, 653662. [Google Scholar]
- Maguire, J.D. Speed of germination-Aid in selection and evaluation for seedling emergence and vigor. Crop Sci. 1962, 2, 176–177. [Google Scholar] [CrossRef]
- Carruggio, F.; Onofri, A.; Impelluso, C.; Giusso del Galdo, G.; Scopece, G.; Cristaudo, A. Seed dormancy breaking and germination in Bituminaria basaltica and B. bituminosa (Fabaceae). Plants 2020, 9, 1110. [Google Scholar] [CrossRef]
- Mani, M.; Mathiyazhagan, C.; Dey, A.; Faisal, M.; Alatar, A.A.; Alok, A.; Shekhawat, M.S. Micro-morpho-anatomical transitions at various stages of in vitro development of Crinum malabaricum Lekhak and Yadav: A critically endangered medicinal plant. Plant Biol. 2023, 25, 142–151. [Google Scholar] [CrossRef] [PubMed]
- Barnicoat, H.; Cripps, R.; Kendon, J.; Sarasan, V. Conservation in vitro of rare and threatened ferns—Case studies of biodiversity hotspot and island species. Vitr. Cell. Dev. Biol.-Plant 2011, 47, 37–45. [Google Scholar] [CrossRef]
- Coelho, N.; Gonçalves, S.; Romano, A. Endemic plant species conservation: Biotechnological approaches. Plants 2020, 9, 345. [Google Scholar] [CrossRef] [PubMed]
- Magrini, S.; Azzella, M.M.; Bolpagni, R.; Zucconi, L. In Vitro Propagation of Isoëtes sabatina (Isoetaceae): A Key Conservation Challenge for a Critically Endangered Quillwort. Plants 2020, 9, 887. [Google Scholar] [CrossRef] [PubMed]
- Sarasan, V.; Cripps, R.; Ramsay, M.M.; Atherton, C.; McMichen, M.; Prendergast, G.; Rowntree, J.K. Conservation in vitro of threatened plants—Progress in the past decade. Vitr. Cell. Dev. Biol.-Plant 2006, 42, 206–214. [Google Scholar] [CrossRef]
- Engelmann, F. Use of biotechnologies for the conservation of plant biodiversity. Vitr. Cell. Dev. Biol.-Plant 2011, 47, 5–16. [Google Scholar] [CrossRef]
- Werden, L.K.; Sugii, N.C.; Weisenberger, L.; Keir, M.J.; Koob, G.; Zahawi, R.A. Ex situ conservation of threatened plant species in island biodiversity hotspots: A case study from Hawai‘i. Biol. Conserv. 2020, 243, 108435. [Google Scholar] [CrossRef]
- Pence, V.C.; Meyer, A.; Linsky, J.; Gratzfeld, J.; Pritchard, H.W.; Westwood, M.; Bruns, E.B. Defining exceptional species—A conceptual framework to expand and advance ex situ conservation of plant diversity beyond conventional seed banking. Biol. Conserv. 2022, 266, 109440. [Google Scholar] [CrossRef]
- Teketay, D. Germination ecology of twelve indigenous and eight exotic multipurpose leguminous species from Ethiopia. For. Ecol. Manag. 1996, 80, 209–223. [Google Scholar] [CrossRef]
- Smykal, P.; Vernoud, V.; Blair, M.W.; Soukup, A.; Thompson, R.D. The role of the testa during development and in establishment of dormancy of the legume seed. Front. Plant Sci. 2014, 5, 351. [Google Scholar] [CrossRef]
- Bewley, J.D. Seed germination and dormancy. Plant Cell 1997, 9, 1055–1066. [Google Scholar] [CrossRef] [PubMed]
- Finch-Savage, W.E.; Leubner-Metzger, G. Seed dormancy and the control of germination. New Phytol. 2006, 171, 501–523. [Google Scholar] [CrossRef] [PubMed]
- Thanos, C.A.; Georghiou, K. Ecophysiology of fire-stimulated seed germination in Cistus incanus ssp. creticus (L.) Hey wood and C. salvifolius L. Plant Cell Environ. 1988, 11, 841–849. [Google Scholar] [CrossRef]
- Estrelles, E.; Güemes, J.; Riera, J.; Boscai, U.; Ibars, A.; Costa, M. Seed germination behavior in Sideritis from different Iberian habitats. Not. Bot. Horti Agrobot. 2010, 38, 9–13. [Google Scholar]
- Penfield, S.; MacGregor, D.R. Effects of environmental variation during seed production on seed dormancy and germination. J. Exp. Bot. 2017, 68, 819–825. [Google Scholar] [CrossRef] [PubMed]
- Uzun, S.; Yükselgüngör, D. Micropropagation of some Onobrychis species through in vitro shoot regeneration. Acta Sci. Pol. Hortorum Cultus 2020, 19, 45–52. [Google Scholar] [CrossRef]
- Kanellou, E.; Vlachou, G.; Martini, A.N.; Bertsouklis, K.F.; Papafotiou, M. Seed germination of five sage species (Salvia sp.) of populations native to Greece. Acta Hortic. 2022, 1345, 439–444. [Google Scholar] [CrossRef]
- Donohue, K. Completing the cycle: Maternal effects as the missing link in plant life histories. Philos. Trans. R. Soc. B 2009, 364, 1059–1074. [Google Scholar] [CrossRef]
- Donohue, K.; De Casas, R.R.; Burghardt, L.T.; Kovach, K.; Willis, C.G. Germination, post germination adaptation, and species Ecological Ranges. Annu. Rev. Ecol. Evol. Syst. 2010, 41, 293–319. Available online: https://www.annualreviews.org/doi/10.1146/annurev-ecolsys-102209-144715 (accessed on 28 June 2023). [CrossRef]
- Finch-Savage, W.E.; Bassel, G.W. Seed vigour and crop establishment: Extending performance beyond adaptation. J. Exp. Bot. 2016, 67, 567–591. [Google Scholar] [CrossRef]
- Zheng, Y.; Xie, Z.; Gao, Y.; Yu, Y.; Shimizu, H. Influence of light, temperature and water stress on germination of Hedysarum Fruticosum. South Afr. J. Bot. 2005, 71, 167–172. [Google Scholar] [CrossRef]
- Hu, X.W.; Wang, Y.R.; Wu, Y. Effects of the pericarp on imbibition, seed germination, and seedling establishment in seeds of Hedysarum scoparium Fisch. et Mey. Ecol. Res. 2008, 24, 559–564. [Google Scholar] [CrossRef]
- São José, J.F.B.; Volpiano, C.G.; Vargas, L.K.; Hernandes, M.A.S.; Lisboa, B.B.; Schlindwein, G.; Beneduzi, A.; Longoni, L.S.; Sampaio, J.A.T. Influence of hot water on breaking dormancy, incubation temperature and rhizobial inoculation on germination of Acacia mearnsii seeds. Aust. For. 2019, 82, 157–161. [Google Scholar] [CrossRef]
- Zembele, E.R.; Ngulube, E.S. Effect of seed pre-treatment methods on germination and early seedling growth of Senna spectabilis. Int. J. For. Res. 2022, 2022, 6731479. [Google Scholar] [CrossRef]
- Carneiro, L.; Araújo, R.; Brito, G.; Fonseca, M.H.P.B.; Costa, A.; Crocomo, O.J.; Mansur, E. In Vitro regeneration from leaf explants of Neoregelia cruenta (R. Graham) L.B. Smith, an endemic bromeliad from Eastern Brazil. Plant Cell Tissue Organ. 1998, 55, 79–83. [Google Scholar] [CrossRef]
- Tassoula, L.; Papafotiou, M.; Liakopoulos, G.; Kargas, G. Water use efficiency, growth and anatomic-physiological parameters of Mediterranean xerophytes as affected by substrate and irrigation on a green roof. Not. Bot. Horti Agrobot. 2021, 49, 12283. [Google Scholar] [CrossRef]
- Sarropoulou, V.; Maloupa, E.; Grigoriadou, K. Cretan Dittany (Origanum dictamnus L.), a Valuable Local Endemic Plant: In Vitro Regeneration Potential of Different Type of Explants for Conservation and Sustainable Exploitation. Plants 2023, 12, 182. [Google Scholar] [CrossRef]
- Papafotiou, M.; Martini, A.N.; Vlachou, G. In Vitro propagation as a tool to enhance the use of native ornamentals in Archaeological sites of Greece. Acta Hortic. 2017, 1155, 301–308. [Google Scholar] [CrossRef]
- Grigoriadou, K.; Maloupa, E. Micropropagation and salt tolerance of in vitro grown Crithmum maritimum L. Plant Cell Tissue Organ Cult. 2008, 94, 209–217. [Google Scholar] [CrossRef]
- Siddique, I.; Anis, M. Rapid micropropagation of Ocimum basilicum using shoot tip explants pre-cultured in thidiazuron supplemented in liquid medium. Biol. Plant 2007, 51, 787–790. [Google Scholar] [CrossRef]
- Faisal, M.; Alatar, A.A.; Hegazy, A.K.; Alharbi, S.A.; El-Sherikh, M.; Okla, M.K. Thidiazuron induced in vitro multiplication of Mentha arvensis and evaluation of genetic stability by flow cytometry and molecular markers. Ind. Crop Prod. 2014, 62, 100–106. [Google Scholar] [CrossRef]
- Papafotiou, M.; Kalantzis, A. Seed germination and in vitro propagation of Sideritis athoa. Acta Hortic. 2009, 813, 471–476. [Google Scholar] [CrossRef]
- Marco-Medina, A.; Casas, J.L. In vitro multiplication and essential oil composition of Thymus moroderi Pau ex Martinez, an endemic Spanish plant. Plant Cell Tissue Organ Cult. 2015, 120, 99–108. [Google Scholar] [CrossRef]
- Juan-Vicedo, J.; Ramírez-Luna, J.E.; Piqueras, A.; Casas, J.L. Micropropagation and cryopreservation by vitrification of the Spanish endemic medicinal plant Sideritis leucantha Cav. subsp. leucantha (Lamiaceae). Vitr. Cell. Dev. Biol.-Plant 2021, 57, 1057–1065. [Google Scholar] [CrossRef]
- Martini, A.N.; Papafotiou, M. Effects of plant growth regulators and environmental factors on in vitro propagation of X Malosorbus florentina L. Propag. Ornam. Plants 2013, 13, 112–122. [Google Scholar]
- Erişen, S.; Öncel, Z. In vitro propagation of the threatened plant Sphaerophysa kotschyana (Fabaceae): Inter simple-sequence-repeat (ISSR) analysis and salt tolerance of the regenerants. Aust. J. Bot. 2013, 61, 67. [Google Scholar] [CrossRef]
- Wiszniewska, A.; Nowak, B.; Kołton, A.; Sitek, E.; Grabski, K.; Dziurka, M.; Długosz-Grochowska, O.; Dziurka, K.; Tukaj, Z. Rooting response of Prunus domestica L. micro-shoots in the presence of phytoactive medium supplements. Plant Cell Tissue Organ. 2016, 125, 163–176. [Google Scholar] [CrossRef]
- Polanco, M.C.; Ruiz, M.L. Effect of benzylaminopurine on in vitro and in vivo root development in lentil (Lens culinaris Medik). Plant Cell Rep. 1997, 17, 22–26. [Google Scholar] [CrossRef]
- Polanco, M.C.; Ruiz, M.L. Factors that affect plant regeneration from in vitro culture of immature seeds in four lentil cultivars. Plant Cell Tissue Organ Cult. 2001, 66, 133–139. [Google Scholar] [CrossRef]
- Zhao, D.L.; Guo, G.Q.; Wang, X.Y.; Zheng, G.C. In vitro micropropagation of a medicinal plant species Sophora flavescens. Biol. Plant. 2003, 7, 117–120. [Google Scholar] [CrossRef]
- Guo, B.; Bilal, H.A.; Zeb, A.; Xu, L.; Wei, Y. Thidiazuron: A multi-dimensional plant growth regulator. Afr. J. Sci. Technol. Innov. Dev. 2011, 10, 8984–9000. [Google Scholar] [CrossRef]
- Amoo, S.O.; Finnie, J.F.; Van Staden, J. The role of meta-topolins in alleviating micropropagation problems. Plant Growth Regul. 2011, 63, 197–206. [Google Scholar] [CrossRef]
- Bunn, E.; Turner, S.R.; Dixon, K.W. Biotechnology for saving rare and threatened flora in a biodiversity hotspot. Vitr. Cell. Dev. Biol.-Plant. 2011, 47, 188–200. [Google Scholar] [CrossRef]
- Carra, A.; Catalano, C.; Badalamenti, O.; Carimi, F.; Pasta, S.; Motisi, A.; Abbate, L.; La Bella, F.; Fazan, L.; Kozlowski, G.; et al. Overcoming sexual sterility in conservation of endangered species: The prominent role of biotechnology in the multiplication of Zelkova sicula (Ulmaceae), a relict tree at the brink of extinction. Plant Cell Tissue Organ. 2019, 137, 139–148. [Google Scholar] [CrossRef]
- Benson, E.E. Sepecial symposium: In vitro plant recalcitrance in vitro plant recalcitrance: An introduction. Vitr. Cell. Dev. Biol.-Plant 2000, 36, 141–148. [Google Scholar] [CrossRef]
- Stevens, M.E.; Pijut, P.M. Rapid in vitro shoot multiplication of the recalcitrant species Juglans nigra L. Vitr. Cell. Dev. Biol.-Plant 2005, 54, 309–317. [Google Scholar] [CrossRef]
Temperature (°C) | Germination Percentage (%) ± SE | T50 † (d) | Time Taken for Full Germination (d) | GSI |
---|---|---|---|---|
5 | 0 ± 0 b | - | - | - |
10 | 52.0 ± 3.1 a | 4 | 28 | 57.8 ± 4.1 |
15 | 45.6 ± 7.0 a | 4 | 28 | 48.8 ± 7.1 |
20 | 64.0 ± 8.1 a | 4 | 26 | 69.7 ± 9.1 |
25 | 64.0 ± 6.7 a | 6 | 26 | 60.9 ± 8.1 |
30 | 50.0 ± 14.2 a | 4 | 20 | 57.5 ± 14.1 |
35 | 0 ± 0 b | - | - | - |
Fone-way | * | - | - | ns |
BA (mg L−1) | Shoot Formation (%) | LS † Number | SS †† Number | LS Shoot Length (cm) | Node Number | MI ††† |
---|---|---|---|---|---|---|
Control | 72.0 | 1.1 | 1.0 | 1.6 b | 3.3 b | 1.8 b |
0.5 | 80.0 | 1.4 | 1.3 | 2.4 a | 4.4 a | 4.2 a |
1.0 | 77.0 | 1.2 | 1.1 | 2.3 a | 3.4 ab | 2.7 ab |
Fone-way | ns | ns | ns | ** | * | ** |
Cytokinin (mg L−1) | NAA (mg L−1) | Shoot Formation (%) | LS † Number | SS †† Number | LS Shoot Length (cm) | Node Number | MI ††† |
---|---|---|---|---|---|---|---|
Control | 76.7 bc | 1.2 d | 1.2 bc | 1.7 bcd | 2.7 bcd | 2.5 b | |
BA 0.1 | 0.01 | 84.0 abc | 1.2 cd | 1.0 c | 2.6 a | 2.8 bc | 4.2 ab |
BA 0.5 | - | 82.0 abc | 1.4 cd | 1.1 c | 1.9 bc | 3.1 b | 3.6 ab |
BA 0.5 | 0.01 | 82.0 abc | 1.5 bcd | 1.1 c | 1.9 bc | 2.6 bcde | 3.9 ab |
KIN 0.5 | - | 54.0 d | 1.0 d | 1.3 bc | 1.7 bcd | 1.9 ef | 1.4 c |
KIN 1.0 | - | 68.0 cd | 1.3 cd | 1.0 c | 2.1 abc | 2.3 cdef | 3.0 bc |
ZEA 0.5 | - | 85.5 ab | 1.5 bcd | 1.5 abc | 1.4 ab | 4.7 a | 4.6 a |
ZEA 1.0 | - | 78.0 bc | 1.3 cd | 1.0 c | 1.4 cde | 3.0 bc | 2.5 bc |
TDZ 0.1 | - | 95.0 a | 2.1 ab | 1.7 ab | 0.8 e | 1.4 f | 2.6 bc |
TDZ 0.5 | - | 95.0 a | 1.8 bc | 1,7 ab | 0.9 de | 1.9 ef | 2.6 bc |
TDZ 1.0 | - | 95.0 a | 2.7 a | 2.0 a | 1.0 de | 2.0 def | 4.2 ab |
Fone-way | *** | *** | *** | *** | *** | ** |
Treatments | Shooting (%) | LS †† Number | Shoot Length (cm) | Node Number | MI ††† | |
---|---|---|---|---|---|---|
TDZ (mg L−1) | ||||||
0.1 | † | 1.3 b | ||||
0.5 | 2.0 ab | |||||
1.0 | 3.4 a | |||||
Medium | ||||||
MS | 2.5 | |||||
MS/2 | 1.0 | |||||
Interaction † (TDZ × Medium) | ||||||
0.1 TDZ × | MS | 100.0 | 1.3 | 3.2 a | 3.8 | 7.0 b |
MS/2 | 95.0 | 1.2 | 2.6 ab | 3.1 | 4.9 bc | |
0.5 TDZ × | MS | 85.7 | 2.0 | 1.3 c | 2.2 | 3.7 c |
MS/2 | 93.3 | 1.9 | 2.0 bc | 2.8 | 5.9 b | |
1.0 TDZ × | MS | 100.0 | 4.1 | 2.4 ab | 2.8 | 16.4 a |
MS/2 | 89.5 | 2.8 | 2.0 bc | 3.8 | 8.4 b | |
FTDZ | ns | *** | - | ns | - | |
FMedium | ns | ns | - | ns | - | |
FTDZ × Medium | ns | ns | * | ns | ** |
Auxin Concentration | Auxin Type | Rooting (%) | Root Number | Root Length (cm) |
---|---|---|---|---|
Control | - | - | - | |
0.5 | IBA | - | - | - |
1.0 | IBA | 10.0 ab | 3.0 | 1.0 |
2.0 | IBA | 30.0 a | 2.5 | 1.5 |
1.0 | IAA | 5.0 b | 2.0 | 0.5 |
2.0 | IAA | 10.0 ab | 4.5 | 1.0 |
Fone-way ANOVA | * | ns | ns |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bertsouklis, K.; Vazaka-Vodena, D.; Bazanis, A.-E.; Papafotiou, M. Studies on Seed Germination and Micropropagation of Ebenus sibthorpii, an Endemic Shrub of Greece with Potential Ornamental Use. Horticulturae 2023, 9, 1300. https://doi.org/10.3390/horticulturae9121300
Bertsouklis K, Vazaka-Vodena D, Bazanis A-E, Papafotiou M. Studies on Seed Germination and Micropropagation of Ebenus sibthorpii, an Endemic Shrub of Greece with Potential Ornamental Use. Horticulturae. 2023; 9(12):1300. https://doi.org/10.3390/horticulturae9121300
Chicago/Turabian StyleBertsouklis, Konstantinos, Dimitra Vazaka-Vodena, Apostolos-Emmanouil Bazanis, and Maria Papafotiou. 2023. "Studies on Seed Germination and Micropropagation of Ebenus sibthorpii, an Endemic Shrub of Greece with Potential Ornamental Use" Horticulturae 9, no. 12: 1300. https://doi.org/10.3390/horticulturae9121300
APA StyleBertsouklis, K., Vazaka-Vodena, D., Bazanis, A. -E., & Papafotiou, M. (2023). Studies on Seed Germination and Micropropagation of Ebenus sibthorpii, an Endemic Shrub of Greece with Potential Ornamental Use. Horticulturae, 9(12), 1300. https://doi.org/10.3390/horticulturae9121300