Study of the Chemical Composition of Carica papaya L. Seed Oils of Various Geographic Origins
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Oil Extraction
2.3. Refractive Index
2.4. Acid Value
2.5. Saponification Value
2.6. Peroxide Value
2.7. Iodine Value
2.8. Unsaponifiable Matter
2.9. Fatty Acid Analysis
2.10. Unsaponifiable Fraction Analysis
2.11. Gas Chromatography-Flame Ionization Detection (GC-FID)
2.12. Gas Chromatography–Mass Spectrometry (GC-MS)
2.13. NMR Analysis
2.14. Statistical Analysis
3. Results and Discussion
3.1. Properties of Oil
3.2. GC-FID Analysis
3.3. GC-MS Analysis
3.4. NMR Studies
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- U.S. National Plant Germplasm System. Carica papaya L. Available online: https://npgsweb.ars-grin.gov/gringlobal/taxonomydetail.aspx?9147 (accessed on 22 August 2023).
- Lim, T. Edible Medicinal and Non-Medicinal Plants; Springer: Dordrecht, The Netherlands, 2012; Volume 1, pp. 693–714. [Google Scholar] [CrossRef]
- The Food and Agriculture Organization [FAO]. FAOSTAT. Available online: http://www.fao.org/faostat/en/#data/QC (accessed on 22 August 2023).
- United States Department of Agriculture Agricultural Research Service National Nutrient Database for Standard Reference Legacy Release. Available online: https://ndb.nal.usda.gov/ndb/foods/show/09226?fgcd=&manu=&format=&count=&max=25&offset=&sort=default&order=asc&qlookup=Papayas%2C+raw&ds=&qt=&qp=&qa=&qn=&q=&ing= (accessed on 22 August 2023).
- Facciola, S. Cornucopia II—A Source Book of Edible Plants; Kampong Publications: Portland, OR, USA, 1998; 73p. [Google Scholar]
- Drugs and Lactation Database. Bethesda: National Library of Medicine. Papaya. Available online: https://www.ncbi.nlm.nih.gov/books/NBK501881/ (accessed on 22 August 2023).
- Okino-Delgado, C.H.; Prado, D.Z.; Fleuri, L.F. Brazilian fruit processing, wastes as a source of lipase and other biotechnological products: A review. An. Acad. Bras. Ciências 2018, 90, 2927–2943. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, T.T.; Shaw, P.N.; Parat, M.O.; Hewavitharana, A.K. Anticancer activity of Carica papaya: A review. Mol. Nutr. Food Res. 2013, 57, 153–164. [Google Scholar] [CrossRef] [PubMed]
- Asghar, N.; Naqvi, S.A.; Hussain, Z.; Rasool, N.; Khan, Z.A.; Shahzad, S.A.; Sherazi, T.A.; Janjua, M.R.S.A.; Nagra, S.A.; Zia-Ul-Haq, M.; et al. Compositional difference in antioxidant and antibacterial activity of all parts of the Carica papaya using different solvents. Chem. Cent. J. 2016, 10, 5. [Google Scholar] [CrossRef] [PubMed]
- Vuong, Q.V.; Hirun, S.; Roach, P.D.; Bowyer, M.C.; Phillips, P.A.; Scarlett, C.J. Effect of extraction conditions on total phenolic compounds and antioxidant activities of Carica papaya leaf aqueous extracts. J. Herb. Med. 2013, 3, 104–111. [Google Scholar] [CrossRef]
- Santana, L.F.; Inada, A.C.; Espirito Santo, B.L.S.; Filiú, W.F.O.; Pott, A.; Alves, F.M.; Guimarães, R.d.C.A.; Freitas, K.d.C.; Hiane, P.A. Nutraceutical potential of Carica papaya in metabolic syndrome. Nutrients 2019, 11, 1608. [Google Scholar] [CrossRef]
- Charan, J.; Saxena, D.; Goyal, J.P.; Yasobant, S. Efficacy and safety of Carica papaya leaf extract in the dengue: A systematic review and meta-analysis. Int. J. App. Basic Med. Res. 2016, 6, 249–254. [Google Scholar] [CrossRef]
- Samaram, S.; Mirhosseini, H.; Tan, C.P.; Ghazali, H.M. Ultrasound-assisted extraction and solvent extraction of papaya seed oil: Yield, fatty acid composition and triacylglycerol profile. Molecules 2013, 18, 12474–12487. [Google Scholar] [CrossRef]
- Tan, C.X.; Tan, S.T.; Tan, S.S. An overview of papaya seed oil extraction methods. Int. J. Food Sci. Technol. 2020, 55, 1506–1514. [Google Scholar] [CrossRef]
- Samaram, S.; Mirhosseini, H.; Tan, C.P.; Ghazali, H.M.; Bordbar, S.; Serjouie, A. Optimisation of ultrasound-assisted extraction of oil from papaya seed by response surface methodology: Oil recovery, radical scavenging antioxidant activity, and oxi-dation stability. Food Chem. 2015, 172, 7–17. [Google Scholar] [CrossRef]
- Yon, R.M. Papaya: Fruit Development, Postharvest Physiology, Handling and Marketing in ASEAN; ASEAN food Handling Bureau: Kuala Lumpur, Malaysia, 1994; 144p. [Google Scholar]
- Puangsri, T.; Abdulkarim, S.M.; Ghazali, H.M. Properties of Carica papaya L. [Papaya] seed oil following extraction using solvent and aqueous enzymatic methods. J. Food Lipids 2005, 12, 62–67. [Google Scholar] [CrossRef]
- Lee, W.K.; Lee, M.H.; Su, N.W. Characteristics of papaya seed oil obtained by extrusion-expelling processes. J. Sci. Food Agric. 2011, 91, 2348–2354. [Google Scholar] [CrossRef] [PubMed]
- He, X.; Ma, Y.; Yi, G.; Wu, J.; Zhou, L.; Guo, H. Chemical composition and antifungal activity of Carica papaya Linn. seed essential oil against Candida spp. Lett. Appl. Microbiol. 2017, 64, 350–354. [Google Scholar] [CrossRef] [PubMed]
- Ma, Y.; Wen, Y.; Chen, J.; Zhang, Y.; Zhang, H.; Sui, J.; Yi, G.; He, X. Rapid and sensitive analysis of benzyl isothiocyanate in peel, pulp, and seeds of Carica papaya Linn. by headspace gas chromatography-mass spectrometry. SN Appl. Sci. 2021, 3, 374. [Google Scholar] [CrossRef]
- Porte, A.; Silva, E.F.; Almeida, V.D.S.; Silva, T.; Porte, L. Propriedades funcionais tecnolo’gicas das farinhas de sementes de mama˜o [Carica papaya] e de abo´boras [Cucurbita sp.]. Rev. Bras. Prod. Agro. 2011, 13, 91–96. [Google Scholar] [CrossRef]
- Silva, A.C.; Jorge, N. Bioactive compounds of the lipid fractions of agro-industrial waste. Food Res. Int. 2014, 66, 493–500. [Google Scholar] [CrossRef]
- Afolabi, I.S.; Bisi-Adeniyi, T.D.; Adedoyin, T.R.; Rotimi, S.O. Radiations and biodegradation techniques for detoxifying Carica papaya seed oil for effective dietary and industrial use. J. Food Sci. Technol. 2015, 52, 6475–6483. [Google Scholar] [CrossRef] [PubMed]
- Veronezi, C.M.; Jorge, N. Effect of Carica papaya and Cucumis melo seed oils on the soybean oil stability. Food Sci. Biotechnol. 2018, 27, 1031–1040. [Google Scholar] [CrossRef]
- Gunstone, F.D. Composition and properties of edible oils. In Edible Oil Processing; Hamm, W., Hamilton, R.J., Eds.; Sheffield Academic Press: Sheffield, UK, 2000; pp. 1–33. [Google Scholar] [CrossRef]
- Agada, R.; Usman, W.A.; Shehu, S. GC–MS and FTIR analysis of crude extracts of Carica papaya seed. Aust. J. Basic Appl. Sci. 2019, 13, 51–59. [Google Scholar] [CrossRef]
- Alfarabi, M.; Erwin, F.; Cing, J.; Suryowati, T.; Turhadi, T.; Suyono, M.S.; Febriyanti, M.S.; Naibaho, F.B. Bioactivity and metabolite profile of papaya (Carica papaya) seed extract. Biodiversitas 2022, 23, 4589–4600. [Google Scholar] [CrossRef]
- Goryainov, S.V.; Khromov, A.V.; Bakureza, G.; Cesar, E.; Ivlev, V.A.; Vorobyev, A.N.; Abramovich, R.A.; Potanina, O.G.; Novikov, O.O. Results of a comparative study of Nigella Sativa L. seeds oils composition. Pharm. Pharmacol. 2020, 8, 29–39. [Google Scholar] [CrossRef]
- Official Method 940.28; Official Methods of Analysis of AOAC International, 21st ed. AOAC International: Gaithersburg, MD, USA, 2019.
- Official Method 920.160; Official Methods of Analysis of AOAC International, 21st ed. AOAC International: Gaithersburg, MD, USA, 2019.
- Official Method 965.33; Official Methods of Analysis of AOAC International, 21st ed. AOAC International: Gaithersburg, MD, USA, 2019.
- Official Method 920.159; Official Methods of Analysis of AOAC International, 21st ed. AOAC International: Gaithersburg, MD, USA, 2019.
- Official Method 933.08; Official Methods of Analysis of AOAC International, 21st ed. AOAC International: Gaithersburg, MD, USA, 2019.
- Yanty, N.A.; Marikkar, J.M.; Nusantoro, B.P.; Long, K.; Ghazali, H.M. Physico-chemical characteristics of papaya (Carica papaya L.) seed oil of the Hong Kong/Sekaki variety. J. Oleo. Sci. 2014, 63, 885–892. [Google Scholar] [CrossRef] [PubMed]
- Goriainov, S.V.; Esparza, C.A.; Borisova, A.R.; Orlova, S.V.; Vandyshev, V.V.; Hajjar, F.; Platonov, E.A.; Chromchenkova, E.P.; Novikov, O.O.; Borisov, R.S.; et al. Phytochemical study of the composition of the unsaponifiable fraction of various vegetable oils by gas chromatography–mass spectrometry. J. Anal. Chem. 2021, 76, 1635–1644. [Google Scholar] [CrossRef]
Sample № | Oil Yield, % | Refractive Index | Acid Value, mg KOH/g | Saponification Value, mg KOH/g | Peroxide Value, meq/kg | Iodine Value, mg/100 g Oil | Unsaponifiable Matter, % |
---|---|---|---|---|---|---|---|
1 | 25.0 | 1.4674 ± 0.0006 | 0.97 ± 0.07 | 191.3 ± 2.1 | 0.87 ± 0.07 | 67.4 ± 0.9 | 1.99 ± 0.09 |
2 | 27.0 | 1.4678 ± 0.0005 | 1.11 ± 0.09 | 189.1 ± 1.9 | 0.94 ± 0.06 | 70.4 ± 0.9 | 2.16 ± 0.03 |
3 | 26.0 | 1.4689 ± 0.0009 | 0.89 ± 0.05 | 189.9 ± 2.4 | 1.22 ± 0.08 | 69.5 ± 0.7 | 2.19 ± 0.12 |
4 | 27.0 | 1.4676 ± 0.0006 | 1.29 ± 0.09 | 196.4 ± 2.2 | 0.82 ± 0.05 | 66.1 ± 1.1 | 1.65 ± 0.06 |
5 | 18.3 | 1.4667 ± 0.0004 | 1.04 ± 0.06 | 192.4 ± 1.8 | 1.04 ± 0.08 | 72.3 ± 0.3 | 1.82 ± 0.07 |
6 | 21.1 | 1.4666 ± 0.0007 | 1.02 ± 0.08 | 193.4 ± 1.6 | 0.91 ± 0.04 | 71.5 ± 0.6 | 1.76 ± 0.09 |
7 | 23.0 | 1.4673 ± 0.0006 | 0.88 ± 0.03 | 190.8 ± 2.2 | 0.88 ± 0.06 | 69.8 ± 0.4 | 2.07 ± 0.14 |
Fatty Acid (in Methyl Ester Form) | C:D | Sample 1 | Sample 2 | Sample 3 | Sample 4 | Sample 5 | Sample 6 | Sample 7 |
---|---|---|---|---|---|---|---|---|
Capric | C10:0 | 0.08 ± 0.01 | 0.03 ± 0.01 | 0.05 ± 0.01 | 0.13 ± 0.02 | 0.09 ± 0.01 | 0.06 ± 0.02 | 0.08 ± 0.01 |
Lauric | C12:0 | 0.02 ± 0.01 | 0.08 ± 0.01 | 0.01 ± 0.00 | 0.03 ± 0.01 | 0.03 ± 0.01 | 0.06 ± 0.01 | 0.02 ± 0.01 |
Myristic | C14:0 | 0.42 ± 0.04 | 0.56 ± 0.09 | 0.33 ± 0.07 | 0.29 ± 0.01 | 0.28 ± 0.02 | 0.53 ± 0.04 | 0.46 ± 0.06 |
Palmitic | C16:0 | 15.16 ± 0.14 | 14.22 ± 0.16 | 16.67 ± 0.18 | 16.93 ± 0.09 | 16.62 ± 0.23 | 16.13 ± 0.11 | 15.33 ± 0.21 |
Palmitoleic | C16:1 | 0.63 ± 0.06 | 0.51 ± 0.05 | 0.47 ± 0.07 | 0.54 ± 0.02 | 0.52 ± 0.04 | 0.34 ± 0.08 | 0.59 ± 0.08 |
Stearic | C18:0 | 5.81 ± 0.11 | 4.77 ± 0.14 | 5.29 ± 0.07 | 5.83 ± 0.07 | 5.87 ± 0.09 | 5.08 ± 0.10 | 5.63 ± 0.12 |
Elaidic | C18:1trans | 0.09 ± 0.01 | 0.13 ± 0.02 | 0.12 ± 0.01 | 0.15 ± 0.02 | 0.09 ± 0.01 | 0.09 ± 0.02 | 0.14 ± 0.02 |
Oleic | C18:1cis | 72.60 ± 0.36 | 74.91 ± 0.28 | 72.79 ± 0.41 | 70.44 ± 0.51 | 68.71 ± 0.35 | 70.54 ± 0.52 | 71.88 ± 0.33 |
Linoleic | C18:2cis | 4.36 ± 0.16 | 3.56 ± 0.08 | 3.37 ± 0.09 | 4.62 ± 0.17 | 6.77 ± 0.11 | 6.33 ± 0.04 | 4.71 ± 0.06 |
α-Linolenic | C18:3 | n/f | n/f | n/f | n/f | n/f | n/f | n/f |
Arachidic | C20:0 | 0.26 ± 0.03 | 0.44 ± 0.03 | 0.41 ± 0.05 | 0.53 ± 0.05 | 0.36 ± 0.02 | 0.28 ± 0.03 | 0.48 ± 0.06 |
Gondoic | C20:1 | 0.10 ± 0.01 | 0.11 ± 0.01 | 0.08 ± 0.02 | 0.11 ± 0.02 | 0.14 ± 0.03 | 0.09 ± 0.01 | 0.17 ± 0.02 |
Behenic | C22:0 | 0.13 ± 0.03 | 0.38 ± 0.04 | 0.21 ± 0.03 | 0.16 ± 0.03 | 0.33 ± 0.02 | 0.21 ± 0.06 | 0.19 ± 0.02 |
Erucic | C22:1 | 0.12 ± 0.01 | 0.11 ± 0.01 | 0.08 ± 0.02 | 0.08 ± 0.01 | 0.06 ± 0.01 | 0.11 ± 0.01 | 0.09 ± 0.01 |
Lignoceric | C24:0 | 0.22 ± 0.03 | 0.19 ± 0.02 | 0.12 ± 0.02 | 0.16 ± 0.01 | 0.13 ± 0.01 | 0.15 ± 0.04 | 0.23 ± 0.02 |
Total | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 |
Sterol/Triterpene Alcohol (in Trimethylsilyl Ester Form) | Sample 1 | Sample 2 | Sample 3 | Sample 4 | Sample 5 | Sample 6 | Sample 7 |
---|---|---|---|---|---|---|---|
Cholesterol | 10.6 ± 0.9 | 12.5 ± 0.6 | 28.4 ± 1.8 | 17.1 ± 1.3 | 26.6 ± 1.8 | 9.9 ± 0.7 | 11.2 ± 0.9 |
24-Methylene cholesterol | 1.9 ± 0.3 | 2.4 ± 0.2 | 2.6 ± 0.3 | 1.8 ± 0.3 | 2.2 ± 0.1 | 1.2 ± 0.2 | 1.5 ± 0.2 |
Campesterol | 43.9 ± 3.4 | 62.1 ± 2.6 | 73.1 ± 4.1 | 38.4 ± 1.9 | 57.0 ± 3.5 | 39.3 ± 3.2 | 66.8 ± 1.7 |
Campestanol | 11.8 ± 0.7 | 7.1 ± 0.3 | 13.3 ± 0.5 | 10.9 ± 0.5 | 11.4 ± 0.7 | 16.9 ± 0.9 | 12.6 ± 0.7 |
Stigmasterol | 27.5 ± 1.0 | 28.3 ± 0.8 | 27.0 ± 0.9 | 20.5 ± 1.3 | 29.0 ± 1.4 | 20.9 ± 1.3 | 30.6 ± 1.5 |
Unidentified compound (428 Da) | 6.9 ± 0.5 | 8.7 ± 0.4 | 9.1 ± 0.4 | 7.8 ± 0.6 | 6.5 ± 0.6 | 5.2 ± 0.4 | 6.8 ± 0.4 |
β-Sitosterol + Lanosterol | 451.9 ± 13.9 | 464.8 ± 8.6 | 513.0 ± 22.1 | 314.1 ± 11.2 | 479.7 ± 11.8 | 309.8 ± 9.9 | 493.8 ± 10.5 |
Sitostanol | 76.9 ± 4.9 | 83.8 ± 8.1 | 140.0 ± 9.1 | 66.7 ± 5.5 | 83.2 ± 5.9 | 84.6 ± 7.0 | 92.5 ± 7.7 |
Cycloartenol | 43.5 ± 3.3 | 33.3 ± 0.9 | 108.3 ± 6.2 | 55.3 ± 4.8 | 54.4 ± 4.4 | 45.2 ± 2.7 | 77.3 ± 5.0 |
24-Methylene cycloartanol | 3.1 ± 0.2 | 2.3 ± 0.2 | 3.4 ± 0.1 | 5.2 ± 0.3 | 7.1 ± 0.4 | 4.5 ± 0.3 | 2.9 ± 0.2 |
Total | 678.0 ± 29.1 | 705.3 ± 22.7 | 918.2 ± 45.5 | 537.8 ± 27.7 | 757.1 ± 30.6 | 537.5 ± 26.6 | 796.0 ± 28.8 |
Sample № | Glycerol Components Content, % | Fatty Acids Components Content, % | ||||||
---|---|---|---|---|---|---|---|---|
TAG | DAG | MAG | Total | Saturated | Monoun- Saturated | Diun- Saturated | Total | |
1 | 99.2 ± 0.1 | 0.7 ± 0.1 | 0.1 ± 0.05 | 100.0 | 21.3 ± 0.2 | 74.1 ± 0.1 | 4.6 ± 0.1 | 100.0 |
2 | 99.4 ± 0.1 | 0.4 ± 0.1 | 0.2 ± 0.04 | 100.0 | 19.8 ± 0.1 | 76.6 ± 0.2 | 3.6 ± 0.2 | 100.0 |
3 | 98.7 ± 0.2 | 1.1 ± 0.1 | 0.2 ± 0.03 | 100.0 | 23.9 ± 0.1 | 72.3 ± 0.2 | 3.8 ± 0.1 | 100.0 |
4 | 99.2 ± 0.1 | 0.6 ± 0.1 | 0.2 ± 0.03 | 100.0 | 24.8 ± 0.1 | 70.9 ± 0.1 | 4.3 ± 0.1 | 100.0 |
5 | 98.9 ± 0.2 | 0.8 ± 0.1 | 0.3 ± 0.04 | 100.0 | 25.3 ± 0.2 | 67.7 ± 0.3 | 7.0 ± 0.2 | 100.0 |
6 | 99.0 ± 0.1 | 0.9 ± 0.1 | 0.1 ± 0.05 | 100.0 | 22.6 ± 0.1 | 71.1 ± 0.2 | 6.3 ± 0.2 | 100.0 |
7 | 98.9 ± 0.1 | 0.9 ± 0.1 | 0.2 ± 0.02 | 100.0 | 22.9 ± 0.1 | 72.3 ± 0.3 | 4.8 ± 0.2 | 100.0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Goriainov, S.; Orlova, S.; Nikitina, E.; Vandishev, V.; Ivlev, V.; Esparza, C.; Vasil’ev, V.; Platonov, E.; Sheremeta, A.; Kalabin, G. Study of the Chemical Composition of Carica papaya L. Seed Oils of Various Geographic Origins. Horticulturae 2023, 9, 1227. https://doi.org/10.3390/horticulturae9111227
Goriainov S, Orlova S, Nikitina E, Vandishev V, Ivlev V, Esparza C, Vasil’ev V, Platonov E, Sheremeta A, Kalabin G. Study of the Chemical Composition of Carica papaya L. Seed Oils of Various Geographic Origins. Horticulturae. 2023; 9(11):1227. https://doi.org/10.3390/horticulturae9111227
Chicago/Turabian StyleGoriainov, Sergey, Svetlana Orlova, Elena Nikitina, Viktor Vandishev, Vasiliy Ivlev, Cesar Esparza, Vasiliy Vasil’ev, Evgeniy Platonov, Anzhelika Sheremeta, and Gennadiy Kalabin. 2023. "Study of the Chemical Composition of Carica papaya L. Seed Oils of Various Geographic Origins" Horticulturae 9, no. 11: 1227. https://doi.org/10.3390/horticulturae9111227
APA StyleGoriainov, S., Orlova, S., Nikitina, E., Vandishev, V., Ivlev, V., Esparza, C., Vasil’ev, V., Platonov, E., Sheremeta, A., & Kalabin, G. (2023). Study of the Chemical Composition of Carica papaya L. Seed Oils of Various Geographic Origins. Horticulturae, 9(11), 1227. https://doi.org/10.3390/horticulturae9111227