Novel Insights into Phytoplasma Effectors
Abstract
:1. Introduction
2. Materials and Methods
2.1. Protein Dataset
2.2. In Silico Characterization of Phytoplasma Effectors
2.3. Gene Ontology Distribution and Functional Annotation
2.4. Classification of Effectors in Tribes Based on Motifs
2.5. Search for Short Linear Motifs in True Phytoplasma Effectors
3. Results
3.1. Protein Databases
3.2. Characterization of Phytoplasma Effectors
3.3. Functional Categories of the Phytoplasma Effectors
3.4. Functional Domains in Phytoplasma Effectors
3.5. Identification of Effector Tribes in Phytoplasmas: Classification by Protein Motifs
3.6. Short Linear Motifs in Phytoplasma Effectors
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bertaccini, A. Phytoplasmas: Diversity, Taxonomy, and Epidemiology. Front. Biosci. 2007, 12, 673. [Google Scholar] [CrossRef] [PubMed]
- Hogenhout, S.A.; Oshima, K.; Ammar, E.; Kakizawa, S.; Kingdom, H.N.; Namba, S. Phytoplasmas: Bacteria That Manipulate Plants and Insects. Mol. Plant Pathol. 2008, 9, 403–423. [Google Scholar] [CrossRef] [PubMed]
- Oshima, K.; Maejima, K.; Namba, S. Genomic and Evolutionary Aspects of Phytoplasmas. Front. Microbiol. 2013, 4, 230. [Google Scholar] [CrossRef] [PubMed]
- Kirdat, K.; Tiwarekar, B.; Sathe, S.; Yadav, A. From Sequences to Species: Charting the Phytoplasma Classification and Taxonomy in the Era of Taxogenomics. Front. Microbiol. 2023, 14, 1123783. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.-Y.; Zhang, R.-Y.; Li, J.; Li, Y.-H.; Shan, H.-L.; Li, W.-F.; Huang, Y.-K. The Diversity, Distribution and Status of Phytoplasma Diseases in China. Front. Sustain. Food Syst. 2022, 6, 943080. [Google Scholar] [CrossRef]
- Sugio, A.; MacLean, A.M.; Kingdom, H.N.; Grieve, V.M.; Manimekalai, R.; Hogenhout, S.A. Diverse Targets of Phytoplasma Effectors: From Plant Development to Defense Against Insects. Annu. Rev. Phytopathol. 2011, 49, 175–195. [Google Scholar] [CrossRef] [PubMed]
- Rashid, U.; Bilal, S.; Bhat, K.A.; Shah, T.A.; Wani, T.A.; Bhat, F.A.; Mughal, M.N.; Nazir, N. Phytoplasma Effectors and Their Role in Plant-Insect Interaction. Int. J. Curr. Microbiol. Appl. Sci. 2018, 7, 1136–1148. [Google Scholar] [CrossRef]
- Bertaccini, A. Plants and Phytoplasmas: When Bacteria Modify Plants. Plants 2022, 11, 1425. [Google Scholar] [CrossRef]
- Hemmati, C.; Nikooei, M.; Al-Subhi, A.M.; Al-Sadi, A.M. History and Current Status of Phytoplasma Diseases in the Middle East. Biology 2021, 10, 226. [Google Scholar] [CrossRef]
- Oliveira, M.J.R.A.; Roriz, M.; Vasconcelos, M.W.; Bertaccini, A.; Carvalho, S.M.P. Conventional and Novel Approaches for Managing “Flavescence Dorée” in Grapevine: Knowledge Gaps and Future Prospects. Plant Pathol. 2019, 68, 3–17. [Google Scholar] [CrossRef]
- Tzec-Simá, M.; Félix, J.W.; Granados-Alegría, M.; Aparicio Ortiz, M.; Juárez-Monroy, D.; Mayo-Ruiz, D.; Vivas-López, S.; Gómez-Tah, R.; Canto-Canché, B.; Berezovski, M.V. Potential of Omics to Control Diseases and Pests in the Coconut Tree. Agronomy 2022, 12, 3164. [Google Scholar] [CrossRef]
- Galetto, L.; Abbà, S.; Rossi, M.; Ripamonti, M.; Palmano, S.; Bosco, D.; Marzachì, C. Silencing of ATP Synthase β Reduces Phytoplasma Multiplication in a Leafhopper Vector. J. Insect Physiol. 2021, 128, 104176. [Google Scholar] [CrossRef] [PubMed]
- Tomkins, M.; Kliot, A.; Marée, A.F.; Hogenhout, S.A. A Multi-Layered Mechanistic Modelling Approach to Understand How Effector Genes Extend beyond Phytoplasma to Modulate Plant Hosts, Insect Vectors and the Environment. Curr. Opin. Plant Biol. 2018, 44, 39–48. [Google Scholar] [CrossRef] [PubMed]
- Cadiou, L.; Brunisholz, F.; Cesari, S.; Kroj, T. Molecular Engineering of Plant Immune Receptors for Tailored Crop Disease Resistance. Curr. Opin. Plant Biol. 2023, 74, 102381. [Google Scholar] [CrossRef] [PubMed]
- Zdrzałek, R.; Stone, C.; De La Concepcion, J.C.; Banfield, M.J.; Bentham, A.R. Pathways to Engineering Plant Intracellular NLR Immune Receptors. Curr. Opin. Plant Biol. 2023, 74, 102380. [Google Scholar] [CrossRef] [PubMed]
- Huang, W.; MacLean, A.M.; Sugio, A.; Maqbool, A.; Busscher, M.; Cho, S.-T.; Kamoun, S.; Kuo, C.-H.; Immink, R.G.H.; Hogenhout, S.A. Parasitic Modulation of Host Development by Ubiquitin-Independent Protein Degradation. Cell 2021, 184, 5201–5214.e12. [Google Scholar] [CrossRef] [PubMed]
- Sugio, A.; MacLean, A.M.; Hogenhout, S.A. The Small Phytoplasma Virulence Effector SAP 11 Contains Distinct Domains Required for Nuclear Targeting and CIN—TCP Binding and Destabilization. New Phytol. 2014, 202, 838–848. [Google Scholar] [CrossRef]
- MacLean, A.M.; Orlovskis, Z.; Kowitwanich, K.; Zdziarska, A.M.; Angenent, G.C.; Immink, R.G.H.; Hogenhout, S.A. Phytoplasma Effector SAP54 Hijacks Plant Reproduction by Degrading MADS-Box Proteins and Promotes Insect Colonization in a RAD23-Dependent Manner. PLoS Biol. 2014, 12, e1001835. [Google Scholar] [CrossRef]
- Sugawara, K.; Honma, Y.; Komatsu, K.; Himeno, M.; Oshima, K.; Namba, S. The Alteration of Plant Morphology by Small Peptides Released from the Proteolytic Processing of the Bacterial Peptide TENGU. Plant Physiol. 2013, 162, 2005–2014. [Google Scholar] [CrossRef]
- Hoshi, A.; Oshima, K.; Kakizawa, S.; Ishii, Y.; Ozeki, J.; Hashimoto, M.; Komatsu, K.; Kagiwada, S.; Yamaji, Y.; Namba, S. A Unique Virulence Factor for Proliferation and Dwarfism in Plants Identified from a Phytopathogenic Bacterium. Proc. Natl. Acad. Sci. USA 2009, 106, 6416–6421. [Google Scholar] [CrossRef]
- Wang, N.; Yang, H.; Yin, Z.; Liu, W.; Sun, L.; Wu, Y. Phytoplasma Effector SWP1 Induces Witches’ Broom Symptom by Destabilizing the TCP Transcription Factor BRANCHED1: Phytoplasma Effector SWP1 Destabilizes BRC1. Mol. Plant Pathol. 2018, 19, 2623–2634. [Google Scholar] [CrossRef] [PubMed]
- Chen, P.; Chen, L.; Ye, X.; Tan, B.; Zheng, X.; Cheng, J.; Wang, W.; Yang, Q.; Zhang, Y.; Li, J.; et al. Phytoplasma Effector Zaofeng6 Induces Shoot Proliferation by Decreasing the Expression of ZjTCP7 in Ziziphus Jujuba. Hortic. Res. 2022, 9, uhab032. [Google Scholar] [CrossRef] [PubMed]
- Kakizawa, S.; Oshima, K.; Ishii, Y.; Hoshi, A.; Maejima, K.; Jung, H.-Y.; Yamaji, Y.; Namba, S. Cloning of Immunodominant Membrane Protein Genes of Phytoplasmas and Their in Planta Expression. FEMS Microbiol. Lett. 2009, 293, 92–101. [Google Scholar] [CrossRef] [PubMed]
- Boonrod, K.; Munteanu, B.; Jarausch, B.; Jarausch, W.; Krczal, G. An Immunodominant Membrane Protein (Imp) of ‘ Candidatus Phytoplasma Mali’ Binds to Plant Actin. Mol. Plant-Microbe Interact. 2012, 25, 889–895. [Google Scholar] [CrossRef] [PubMed]
- Arricau-Bouvery, N.; Duret, S.; Dubrana, M.-P.; Desqué, D.; Eveillard, S.; Brocard, L.; Malembic-Maher, S.; Foissac, X. Interactions between the Flavescence Dorée Phytoplasma and Its Insect Vector Indicate Lectin-Type Adhesion Mediated by the Adhesin VmpA. Sci. Rep. 2021, 11, 11222. [Google Scholar] [CrossRef]
- Wang, Z.; Yang, X.; Zhou, S.; Zhang, X.; Zhu, Y.; Chen, B.; Huang, X.; Yang, X.; Zhou, G.; Zhang, T. The Antigenic Membrane Protein (Amp) of Rice Orange Leaf Phytoplasma Suppresses Host Defenses and Is Involved in Pathogenicity. Int. J. Mol. Sci. 2023, 24, 4494. [Google Scholar] [CrossRef]
- Music, M.S.; Samarzija, I.; Hogenhout, S.A.; Haryono, M.; Cho, S.-T.; Kuo, C.-H. The Genome of ‘Candidatus Phytoplasma Solani’ Strain SA-1 Is Highly Dynamic and Prone to Adopting Foreign Sequences. Syst. Appl. Microbiol. 2019, 42, 117–127. [Google Scholar] [CrossRef]
- Debonneville, C.; Mandelli, L.; Brodard, J.; Groux, R.; Roquis, D.; Schumpp, O. The Complete Genome of the “Flavescence Dorée” Phytoplasma Reveals Characteristics of Low Genome Plasticity. Biology 2022, 11, 953. [Google Scholar] [CrossRef]
- Wagner, N.; Teper, D.; Pupko, T. Predicting Type III Effector Proteins Using the Effectidor Web Server. In Bacterial Virulence; Gal-Mor, O., Ed.; Methods in Molecular Biology; Springer: New York, NY, USA, 2022; Volume 2427, pp. 25–36. ISBN 978-1-07-161970-4. [Google Scholar]
- Noroy, C.; Lefrançois, T.; Meyer, D.F. Searching Algorithm for Type IV Effector Proteins (S4TE) 2.0: Improved Tools for Type IV Effector Prediction, Analysis and Comparison in Proteobacteria. PLoS Comput. Biol. 2019, 15, e1006847. [Google Scholar] [CrossRef]
- Sperschneider, J.; Dodds, P.N.; Gardiner, D.M.; Singh, K.B.; Taylor, J.M. Improved Prediction of Fungal Effector Proteins from Secretomes with EffectorP 2.0. Mol. Plant Pathol. 2018, 19, 2094–2110. [Google Scholar] [CrossRef]
- Carreón-Anguiano, K.G.; Islas-Flores, I.; Vega-Arreguín, J.; Sáenz-Carbonell, L.; Canto-Canché, B. EffHunter: A Tool for Prediction of Effector Protein Candidates in Fungal Proteomic Databases. Biomolecules 2020, 10, 712. [Google Scholar] [CrossRef] [PubMed]
- Wilson, R.A.; McDowell, J.M. Recent Advances in Understanding of Fungal and Oomycete Effectors. Curr. Opin. Plant Biol. 2022, 68, 102228. [Google Scholar] [CrossRef] [PubMed]
- Bai, X.; Correa, V.R.; Toruño, T.Y.; Ammar, E.-D.; Kamoun, S.; Hogenhout, S.A. AY-WB Phytoplasma Secretes a Protein That Targets Plant Cell Nuclei. Mol. Plant-Microbe Interact. 2009, 22, 18–30. [Google Scholar] [CrossRef] [PubMed]
- Tan, C.M.; Lin, Y.-C.; Li, J.-R.; Chien, Y.-Y.; Wang, C.-J.; Chou, L.; Wang, C.-W.; Chiu, Y.-C.; Kuo, C.-H.; Yang, J.-Y. Accelerating Complete Phytoplasma Genome Assembly by Immunoprecipitation-Based Enrichment and MinION-Based DNA Sequencing for Comparative Analyses. Front. Microbiol. 2021, 12, 766221. [Google Scholar] [CrossRef] [PubMed]
- Gao, X.; Ren, Z.; Zhao, W.; Li, W. Candidatus Phytoplasma ziziphi Encodes Non-Classically Secreted Proteins That Suppress Hypersensitive Cell Death Response in Nicotiana Benthamiana. Phytopathol. Res. 2023, 5, 11. [Google Scholar] [CrossRef]
- Stern, D.L.; Han, C. Gene Structure-Based Homology Search Identifies Highly Divergent Putative Effector Gene Family. Genome Biol. Evol. 2022, 14, evac069. [Google Scholar] [CrossRef]
- Jones, D.A.B.; Moolhuijzen, P.M.; Hane, J.K. Remote Homology Clustering Identifies Lowly Conserved Families of Effector Proteins in Plant-Pathogenic Fungi. Microb. Genom. 2021, 7, 000637. [Google Scholar] [CrossRef]
- Dean, P. Functional Domains and Motifs of Bacterial Type III Effector Proteins and Their Roles in Infection. FEMS Microbiol. Rev. 2011, 35, 1100–1125. [Google Scholar] [CrossRef]
- Seong, K.; Krasileva, K.V. Computational Structural Genomics Unravels Common Folds and Novel Families in the Secretome of Fungal Phytopathogen Magnaporthe Oryzae. Mol. Plant-Microbe Interact. 2021, 34, 1267–1280. [Google Scholar] [CrossRef]
- Rocafort, M.; Bowen, J.K.; Hassing, B.; Cox, M.P.; McGreal, B.; De La Rosa, S.; Plummer, K.M.; Bradshaw, R.E.; Mesarich, C.H. The Venturia Inaequalis Effector Repertoire Is Dominated by Expanded Families with Predicted Structural Similarity, but Unrelated Sequence, to Avirulence Proteins from Other Plant-Pathogenic Fungi. BMC Biol. 2022, 20, 246. [Google Scholar] [CrossRef]
- Jiang, R.H.Y.; Tripathy, S.; Govers, F.; Tyler, B.M. RXLR Effector Reservoir in Two Phytophthora Species Is Dominated by a Single Rapidly Evolving Superfamily with More than 700 Members. Proc. Natl. Acad. Sci. USA 2008, 105, 4874–4879. [Google Scholar] [CrossRef] [PubMed]
- Solé, M.; Popa, C.; Mith, O.; Sohn, K.H.; Jones, J.D.G.; Deslandes, L.; Valls, M. The Awr Gene Family Encodes a Novel Class of Ralstonia Solanacearum Type III Effectors Displaying Virulence and Avirulence Activities. Mol. Plant-Microbe Interact. 2012, 25, 941–953. [Google Scholar] [CrossRef]
- Liu, L.; Xu, L.; Jia, Q.; Pan, R.; Oelmüller, R.; Zhang, W.; Wu, C. Arms Race: Diverse Effector Proteins with Conserved Motifs. Plant Signal. Behav. 2019, 14, 1557008. [Google Scholar] [CrossRef] [PubMed]
- Chang, S.H.; Tan, C.M.; Wu, C.-T.; Lin, T.-H.; Jiang, S.-Y.; Liu, R.-C.; Tsai, M.-C.; Su, L.-W.; Yang, J.-Y. Alterations of Plant Architecture and Phase Transition by the Phytoplasma Virulence Factor SAP11. J. Exp. Bot. 2018, 69, 5389–5401. [Google Scholar] [CrossRef] [PubMed]
- Cho, S.-T.; Kung, H.-J.; Huang, W.; Hogenhout, S.A.; Kuo, C.-H. Species Boundaries and Molecular Markers for the Classification of 16SrI Phytoplasmas Inferred by Genome Analysis. Front. Microbiol. 2020, 11, 1531. [Google Scholar] [CrossRef]
- Maejima, K.; Iwai, R.; Himeno, M.; Komatsu, K.; Kitazawa, Y.; Fujita, N.; Ishikawa, K.; Fukuoka, M.; Minato, N.; Yamaji, Y.; et al. Recognition of Floral Homeotic MADS Domain Transcription Factors by a Phytoplasmal Effector, Phyllogen, Induces Phyllody. Plant J. 2014, 78, 541–554. [Google Scholar] [CrossRef] [PubMed]
- Wang, N.; Li, Y.; Chen, W.; Yang, H.Z.; Zhang, P.H.; Wu, Y.F. Identification of Wheat Blue Dwarf Phytoplasma Effectors Targeting Plant Proliferation and Defence Responses. Plant Pathol. 2017, 67, 603–609. [Google Scholar] [CrossRef]
- Lipsitch, M.; Siller, S.; Nowak, M.A. The evolution of virulence in pathogens with vertical and horizontal transmission. Evolution 1996, 50, 1729–1741. [Google Scholar] [CrossRef]
- Russell, S.L. Transmission Mode Is Associated with Environment Type and Taxa across Bacteria-Eukaryote Symbioses: A Systematic Review and Meta-Analysis. FEMS Microbiol. Lett. 2019, 366, fnz013. [Google Scholar] [CrossRef]
- Kumar, M.; Michael, S.; Alvarado-Valverde, J.; Mészáros, B.; Sámano-Sánchez, H.; Zeke, A.; Dobson, L.; Lazar, T.; Örd, M.; Nagpal, A.; et al. The Eukaryotic Linear Motif Resource: 2022 Release. Nucleic Acids Res. 2022, 50, D497–D508. [Google Scholar] [CrossRef]
- Petersen, T.N.; Brunak, S.; von Heijne, G.; Nielsen, H. SignalP 4.0: Discriminating Signal Peptides from Transmembrane Regions. Nat. Methods 2011, 8, 785–786. [Google Scholar] [CrossRef] [PubMed]
- Krogh, A.; Larsson, B.; von Heijne, G.; Sonnhammer, E.L.L. Predicting Transmembrane Protein Topology with a Hidden Markov Model: Application to Complete genomes11Edited by F. Cohen. J. Mol. Biol. 2001, 305, 567–580. [Google Scholar] [CrossRef] [PubMed]
- Nguyen Ba, A.N.; Pogoutse, A.; Provart, N.; Moses, A.M. NLStradamus: A Simple Hidden Markov Model for Nuclear Localization Signal Prediction. BMC Bioinform. 2009, 10, 202. [Google Scholar] [CrossRef] [PubMed]
- Ashburner, M.; Ball, C.A.; Blake, J.A.; Botstein, D.; Butler, H.; Cherry, J.M.; Davis, A.P.; Dolinski, K.; Dwight, S.S.; Eppig, J.T.; et al. Gene Ontology: Tool for the Unification of Biology. Nat. Genet. 2000, 25, 25–29. [Google Scholar] [CrossRef]
- Carbon, S.; Douglass, E.; Good, B.M.; Unni, D.R.; Harris, N.L.; Mungall, C.J.; Basu, S.; Chisholm, R.L.; Dodson, R.J.; Hartline, E.; et al. The Gene Ontology Resource: Enriching a GOld Mine. Nucleic Acids Res. 2021, 49, D325–D334. [Google Scholar] [CrossRef]
- Paysan-Lafosse, T.; Blum, M.; Chuguransky, S.; Grego, T.; Pinto, B.L.; Salazar, G.A.; Bileschi, M.L.; Bork, P.; Bridge, A.; Colwell, L.; et al. InterPro in 2022. Nucleic Acids Res. 2023, 51, D418–D427. [Google Scholar] [CrossRef]
- Ye, J.; Fang, L.; Zheng, H.; Zhang, Y.; Chen, J.; Zhang, Z.; Wang, J.; Li, S.; Li, R.; Bolund, L.; et al. WEGO: A Web Tool for Plotting GO Annotations. Nucleic Acids Res. 2006, 34, W293–W297. [Google Scholar] [CrossRef]
- Mistry, J.; Chuguransky, S.; Williams, L.; Qureshi, M.; Salazar, G.A.; Sonnhammer, E.L.L.; Tosatto, S.C.E.; Paladin, L.; Raj, S.; Richardson, L.J.; et al. Pfam: The Protein Families Database in 2021. Nucleic Acids Res. 2021, 49, D412–D419. [Google Scholar] [CrossRef]
- Blum, M.; Chang, H.-Y.; Chuguransky, S.; Grego, T.; Kandasaamy, S.; Mitchell, A.; Nuka, G.; Paysan-Lafosse, T.; Qureshi, M.; Raj, S.; et al. The InterPro Protein Families and Domains Database: 20 Years On. Nucleic Acids Res. 2021, 49, D344–D354. [Google Scholar] [CrossRef]
- Bailey, T.L.; Johnson, J.; Grant, C.E.; Noble, W.S. The MEME Suite. Nucleic Acids Res. 2015, 43, W39–W49. [Google Scholar] [CrossRef]
- Kumar, M.; Gouw, M.; Michael, S.; Sámano-Sánchez, H.; Pancsa, R.; Glavina, J.; Diakogianni, A.; Valverde, J.A.; Bukirova, D.; Čalyševa, J.; et al. ELM—The Eukaryotic Linear Motif Resource in 2020. Nucleic Acids Res. 2020, 48, D296–D306. [Google Scholar] [CrossRef] [PubMed]
- Zhu, W.; Wei, W.; Wu, Y.; Zhou, Y.; Peng, F.; Zhang, S.; Chen, P.; Xu, X. BcCFEM1, a CFEM Domain-Containing Protein with Putative GPI-Anchored Site, Is Involved in Pathogenicity, Conidial Production, and Stress Tolerance in Botrytis Cinerea. Front. Microbiol. 2017, 8, 1807. [Google Scholar] [CrossRef] [PubMed]
- Wood, K.J.; Nur, M.; Gil, J.; Fletcher, K.; Lakeman, K.; Gann, D.; Gothberg, A.; Khuu, T.; Kopetzky, J.; Naqvi, S.; et al. Effector Prediction and Characterization in the Oomycete Pathogen Bremia Lactucae Reveal Host-Recognized WY Domain Proteins That Lack the Canonical RXLR Motif. PLoS Pathog. 2020, 16, e1009012. [Google Scholar] [CrossRef] [PubMed]
- Qian, Y.; Zheng, X.; Wang, X.; Yang, J.; Zheng, X.; Zeng, Q.; Li, J.; Zhuge, Q.; Xiong, Q. Systematic Identification and Functional Characterization of the CFEM Proteins in Poplar Fungus Marssonina Brunnea. Front. Cell. Infect. Microbiol. 2022, 12, 1045615. [Google Scholar] [CrossRef] [PubMed]
- Van Roey, K.; Uyar, B.; Weatheritt, R.J.; Dinkel, H.; Seiler, M.; Budd, A.; Gibson, T.J.; Davey, N.E. Short Linear Motifs: Ubiquitous and Functionally Diverse Protein Interaction Modules Directing Cell Regulation. Chem. Rev. 2014, 114, 6733–6778. [Google Scholar] [CrossRef] [PubMed]
- Davey, N.E.; Travé, G.; Gibson, T.J. How Viruses Hijack Cell Regulation. Trends Biochem. Sci. 2011, 36, 159–169. [Google Scholar] [CrossRef] [PubMed]
- Sámano-Sánchez, H.; Gibson, T.J. Mimicry of Short Linear Motifs by Bacterial Pathogens: A Drugging Opportunity. Trends Biochem. Sci. 2020, 45, 526–544. [Google Scholar] [CrossRef] [PubMed]
- Wadie, B.; Kleshchevnikov, V.; Sandaltzopoulou, E.; Benz, C.; Petsalaki, E. Use of Viral Motif Mimicry Improves the Proteome-Wide Discovery of Human Linear Motifs. Cell Rep. 2022, 39, 110764. [Google Scholar] [CrossRef]
- Ponting, C.P. Evidence for PDZ Domains in Bacteria, Yeast, and Plants: Novel PDZ Domains. Protein Sci. 1997, 6, 464–468. [Google Scholar] [CrossRef]
- Fanning, A.S.; Anderson, J.M. PDZ Domains: Fundamental Building Blocks in the Organization of Protein Complexes at the Plasma Membrane. J. Clin. Investig. 1999, 103, 767–772. [Google Scholar] [CrossRef]
- Christensen, N.R.; Čalyševa, J.; Fernandes, E.F.A.; Lüchow, S.; Clemmensen, L.S.; Haugaard-Kedström, L.M.; Strømgaard, K. PDZ Domains as Drug Targets. Adv. Ther. 2019, 2, 1800143. [Google Scholar] [CrossRef] [PubMed]
- Bai, B.; Zhang, G.; Pei, B.; Song, Q.; Hao, X.; Zhao, L.; Wu, Y. The Function of the Phytoplasma Effector SWP12 Depends on the Properties of Two Key Amino Acids. J. Biol. Chem. 2023, 299, 103052. [Google Scholar] [CrossRef] [PubMed]
- Strohmayer, A.; Schwarz, T.; Braun, M.; Krczal, G.; Boonrod, K. The Effect of the Anticipated Nuclear Localization Sequence of ‘Candidatus Phytoplasma Mali’ SAP11-like Protein on Localization of the Protein and Destabilization of TCP Transcription Factor. Microorganisms 2021, 9, 1756. [Google Scholar] [CrossRef] [PubMed]
- Cheng, H.-C.; Skehan, B.M.; Campellone, K.G.; Leong, J.M.; Rosen, M.K. Structural Mechanism of WASP Activation by the Enterohaemorrhagic E. Coli Effector EspFU. Nature 2008, 454, 1009–1013. [Google Scholar] [CrossRef]
- Mészáros, B.; Sámano-Sánchez, H.; Alvarado-Valverde, J.; Čalyševa, J.; Martínez-Pérez, E.; Alves, R.; Shields, D.C.; Kumar, M.; Rippmann, F.; Chemes, L.B.; et al. Short Linear Motif Candidates in the Cell Entry System Used by SARS-CoV-2 and Their Potential Therapeutic Implications. Sci. Signal. 2021, 14, eabd0334. [Google Scholar] [CrossRef] [PubMed]
- Choe, J.E.; Welch, M.D. Actin-Based Motility of Bacterial Pathogens: Mechanistic Diversity and Its Impact on Virulence. Pathog. Dis. 2016, 74, ftw099. [Google Scholar] [CrossRef] [PubMed]
- Guiney, D.G.; Lesnick, M. Targeting of the Actin Cytoskeleton during Infection by Salmonella Strains. Clin. Immunol. 2005, 114, 248–255. [Google Scholar] [CrossRef] [PubMed]
- Upadhyay, S.; Shaw, B.D. The Role of Actin, Fimbrin and Endocytosis in Growth of Hyphae in Aspergillus Nidulans. Mol. Microbiol. 2008, 68, 690–705. [Google Scholar] [CrossRef]
- Wang, J.; Lian, N.; Zhang, Y.; Man, Y.; Chen, L.; Yang, H.; Lin, J.; Jing, Y. The Cytoskeleton in Plant Immunity: Dynamics, Regulation, and Function. Int. J. Mol. Sci. 2022, 23, 15553. [Google Scholar] [CrossRef]
- Alnomasy, S.F. Virus-Receptor Interactions of SARS-CoV-2 Spikereceptor-Binding Domain and Human Neuropilin-1 B1 Domain. Saudi J. Biol. Sci. 2021, 28, 3926–3928. [Google Scholar] [CrossRef]
- Sampietro, D.; Sámano-Sánchez, H.; Davey, N.E.; Sharan, M.; Mészáros, B.; Gibson, T.J.; Kumar, M. Conserved SQ and QS Motifs in Bacterial Effectors Suggest Pathogen Interplay with the ATM Kinase Family during Infection. bioRxiv 2018, 364117. [Google Scholar] [CrossRef]
- Örd, M.; Venta, R.; Möll, K.; Valk, E.; Loog, M. Cyclin-Specific Docking Mechanisms Reveal the Complexity of M-CDK Function in the Cell Cycle. Mol. Cell 2019, 75, 76–89.e3. [Google Scholar] [CrossRef]
- Weerasekera, D.; Stengel, F.; Sticht, H.; De Mattos Guaraldi, A.L.; Burkovski, A.; Azevedo Antunes, C. The C-Terminal Coiled-Coil Domain of Corynebacterium Diphtheriae DIP0733 Is Crucial for Interaction with Epithelial Cells and Pathogenicity in Invertebrate Animal Model Systems. BMC Microbiol. 2018, 18, 106. [Google Scholar] [CrossRef] [PubMed]
- Bar Barroeta, A.; Marquart, J.A.; Bakhtiari, K.; Meijer, A.B.; Urbanus, R.T.; Meijers, J.C.M. Nanobodies against Factor XI Apple 3 Domain Inhibit Binding of Factor IX and Reveal a Novel Binding Site for High Molecular Weight Kininogen. J. Thromb. Haemost. 2022, 20, 2538–2549. [Google Scholar] [CrossRef] [PubMed]
- Li, C.; Barroeta, A.B.; Wong, S.S.; Kim, H.J.; Pathak, M.; Dreveny, I.; Meijers, J.C.M.; Emsley, J. Structures of Factor XI and Prekallikrein Bound to Domain 6 of High–Molecular Weight Kininogen Reveal Alternate Domain 6 Conformations and Exosites. J. Thromb. Haemost. 2023, 21, 2378–2389. [Google Scholar] [CrossRef]
- Balakireva, A.; Zamyatnin, A. Indispensable Role of Proteases in Plant Innate Immunity. Int. J. Mol. Sci. 2018, 19, 629. [Google Scholar] [CrossRef]
- Ekchaweng, K.; Evangelisti, E.; Schornack, S.; Tian, M.; Churngchow, N. The Plant Defense and Pathogen Counterdefense Mediated by Hevea Brasiliensis Serine Protease HbSPA and Phytophthora Palmivora Extracellular Protease Inhibitor PpEPI10. PLoS ONE 2017, 12, e0175795. [Google Scholar] [CrossRef]
- Bender, K.W.; Zipfel, C. Paradigms of Receptor Kinase Signaling in Plants. Biochem. J. 2023, 480, 835–854. [Google Scholar] [CrossRef]
- Cock, J.M.; Vanoosthuyse, V.; Gaude, T. Receptor Kinase Signalling in Plants and Animals: Distinct Molecular Systems with Mechanistic Similarities. Curr. Opin. Cell Biol. 2002, 14, 230–236. [Google Scholar] [CrossRef]
- Luan, S. Tyrosine Phosphorylation in Plant Cell Signaling. Proc. Natl. Acad. Sci. USA 2002, 99, 11567–11569. [Google Scholar] [CrossRef]
- Shiu, S.-H.; Bleecker, A.B. Receptor-like Kinases from Arabidopsis Form a Monophyletic Gene Family Related to Animal Receptor Kinases. Proc. Natl. Acad. Sci. USA 2001, 98, 10763–10768. [Google Scholar] [CrossRef] [PubMed]
- Nair, S.; Manimekalai, R. Phytoplasma Diseases of Plants: Molecular Diagnostics and Way Forward. World J. Microbiol. Biotechnol. 2021, 37, 102. [Google Scholar] [CrossRef] [PubMed]
- Bertaccini, A. Containment of Phytoplasma-Associated Plant Diseases by Antibiotics and Other Antimicrobial Molecules. Antibiotics 2021, 10, 1398. [Google Scholar] [CrossRef] [PubMed]
- Domazakis, E.; Lin, X.; Aguilera-Galvez, C.; Wouters, D.; Bijsterbosch, G.; Wolters, P.J.; Vleeshouwers, V.G.A.A. Effectoromics-Based Identification of Cell Surface Receptors in Potato. In Plant Pattern Recognition Receptors; Shan, L., He, P., Eds.; Methods in Molecular Biology; Springer: New York, NY, USA, 2017; Volume 1578, pp. 337–353. ISBN 978-1-4939-6858-9. [Google Scholar]
- Vleeshouwers, V.G.A.A.; Rietman, H.; Krenek, P.; Champouret, N.; Young, C.; Oh, S.-K.; Wang, M.; Bouwmeester, K.; Vosman, B.; Visser, R.G.F.; et al. Effector Genomics Accelerates Discovery and Functional Profiling of Potato Disease Resistance and Phytophthora Infestans Avirulence Genes. PLoS ONE 2008, 3, e2875. [Google Scholar] [CrossRef] [PubMed]
- Cesari, S.; Xi, Y.; Declerck, N.; Chalvon, V.; Mammri, L.; Pugnière, M.; Henriquet, C.; De Guillen, K.; Chochois, V.; Padilla, A.; et al. New Recognition Specificity in a Plant Immune Receptor by Molecular Engineering of Its Integrated Domain. Nat. Commun. 2022, 13, 1524. [Google Scholar] [CrossRef]
- Maidment, J.H.; Shimizu, M.; Bentham, A.R.; Vera, S.; Franceschetti, M.; Longya, A.; Stevenson, C.E.; De La Concepcion, J.C.; Białas, A.; Kamoun, S.; et al. Effector Target-Guided Engineering of an Integrated Domain Expands the Disease Resistance Profile of a Rice NLR Immune Receptor. eLife 2023, 12, e81123. [Google Scholar] [CrossRef]
- Carreón-Anguiano, K.G.; Todd, J.N.A.; Chi-Manzanero, B.H.; Couoh-Dzul, O.J.; Islas-Flores, I.; Canto-Canché, B. WideEffHunter: An Algorithm to Predict Canonical and Non-Canonical Effectors in Fungi and Oomycetes. Int. J. Mol. Sci. 2022, 23, 13567. [Google Scholar] [CrossRef]
- Rashidi, M.; Galetto, L.; Bosco, D.; Bulgarelli, A.; Vallino, M.; Veratti, F.; Marzachì, C. Role of the Major Antigenic Membrane Protein in Phytoplasma Transmission by Two Insect Vector Species. BMC Microbiol. 2015, 15, 193. [Google Scholar] [CrossRef]
- Mak, H.; Thurston, T.L.M. Interesting Biochemistries in the Structure and Function of Bacterial Effectors. Front. Cell. Infect. Microbiol. 2021, 11, 608860. [Google Scholar] [CrossRef]
- Rozano, L.; Jones, D.A.B.; Hane, J.K.; Mancera, R.L. Template-Based Modelling of the Structure of Fungal Effector Proteins. Mol. Biotechnol. 2023, 1–30. [Google Scholar] [CrossRef]
- Jomantiene, R.; Zhao, Y.; Davis, R.E. Sequence-Variable Mosaics: Composites of Recurrent Transposition Characterizing the Genomes of Phylogenetically Diverse Phytoplasmas. DNA Cell Biol. 2007, 26, 557–564. [Google Scholar] [CrossRef] [PubMed]
- Wei, W.; Davis, R.E.; Jomantiene, R.; Zhao, Y. Ancient, Recurrent Phage Attacks and Recombination Shaped Dynamic Sequence-Variable Mosaics at the Root of Phytoplasma Genome Evolution. Proc. Natl. Acad. Sci. USA 2008, 105, 11827–11832. [Google Scholar] [CrossRef] [PubMed]
- He, Q.; McLellan, H.; Boevink, P.C.; Birch, P.R.J. All Roads Lead to Susceptibility: The Many Modes of Action of Fungal and Oomycete Intracellular Effectors. Plant Commun. 2020, 1, 100050. [Google Scholar] [CrossRef]
- Lorrain, C.; Hecker, A.; Duplessis, S. Effector-Mining in the Poplar Rust Fungus Melampsora Larici-Populina Secretome. Front. Plant Sci. 2015, 6, 1051. [Google Scholar] [CrossRef] [PubMed]
- Saunders, D.G.O.; Win, J.; Cano, L.M.; Szabo, L.J.; Kamoun, S.; Raffaele, S. Using Hierarchical Clustering of Secreted Protein Families to Classify and Rank Candidate Effectors of Rust Fungi. PLoS ONE 2012, 7, e29847. [Google Scholar] [CrossRef]
- Espadaler, J.; Querol, E.; Aviles, F.X.; Oliva, B. Identification of Function-Associated Loop Motifs and Application to Protein Function Prediction. Bioinformatics 2006, 22, 2237–2243. [Google Scholar] [CrossRef]
- Polacco, B.J.; Babbitt, P.C. Automated Discovery of 3D Motifs for Protein Function Annotation. Bioinformatics 2006, 22, 723–730. [Google Scholar] [CrossRef]
- Fouché, S.; Plissonneau, C.; Croll, D. The Birth and Death of Effectors in Rapidly Evolving Filamentous Pathogen Genomes. Curr. Opin. Microbiol. 2018, 46, 34–42. [Google Scholar] [CrossRef]
- Latorre, S.M.; Reyes-Avila, C.S.; Malmgren, A.; Win, J.; Kamoun, S.; Burbano, H.A. Differential Loss of Effector Genes in Three Recently Expanded Pandemic Clonal Lineages of the Rice Blast Fungus. BMC Biol. 2020, 18, 88. [Google Scholar] [CrossRef]
- Huang, J.; Gogarten, J. Ancient Horizontal Gene Transfer Can Benefit Phylogenetic Reconstruction. Trends Genet. 2006, 22, 361–366. [Google Scholar] [CrossRef]
- Omelchenko, M.V.; Makarova, K.S.; Wolf, Y.I.; Rogozin, I.B.; Koonin, E.V. Evolution of Mosaic Operons by Horizontal Gene Transfer and Gene Displacement in Situ. Genome Biology. Genome Biol. 2003, 4, R55. [Google Scholar] [CrossRef]
- Schweizer, G.; Münch, K.; Mannhaupt, G.; Schirawski, J.; Kahmann, R.; Dutheil, J.Y. Positively Selected Effector Genes and Their Contribution to Virulence in the Smut Fungus Sporisorium Reilianum. Genome Biol. Evol. 2018, 10, 629–645. [Google Scholar] [CrossRef]
- Tiwari, P.; Bae, H. Horizontal Gene Transfer and Endophytes: An Implication for the Acquisition of Novel Traits. Plants 2020, 9, 305. [Google Scholar] [CrossRef]
- Dillon, M.M.; Almeida, R.N.D.; Laflamme, B.; Martel, A.; Weir, B.S.; Desveaux, D.; Guttman, D.S. Molecular Evolution of Pseudomonas Syringae Type III Secreted Effector Proteins. Front. Plant Sci. 2019, 10, 418. [Google Scholar] [CrossRef]
- Morgado, S.; Vicente, A.C. Diversity and Distribution of Type VI Secretion System Gene Clusters in Bacterial Plasmids. Sci. Rep. 2022, 12, 8249. [Google Scholar] [CrossRef] [PubMed]
- Elkhaligy, H.; Balbin, C.A.; Siltberg-Liberles, J. Comparative Analysis of Structural Features in SLiMs from Eukaryotes, Bacteria, and Viruses with Importance for Host-Pathogen Interactions. Pathogens 2022, 11, 583. [Google Scholar] [CrossRef] [PubMed]
- Garg, A.; Singhal, N.; Kumar, M. Investigating the Eukaryotic Host-like SLiMs in Microbial Mimitopes and Their Potential as Novel Drug Targets for Treating Autoimmune Diseases. Front. Microbiol. 2022, 13, 1039188. [Google Scholar] [CrossRef] [PubMed]
- Tayal, S.; Bhatia, V.; Mehrotra, T.; Bhatnagar, S. ImitateDB: A Database for Domain and Motif Mimicry Incorporating Host and Pathogen Protein Interactions. Amino Acids 2022, 54, 923–934. [Google Scholar] [CrossRef] [PubMed]
- Stergiopoulos, I.; Van Den Burg, H.A.; Ökmen, B.; Beenen, H.G.; Van Liere, S.; Kema, G.H.J.; De Wit, P.J.G.M. Tomato Cf Resistance Proteins Mediate Recognition of Cognate Homologous Effectors from Fungi Pathogenic on Dicots and Monocots. Proc. Natl. Acad. Sci. USA 2010, 107, 7610–7615. [Google Scholar] [CrossRef] [PubMed]
- Figaj, D.; Ambroziak, P.; Przepiora, T.; Skorko-Glonek, J. The Role of Proteases in the Virulence of Plant Pathogenic Bacteria. Int. J. Mol. Sci. 2019, 20, 672. [Google Scholar] [CrossRef]
- Pearson, J.S.; Giogha, C.; Mühlen, S.; Nachbur, U.; Pham, C.L.L.; Zhang, Y.; Hildebrand, J.M.; Oates, C.V.; Lung, T.W.F.; Ingle, D.; et al. EspL Is a Bacterial Cysteine Protease Effector That Cleaves RHIM Proteins to Block Necroptosis and Inflammation. Nat. Microbiol. 2017, 2, 16258. [Google Scholar] [CrossRef]
- Thomas, E.; Van Der Hoorn, R. Ten Prominent Host Proteases in Plant-Pathogen Interactions. Int. J. Mol. Sci. 2018, 19, 639. [Google Scholar] [CrossRef]
- Zhang, S.; Li, C.; Si, J.; Han, Z.; Chen, D. Action Mechanisms of Effectors in Plant-Pathogen Interaction. Int. J. Mol. Sci. 2022, 23, 6758. [Google Scholar] [CrossRef] [PubMed]
- Mukhtar, M.S.; McCormack, M.E.; Argueso, C.T.; Pajerowska-Mukhtar, K.M. Pathogen Tactics to Manipulate Plant Cell Death. Curr. Biol. 2016, 26, R608–R619. [Google Scholar] [CrossRef]
- Alto, N.M.; Orth, K. Subversion of Cell Signaling by Pathogens. Cold Spring Harb. Perspect. Biol. 2012, 4, a006114. [Google Scholar] [CrossRef]
- Davey, N.E.; Simonetti, L.; Ivarsson, Y. The next Wave of Interactomics: Mapping the SLiM-Based Interactions of the Intrinsically Disordered Proteome. Curr. Opin. Struct. Biol. 2023, 80, 102593. [Google Scholar] [CrossRef] [PubMed]
- Goswami, S.; Samanta, D.; Duraivelan, K. Molecular Mimicry of Host Short Linear Motif-Mediated Interactions Utilised by Viruses for Entry. Mol. Biol. Rep. 2023, 50, 4665–4673. [Google Scholar] [CrossRef]
- Irwin, N.A.T.; Pittis, A.A.; Richards, T.A.; Keeling, P.J. Systematic Evaluation of Horizontal Gene Transfer between Eukaryotes and Viruses. Nat. Microbiol. 2021, 7, 327–336. [Google Scholar] [CrossRef]
- Martins, Y.C.; Jurberg, A.D.; Daniel-Ribeiro, C.T. Visiting Molecular Mimicry Once More: Pathogenicity, Virulence, and Autoimmunity. Microorganisms 2023, 11, 1472. [Google Scholar] [CrossRef]
- Mondino, S.; Schmidt, S.; Buchrieser, C. Molecular Mimicry: A Paradigm of Host-Microbe Coevolution Illustrated by Legionella. mBio 2020, 11, e01201-20. [Google Scholar] [CrossRef]
- Chang, L.; Mondal, A.; Perez, A. Towards Rational Computational Peptide Design. Front. Bioinforma. 2022, 2, 1046493. [Google Scholar] [CrossRef] [PubMed]
- Delaunay, M.; Ha-Duong, T. Computational Design of Cyclic Peptides to Inhibit Protein-Peptide Interactions. Biophys. Chem. 2023, 296, 106987. [Google Scholar] [CrossRef] [PubMed]
- Kazmirchuk, T.D.D.; Bradbury-Jost, C.; Withey, T.A.; Gessese, T.; Azad, T.; Samanfar, B.; Dehne, F.; Golshani, A. Peptides of a Feather: How Computation Is Taking Peptide Therapeutics under Its Wing. Genes 2023, 14, 1194. [Google Scholar] [CrossRef] [PubMed]
- Todd, J.N.A.; Carreón-Anguiano, K.G.; Islas-Flores, I.; Canto-Canché, B. Fungal Effectoromics: A World in Constant Evolution. Int. J. Mol. Sci. 2022, 23, 13433. [Google Scholar] [CrossRef] [PubMed]
- Zhao, J.; Song, J. NLR Immune Receptor RB Is Differentially Targeted by Two Homologous but Functionally Distinct Effector Proteins. Plant Commun. 2021, 2, 100236. [Google Scholar] [CrossRef]
- Li, D.; Zhu, Z.; Deng, X.; Zou, J.; Ma, C.; Li, C.; Yin, T.; Liu, C.; Wang, J.; Chen, Q.; et al. GmPBS1, a Hub Gene Interacting with Rhizobial Type-III Effectors NopT and NopP, Regulates Soybean Nodulation. Agronomy 2023, 13, 1242. [Google Scholar] [CrossRef]
- Ijaz, M.; Khan, F.; Zaki, H.E.M.; Khan, M.M.; Radwan, K.S.A.; Jiang, Y.; Qian, J.; Ahmed, T.; Shahid, M.S.; Luo, J.; et al. Recent Trends and Advancements in CRISPR-Based Tools for Enhancing Resistance against Plant Pathogens. Plants 2023, 12, 1911. [Google Scholar] [CrossRef]
- Pacheco, I.D.S.; Galdeano, D.M.; Maluta, N.K.P.; Lopes, J.R.S.; Machado, M.A. Gene Silencing of Diaphorina Citri Candidate Effectors Promotes Changes in Feeding Behaviors. Sci. Rep. 2020, 10, 5992. [Google Scholar] [CrossRef]
- Wang, H.; Shi, S.; Hua, W. Advances of Herbivore-Secreted Elicitors and Effectors in Plant-Insect Interactions. Front. Plant Sci. 2023, 14, 1176048. [Google Scholar] [CrossRef]
- Singh, A.; Lakhanpaul, S. Detection, Characterization and Evolutionary Aspects of S54LP of SP (SAP54 Like Protein of Sesame Phyllody): A Phytoplasma Effector Molecule Associated with Phyllody Development in Sesame (Sesamum indicum L.). Physiol. Mol. Biol. Plants 2020, 26, 445–458. [Google Scholar] [CrossRef]
- Filisetti, D.; Théobald-Dietrich, A.; Mahmoudi, N.; Rudinger-Thirion, J.; Candolfi, E.; Frugier, M. Aminoacylation of Plasmodium Falciparum tRNAAsn and Insights in the Synthesis of Asparagine Repeats. J. Biol. Chem. 2013, 288, 36361–36371. [Google Scholar] [CrossRef]
- Liefting, L.W.; Kirkpatrick, B.C. Cosmid Cloning and Sample Sequencing of the Genome of the Uncultivable Mollicute, Western X-Disease Phytoplasma, Using DNA Purified by Pulsed-Field Gel Electrophoresis. FEMS Microbiol. Lett. 2003, 221, 203–211. [Google Scholar] [CrossRef] [PubMed]
- Muralidharan, V.; Goldberg, D.E. Asparagine Repeats in Plasmodium Falciparum Proteins: Good for Nothing? PLoS Pathog. 2013, 9, e1003488. [Google Scholar] [CrossRef] [PubMed]
- Rajapandi, T. Chaperoning of Asparagine Repeat-Containing Proteins in Plasmodium Falciparum. J. Parasit. Dis. 2020, 44, 687–693. [Google Scholar] [CrossRef]
- Moles, E.; Valle-Delgado, J.J.; Urbán, P.; Azcárate, I.G.; Bautista, J.M.; Selva, J.; Egea, G.; Ventura, S.; Fernàndez-Busquets, X. Possible Roles of Amyloids in Malaria Pathophysiology. Future Sci. OA 2015, 1, fso.15.43. [Google Scholar] [CrossRef] [PubMed]
- Pallarès, I.; De Groot, N.S.; Iglesias, V.; Sant’Anna, R.; Biosca, A.; Fernàndez-Busquets, X.; Ventura, S. Discovering Putative Prion-Like Proteins in Plasmodium Falciparum: A Computational and Experimental Analysis. Front. Microbiol. 2018, 9, 1737. [Google Scholar] [CrossRef] [PubMed]
- Choi, C.Q. Prion-like Protein Spotted in Bacteria for the First Time. Nature 2017. [Google Scholar] [CrossRef]
- Harrison, P.M. Evolutionary Behaviour of Bacterial Prion-like Proteins. PLoS ONE 2019, 14, e0213030. [Google Scholar] [CrossRef] [PubMed]
- Chen, L.-L.; Chung, W.-C.; Lin, C.-P.; Kuo, C.-H. Comparative Analysis of Gene Content Evolution in Phytoplasmas and Mycoplasmas. PLoS ONE 2012, 7, e34407. [Google Scholar] [CrossRef]
- Jheeta, S.; Chatzitheodoridis, E.; Devine, K.; Block, J. The Way Forward for the Origin of Life: Prions and Prion-Like Molecules First Hypothesis. Life 2021, 11, 872. [Google Scholar] [CrossRef]
- Navarro, S.; Marinelli, P.; Diaz-Caballero, M.; Ventura, S. The Prion-like RNA-Processing Protein HNRPDL Forms Inherently Toxic Amyloid-like Inclusion Bodies in Bacteria. Microb. Cell Factories 2015, 14, 102. [Google Scholar] [CrossRef] [PubMed]
- Tetz, G.; Tetz, V. Prion-Like Domains in Phagobiota. Front. Microbiol. 2017, 8, 2239. [Google Scholar] [CrossRef] [PubMed]
- Tetz, G.; Tetz, V. Prion-like Domains in Spike Protein of SARS-CoV-2 Differ across Its Variants and Enable Changes in Affinity to ACE2. Microorganisms 2022, 10, 280. [Google Scholar] [CrossRef] [PubMed]
- Shahnawaz, M.; Park, K.-W.; Mukherjee, A.; Diaz-Espinoza, R.; Soto, C. Prion-like Characteristics of the Bacterial Protein Microcin E492. Sci. Rep. 2017, 7, 45720. [Google Scholar] [CrossRef] [PubMed]
- Davies, H.M.; Nofal, S.D.; McLaughlin, E.J.; Osborne, A.R. Repetitive Sequences in Malaria Parasite Proteins. FEMS Microbiol. Rev. 2017, 41, 923–940. [Google Scholar] [CrossRef]
- Iwabuchi, N.; Kitazawa, Y.; Maejima, K.; Koinuma, H.; Miyazaki, A.; Matsumoto, O.; Suzuki, T.; Nijo, T.; Oshima, K.; Namba, S.; et al. Functional Variation in Phyllogen, a Phyllody-inducing Phytoplasma Effector Family, Attributable to a Single Amino Acid Polymorphism. Mol. Plant Pathol. 2020, 21, 1322–1336. [Google Scholar] [CrossRef]
- Li, J.; Gao, M.; Gabriel, D.W.; Liang, W.; Song, L. Secretome-Wide Analysis of Lysine Acetylation in Fusarium Oxysporum f. Sp. Lycopersici Provides Novel Insights Into Infection-Related Proteins. Front. Microbiol. 2020, 11, 559440. [Google Scholar] [CrossRef]
- Narita, T.; Weinert, B.T.; Choudhary, C. Functions and Mechanisms of Non-Histone Protein Acetylation. Nat. Rev. Mol. Cell Biol. 2019, 20, 156–174. [Google Scholar] [CrossRef]
- Jones, J.D.; O’Connor, C.D. Protein Acetylation in Prokaryotes. Proteomics 2011, 11, 3012–3022. [Google Scholar] [CrossRef]
- Aurin, M.-B.; Haupt, M.; Görlach, M.; Rümpler, F.; Theißen, G. Structural Requirements of the Phytoplasma Effector Protein SAP54 for Causing Homeotic Transformation of Floral Organs. Mol. Plant-Microbe Interact. 2020, 33, 1129–1141. [Google Scholar] [CrossRef]
- Bauer, S.; Yu, D.; Lawson, A.W.; Saur, I.M.L.; Frantzeskakis, L.; Kracher, B.; Logemann, E.; Chai, J.; Maekawa, T.; Schulze-Lefert, P. The Leucine-Rich Repeats in Allelic Barley MLA Immune Receptors Define Specificity towards Sequence-Unrelated Powdery Mildew Avirulence Effectors with a Predicted Common RNase-like Fold. PLoS Pathog. 2021, 17, e1009223. [Google Scholar] [CrossRef] [PubMed]
- Qi, D.; DeYoung, B.J.; Innes, R.W. Structure-Function Analysis of the Coiled-Coil and Leucine-Rich Repeat Domains of the RPS5 Disease Resistance Protein. Plant Physiol. 2012, 158, 1819–1832. [Google Scholar] [CrossRef] [PubMed]
- Bernal-Bayard, J.; Cardenal-Muñoz, E.; Ramos-Morales, F. The Salmonella Type III Secretion Effector, Salmonella Leucine-Rich Repeat Protein (SlrP), Targets the Human Chaperone ERdj3. J. Biol. Chem. 2010, 285, 16360–16368. [Google Scholar] [CrossRef] [PubMed]
- Pillay, T.D.; Hettiarachchi, S.U.; Gan, J.; Diaz-Del-Olmo, I.; Yu, X.-J.; Muench, J.H.; Thurston, T.L.M.; Pearson, J.S. Speaking the Host Language: How Salmonella Effector Proteins Manipulate the Host: This Article Is Part of the Bacterial Cell Envelopes Collection. Microbiology 2023, 169, 001342. [Google Scholar] [CrossRef] [PubMed]
- Miao, E.A.; Scherer, C.A.; Tsolis, R.M.; Kingsley, R.A.; Adams, L.G.; Baumler, A.J.; Miller, S.I. Salmonella Typhimurium Leucine-Rich Repeat Proteins Are Targeted to the SPI1 and SPI2 Type III Secretion Systems. Mol. Microbiol. 1999, 34, 850–864. [Google Scholar] [CrossRef]
- Xu, R.-Q.; Blanvillain, S.; Feng, J.-X.; Jiang, B.-L.; Li, X.-Z.; Wei, H.-Y.; Kroj, T.; Lauber, E.; Roby, D.; Chen, B.; et al. AvrAC Xcc8004, a Type III Effector with a Leucine-Rich Repeat Domain from Xanthomonas campestris Pathovar campestris Confers Avirulence in Vascular Tissues of Arabidopsis Thaliana Ecotype Col-0. J. Bacteriol. 2008, 190, 343–355. [Google Scholar] [CrossRef]
- Hu, Y.; Huang, H.; Hui, X.; Cheng, X.; White, A.P.; Zhao, Z.; Wang, Y. Distribution and Evolution of Yersinia Leucine-Rich Repeat Proteins. Infect. Immun. 2016, 84, 2243–2254. [Google Scholar] [CrossRef]
- Remigi, P.; Anisimova, M.; Guidot, A.; Genin, S.; Peeters, N. Functional Diversification of the GALA Type III Effector Family Contributes to Ralstonia Solanacearum Adaptation on Different Plant Hosts. New Phytol. 2011, 192, 976–987. [Google Scholar] [CrossRef]
- Loimaranta, V.; Hytönen, J.; Pulliainen, A.T.; Sharma, A.; Tenovuo, J.; Strömberg, N.; Finne, J. Leucine-Rich Repeats of Bacterial Surface Proteins Serve as Common Pattern Recognition Motifs of Human Scavenger Receptor Gp340. J. Biol. Chem. 2009, 284, 18614–18623. [Google Scholar] [CrossRef]
- Eshghi, A.; Gaultney, R.A.; England, P.; Brûlé, S.; Miras, I.; Sato, H.; Coburn, J.; Bellalou, J.; Moriarty, T.J.; Haouz, A.; et al. An Extracellular Leptospira interrogans Leucine-rich Repeat Protein Binds Human E- and VE-cadherins. Cell. Microbiol. 2019, 21, e12949. [Google Scholar] [CrossRef]
- Kibby, E.M.; Conte, A.N.; Burroughs, A.M.; Nagy, T.A.; Vargas, J.A.; Whalen, L.A.; Aravind, L.; Whiteley, A.T. Bacterial NLR-Related Proteins Protect against Phage. Cell 2023, 186, 2410–2424.e18. [Google Scholar] [CrossRef] [PubMed]
- Galetto, L.; Fletcher, J.; Bosco, D.; Turina, M.; Wayadande, A.; Marzachì, C. Characterization of Putative Membrane Protein Genes of the ‘Candidatus Phytoplasma Asteris’, Chrysanthemum Yellows Isolate. Can. J. Microbiol. 2008, 54, 341–351. [Google Scholar] [CrossRef] [PubMed]
- Padilla-Ramos, R.; Salas-Muñoz, S.; Velásquez-Valle, R.; Reveles-Torres, L.R. Un Nuevo Enfoque Molecular En El Estudio de La Interacción Parásito-Hospedero. Rev. Mex. Fitopatol. Mex. J. Phytopathol. 2019, 37, 95–114. [Google Scholar] [CrossRef]
- Bhopatkar, A.A.; Uversky, V.N.; Rangachari, V. Disorder and Cysteines in Proteins: A Design for Orchestration of Conformational See-Saw and Modulatory Functions. In Progress in Molecular Biology and Translational Science; Elsevier: Amsterdam, The Netherlands, 2020; Volume 174, pp. 331–373. ISBN 978-0-12-822615-5. [Google Scholar]
- Singh, Y.; Nair, A.M.; Verma, P.K. Surviving the Odds: From Perception to Survival of Fungal Phytopathogens under Host-Generated Oxidative Burst. Plant Commun. 2021, 2, 100142. [Google Scholar] [CrossRef]
- Zhang, Z.-H.; Jin, J.-H.; Sheng, G.-L.; Xing, Y.-P.; Liu, W.; Zhou, X.; Liu, Y.-Q.; Chen, X.-R. A Small Cysteine-Rich Phytotoxic Protein of Phytophthora capsici Functions as Both Plant Defense Elicitor and Virulence Factor. Mol. Plant-Microbe Interact. 2021, 34, 891–903. [Google Scholar] [CrossRef] [PubMed]
- Miseta, A.; Csutora, P. Relationship Between the Occurrence of Cysteine in Proteins and the Complexity of Organisms. Mol. Biol. Evol. 2000, 17, 1232–1239. [Google Scholar] [CrossRef]
- Gérard, C.; Carrière, F.; Receveur-Bréchot, V.; Launay, H.; Gontero, B. A Trajectory of Discovery: Metabolic Regulation by the Conditionally Disordered Chloroplast Protein, CP12. Biomolecules 2022, 12, 1047. [Google Scholar] [CrossRef]
Classes of Phytoplasma Effectors Description in UNIPROT | Hits | UNIPROT ID * |
---|---|---|
SAP1-like protein | 1 | A0A859I9H9 |
SAP02-like protein | 1 | A0A859I9K5 |
SAP05-like protein | 5 | A0A975ILX0, A0A859I930, A0A0P7KD01, A0A531Y329, A0A0L0MJZ3 |
SAP06-like protein | 2 | A0A531Y0U6, A0A975FJD4 |
SAP08-like protein | 2 | A0A0P7IRG7, A0A859I9N5 |
SAP09-like protein | 4 | A0A531Y0B2, A0A859I9U4, A0A975FJ78, A0A975INP5 |
SAP11 effector protein | 37 | A0A081D545, A0A0L0MK48, A0A0N8IAU9, A0A0U2D622, A0A1Q1NH89, A0A1Q1NH90, A0A1Q1NH91, A0A1Q1NH92, A0A1Q1NH98, A0A1Q1NH99, A0A1Q1NHA1, A0A1Q1NHA2, A0A1Q1NHA3, A0A1Q1NHA5, A0A1Q1NHA6, A0A1Q1NHA7, A0A1V0PKN0, A0A1V0PKQ3, A0A1V0PKT7, A0A2P9JTQ0, A0A410HXL4, A0A421NZ11, A0A4Y5R0G3, A0A531Y0A6, A0A531Y154, A0A6M3WSS2, A0A7H9SKF2, A0A7H9SLX7, A0A7H9SP62, A0A7M3UQ86, A0A7M3UQ89, A0A7M3UQ91, A0A7M3UQ93, A0A859I8L9, A0A895HT12, A0A975FJX5, A0A975IND1 |
SAP19-like protein | 4 | A0A0P7JJB4, A0A531XZZ7, A0A859I959, A0A975FIG9 |
SAP20-like protein | 1 | A0A859IAA9 |
SAP21-like protein | 5 | A0A0P7IR19, A0A1V0PKQ1, A0A1V0PKR3, A0A7G3ZPG3, A0A859I965 |
SAP30-like protein | 2 | A0A0N8IAS3, A0A531Y0Y5 |
SAP34-like protein | 2 | A0A531XZH1, A0A859I9Q8 |
SAP36-like protein | 3 | A0A531XZX2, A0A859I9S9, A0A859IA72 |
SAP37-like protein | 1 | A0A859I9K5 |
SAP39-like protein | 2 | A0A975FJ78 (SAP09/SAP39-like), A0A975INP5 (SAP09/SAP39-like) |
SAP40-like protein | 2 | A0A7G3ZP82, A0A975FIG9 (SAP19/SAP40-like) |
SAP42-like protein | 4 | A0A0P7IR40, A0A531Y098, A0A859IAT1, A0A859IB38 |
SAP43-like protein | 3 | A0A531XZZ8, A0A531Y0C0, A0A859IAG2 |
SAP44-like protein | 2 | A0A531Y018, A0A859I9J4 |
SAP45-like protein | 2 | A0A0P7JJR0, A0A975FIA7 |
SAP48-like protein | 2 | A0A0N8IAV0, A0A975FJD4 (SAP06/SAP48-like) |
SAP49-like protein | 3 | A0A0P7J0F0, A0A531Y0U5, A0A859IA30 |
SAP50-like protein | 2 | A0A531XYW6, A0A859I9B6 |
SAP53-like protein | 7 | A0A531Y0U7, A0A859I8L6, A0A859I8U8, A0A859I9C2, A0A859I9G1, A0A859IA89, A0A859IC30 |
SAP54-like protein | 7 | A0A0P7KHL3, A0A385GMC4, A0A4Y5N0H8, A0A531Y175, A0A6G5ZVL2, A0A859I8I1, A0A975FJ37 |
SAP55-like protein | 2 | A0A0P7KH40, A0A531Y2Y1 |
SAP56-like protein | 2 | A0A531Y0A1, A0A859IAC1 |
SAP59-like protein | 1 | A0A859I9X7 |
SAP61-like protein | 2 | A0A531Y053, A0A859I9W5 |
SAP63-like protein | 2 | A0A531Y0N6, A0A859IAU1 |
SAP64-like protein | 1 | A0A859IA25 |
SAP65-like protein | 2 | A0A531XZQ7, A0A859I9R5 |
SAP66-like protein | 1 | A0A531Y0A4 |
SAP67-like protein | 6 | A0A0P7IRG0, A0A1V0PKR5, A0A531Y097, A0A531Y0P6, A0A7G3ZP81, A0A859IA66 |
SAP68-like protein | 2 | A0A0P7JJ83, A0A531Y090 |
Phytoplasma effector causing phyllody symptoms | 16 | A0A0A8JBX1, A0A0A8JBX6, A0A0A8JBY1, A0A0A8JCF3, A0A0A8JCG0, A0A0A8JCG5, A0A0A8JCY1, A0A0A8JCY8, A0A0A8JCZ4, A0A0A8JD20, A0A0A8JD26, A0A0A8JD31, A0A0A8JD38, A0A0A8JER4, A0A0A8JER9, A0A0A8JES5 |
Secreted effector protein containing SVM protein | 2 | A0A0L0MJZ3 (SAP05-like), A0A0L0MK48 (SAP11-like) |
Effector causing phyllody symptoms 1 (Phyl-1) | 32 | A0A0A8JD20, A0A0A8JBX1, A0A0A8JCF3, A0A7G1GAE9, A0A7G1GBC6, A0A7G1G848, A0A7G1G7V6, A0A7G1GAX5, A0A1S9M4S1, A0A7G1GBC7, A0A7G1G7U3, A0A7G1GCL4, A0A7G1GC98, A0A0A8JCG5, A0A0A8JES5, A0A7G1GCA2, A0A851HA21, A0A0A8JCY1, A0A0A8JCZ4, A0A7G1GAE5, A0A7G1G7X2, A0A0A8JD26, A0A7G1GCL5, A0A0A8JBX6, A0A7G1G7V7, A0A0A8JER9, A0A7G1GDX1, A0A0A8JCY8, A0A7G1G829, A0A859I980, A0A859IA68, A0A7G1G7U9 |
SVM family protein | 19 | A0A7S7FZA6, A0A7S7FZA7, A0A7S7FZT4, A0A7S7G0A6, A0A7S7G133, A0A7S7JMA4, A0A9K3STF5, A0A9K3STG2, A0A9K3STJ3, A0A9K3STL1, A0A9K3VKC1, A0A9K3VQA7, A0A9K3WR63, A0A9K3WR67, A0A9K3WR81, A0A9K3WRI7, A0A9K3WRJ4, A0A9K3WSE9, A0A9K3WT14 |
Effector protein/putative effector | 4 | A0A0L0MJZ3 (SAP05-like), A0A0L0MK48 (SAP11-like), A0A0P7KHL3 (SAP54-like), A0A421NZ11 (SAP11-like protein) |
Putative phage integrase | 20 | A0A081D424, A0A081D433, A0A081D4B3, A0A081D563, A0A081D571, A0A081D5B7, A0A081D5P7, A0A081D5U5, A0A0L0MKQ6, A0A0M1MZX0, A0A0M1N0J3, A0A559KJX4, B1V8S0, B1V929, B1V9A9, B1V9R4, B1V9U7, B1VAI1, B1VAZ9, B1VB07 |
MPEP-jgl1_1 | 1 | F4YY99 |
PME2-sporadic | 1 | A0A5J6ED47 |
PME2ST | 1 | A0A5J6EFI7 |
Antigenic membrane protein (Amp) | 126 | Q7M1T6, Q7M1T6, A0A076EAG8, A0A076EAG8, A0A081D5A2, A0A081D5A2, A0A0A6ZJW5, A0A0A6ZJW5, A0A0B5A2B3, A0A0B5A2B3, A0A0G2RL99, A0A0G2RL99, A0A0G3IAH0, A0A0G3IAH0, A0A0G3IAN5, A0A0G3IAN5, A0A0G3IAN8, A0A0G3IAN8, A0A0G3IEB2, A0A0G3IEB2, A0A0G3IEB7, A0A0G3IEB7, A0A0K0QVE7, A0A0K0QVE7, A0A0K0QVF4, A0A0K0QVF4, A0A0K0QW84, A0A0K0QW84, A0A0M1N027, A0A0M1N027, A0A0U1W0L6, A0A0U1W0L6, A0A144KSK3, A0A144KSK3, A0A144ZJV6, A0A144ZJV6, A0A144ZJW7, A0A144ZJW7, A0A144ZJX8, A0A144ZJX8, A0A144ZJY8, A0A144ZJY8, A0A144ZK00, A0A144ZK00, A0A144ZK13, A0A144ZK13, A0A166IZL8, A0A166IZL8, A0A172W5H3, A0A172W5H3, A0A172W5H6, A0A172W5H6, A0A172W5H7, A0A172W5H7, A0A172W5I1, A0A172W5I1, A0A1S2NJM5, A0A1S2NJM5, A0A284VUN7, A0A284VUN7, A0A284VUR2, A0A284VUR2, A0A284VUT5, A0A284VUT5, A0A284VUU7, A0A284VUU7, A0A284VUV8, A0A284VUV8, A0A284VUW8, A0A284VUW8, A0A284VUZ0, A0A284VUZ0, A0A2R3TWF0, A0A2R3TWF0, A0A2R3TWF1, A0A2R3TWF1, A0A2R3TWF3, A0A2R3TWF3, A0A2R3TWF8, A0A2R3TWF8, A0A2R3TWG0, A0A2R3TWG0, A0A2R3TWG2, A0A2R3TWG2, A0A2R3TWG4, A0A2R3TWG4, A0A2R3TWG5, A0A2R3TWG5, A0A2R3TWG7, A0A2R3TWG7, A0A2R3TWG8, A0A2R3TWG8, A0A2R8F9P7, A0A2R8F9P7, A0A3G3BKC3, A0A3G3BKC3, A0A3G3BKD1, A0A3G3BKD1, A0A3G3BKD2, A0A3G3BKD2, A0A3G3BKD3, A0A3G3BKD3, A0A3G3BKD4, A0A3G3BKD4, A0A3G3BKD7, A0A3G3BKD7, A0A3G3BKD9, A0A3G3BKD9, A0A3G3BKE3, A0A3G3BKE3, A0A3G3BKE5, A0A3G3BKE5, A0A3G3BKF2, A0A3G3BKF2, A0A3G3BKH5, A0A3G3BKH5, A0A3G3BL83, A0A3G3BL83, A0A4V0Z900, A0A4V0Z900, A0A531XZF2, A0A531XZF2, A0A660HMW6, A0A660HMW6, A0A6M8PXG1, A0A6M8PXG1, A0A851HI12, A0A851HI12, A0A859IB88, A0A859IB88, A0A8G0KJC1, A0A8G0KJC1, A0A8G0KJC7, A0A8G0KJC7, A0A8G0KJJ7, A0A8G0KJJ7, A0A8G0KMI2, A0A8G0KMI2, A0A8G0KNQ6, A0A8G0KNQ6, A0A8G0KNW2, A0A8G0KNW2, A0A8G0KPQ5, A0A8G0KPQ5, A0A8G0P102, A0A8G0P102, A0A8G0P2N6, A0A8G0P2N6, A0A8G0P649, A0A8G0P649, A0A9E9FTC0, A0A9E9FTC0, B1Q3E7, B1Q3E7, B1Q3E8, B1Q3E8, D3JZF9, D3JZF9, E0X6R8, E0X6R8, E1B2F1, E1B2F1, E1V2K6, E1V2K6, E1V2K7, E1V2K7, E1V2K8, E1V2K8, E1V2L0, E1V2L0, E1V2L1, E1V2L1, E1V2L2, E1V2L2, E1V2L3, E1V2L3, E1V2L4, E1V2L4, E1V2L7, E1V2L7, E1V2L9, E1V2L9, E1V2M0, E1V2M0, E1V2M2, E1V2M2, I6YG40, I6YG40, I6YG45, I6YG45, I6ZBE6, I6ZBE6, I6ZK94, I6ZK94, I6ZK99, I6ZK99, K7WAL0, K7WAL0, Q0PN06, Q0PN06, Q1MWA5, Q1MWA5, Q1MWA9, Q1MWA9, Q1MWB3, Q1MWB3, Q1MWB7, Q1MWB7, Q1MWC1, Q1MWC1, Q1MWC5, Q1MWC5, Q1MWC9, Q1MWC9, Q1MXC6, Q1MXC6, Q1MXD5, Q1MXD5, Q1MXD9, Q1MXD9, Q1MXE3, Q1MXE3, Q1MXE7, Q1MXE7, Q1MXF1, Q1MXF1, Q1MXF5, Q1MXF5, Q2NJM0, Q2NJM0, Q50256, Q50256, R4S1A8, R4S1A8, R9R6L3, R9R6L3, R9R6N4, R9R6N4, R9R6R7, R9R6R7, U6BYJ4, U6BYJ4, U6BYW6, U6BYW6, V9PB07, V9PB07, V9PBQ6, V9PBQ6, X2CUV7, X2CUV7 |
Immunodominant membrane protein A (idpA) | 2 | A0A3G3BKC1, F8QQ90 |
Immunodominant membrane protein (Imp) | 241 | A0A081D461, A0A0G2SJS4, A0A0G2SJW3, A0A0G2SK05, A0A0G2SK62, A0A0K3AQA8, A0A0K3ASS0, A0A0N8IAV7, A0A167RQ06, A0A1C3K9C2, A0A1C3K9C3, A0A1C3K9D4, A0A1C3K9D9, A0A1C3K9F3, A0A1C3K9K9, A0A1Q1NH80, A0A1Q1NH81, A0A1Q1NH83, A0A1Q1NH85, A0A1Q1NH86, A0A1Q1NH87, A0A1Q1NH88, A0A1Q1NH93, A0A1Q1NH94, A0A1Q1NH95, A0A1Q1NH96, A0A1Q1NH97, A0A1W6QDG6, A0A1W6QDG8, A0A221LEG4, A0A221LEG7, A0A2D0XP51, A0A2D0XPU9, A0A2D0XQP2, A0A2D0XS19, A0A2D0XTD8, A0A2D0XTE4, A0A2D0XV09, A0A2D0XWU4, A0A2D0XYW4, A0A2D0Y111, A0A2D0Y119, A0A2D0Y3A9, A0A2H4UKN1, A0A345VNF7, A0A345VNG1, A0A345VNG2, A0A345VNG3, A0A345VNG8, A0A3G1T1S3, A0A3G1T1U8, A0A3G1T1V5, A0A3G1T1W8, A0A3S9VMP1, A0A3S9VMS5, A0A451G5C1, A0A482CEU5, A0A4D6BQY8, A0A4D6BRJ9, A0A4D6BUB2, A0A5J6CPI0, A0A6M3YRZ8, A0A7D5BS05, A0A7G8C1T3, A0A7G8C1T4, A0A7G8C1T8, A0A7L8YQZ3, A0A7L8YR10, A0A7L8YR25, A0A7L8YR95, A0A7L8YRE9, A0A7L8YRG7, A0A7L8YRJ9, A0A7L8YSG7, A0A7M3UQ95, A0A7M3UQ96, A0A7M3UQ98, A0A7M3UQA1, A0A7M4CJT7, A0A7U0TE90, A0A7U0TE92, A0A7U0TE98, A0A7U0TEA1, A0A7U0TEA5, A0A7U0TEA6, A0A7U0TEA8, A0A7U0TEB0, A0A7U0TEB2, A0A7U0TEB3, A0A7U0TEB4, A0A7U0TEB6, A0A7U0TEB8, A0A7U0TEB9, A0A7U0TEC0, A0A7U0TEC1, A0A7U0TEC2, A0A7U0TEC3, A0A7U0TEC5, A0A7U0TEC6, A0A7U0TEC7, A0A7U0TEC8, A0A7U0TEC9, A0A7U0TED0, A0A7U0TED1, A0A7U0TED3, A0A7U0TED5, A0A7U0TED7, A0A7U0TED9, A0A7U0TEE0, A0A7U0TEE1, A0A7U0TEE2, A0A7U0TEE3, A0A7U0TEE4, A0A7U0TEE5, A0A7U0TEE6, A0A7U0TEE7, A0A7U0TEE8, A0A7U0TEF0, A0A7U0TEF2, A0A7U0TEF3, A0A7U0TEF4, A0A7U0TEF8, A0A7U0TEG6, A0A7U0TEG8, A0A7U0TEH2, A0A7U0TEH9, A0A7U0TEI5, A0A7U0YCD6, A0A7U0YCE1, A0A7U0YCF1, A0A7U0YCG0, A0A7U0YCK7, A0A7U0YCL3, A0A7U0YCL8, A0A7U0YCL9, A0A7U0YCM3, A0A7U0YCM4, A0A7U0YCM7, A0A7U0YCN1, A0A7U0YCN6, A0A7U0YCP1, A0A7U0YCP4, A0A7U0YCQ0, A0A7U0YCQ6, A0A7U0YCR1, A0A7U0YCR5, A0A7U0YCW3, A0A7U0YCW5, A0A7U0YCX1, A0A7U0YCX6, A0A7U0YCX8, A0A895KQK7, A0A895KQQ5, A0A895KQZ3, A0A895KQZ7, A0A895KR14, A0A8E9ZRJ9, B3R073, B9X0W5, B9X0X1, B9X0X7, B9X0Y3, B9X0Y9, B9X0Z4, B9X100, B9X106, D3JZF9, D5GSR1, D5GSR2, D5GSR3, D5GSR4, D5GSR5, D5GSR6, D5GSR7, D5GSR8, D5GSR9, D5GSS0, D5GSS1, D5GSS2, D5GSS3, D5GSS4, D5GSS5, D5GSS6, D5GSS7, D5GSS8, D5GSS9, D5GST0, D5GST1, D5GST2, D5GST3, D5GST4, D5GST5, D5GST7, D5GST8, D5GST9, E0WEE8, E0WEF3, E0WEG1, E0WEH1, E0WEH2, E0WEH6, E0WEH9, E5D8B7, E5D8B8, E5D8C1, F8QQ94, G3XGE8, G3XGF1, G3XGF4, G3XGF7, G3XGG6, G3XGG9, G3XGI1, G3XGI3, G3XGI7, G3XGJ0, G3XGJ3, G3XGJ6, G3XGJ9, G3XGK5, G3XGL1, G3XGL7, G3XGM0, I3UIB8, I3UIB9, I3UIC0, I3UIC1, I3UIC2, I3UIC3, I3UIC4, I3UIC5, I3UIC6, I3UIC7, I3UIC8, I3UIC9, I3UID0, Q8KWR9, Q9Z4Q4, U5LMX8, U6G028, X2CSY1 |
Variable membrane protein A (VmpA) | 52 | A0A0D6DTS2, A0A4E9CZE5, A0A4E9CZG2, A0A4E9CZI4, A0A4E9CZK2, A0A4E9CZL0, A0A4E9D018, A0A4E9D027, A0A4E9D036, A0A4E9D043, A0A4E9D050, A0A4E9D063, A0A4E9D398, A0A4E9D3B5, A0A4E9D3F2, A0A4E9D3J3, A0A4E9D3L5, A0A4E9D3N2, A0A4E9DGY5, A0A4E9DH23, A0A4E9DH31, A0A4E9DH40, A0A4E9DJ74, A0A4E9DJ82, A0A4E9DJ94, A0A4E9DJA2, A0A4E9DJB4, A0A4E9DKV2, A0A4E9DKY4, A0A4E9DKZ5, A0A4E9DL10, A0A4E9DPW9, A0A4E9DQ17, A0A4E9DQ26, A0A4E9DQ36, A0A4E9DQ45, A0A4E9E2M2, A0A4E9E2N4, A0A4E9E2N9, A0A4E9E2P3, A0A4E9E2P9, A0A4E9E2Q4, A0A4E9E2R0, A0A4E9E2R4, A0A4E9E4J3, A0A4E9E4J7, A0A4E9E4L5, A0A4E9E9I3, A0A4E9E9J2, A0A4E9E9J8, A0A4E9E9K0, A0A8B0MFL7 |
Secreted AYWB protein (SAP) | 36 | A0A0N8IAS3, A0A0N8IAU9, A0A0N8IAV0, A0A0P7IR19, A0A0P7IR40, A0A0P7IRG7, A0A0P7JJ83, A0A0P7JJB4, A0A0P7JJR0, A0A0P7KH40, A0A0P7KHL3, A0A531XYW6, A0A531XZH1, A0A531XZQ7, A0A531XZX2, A0A531XZZ7, A0A531XZZ8, A0A531Y018, A0A531Y053, A0A531Y090, A0A531Y097, A0A531Y098, A0A531Y0A1, A0A531Y0A4, A0A531Y0C0, A0A531Y0N6, A0A531Y0P6, A0A531Y0U5, A0A531Y0U7, A0A531Y0Y5, A0A531Y154, A0A531Y175, A0A531Y2Y1, A0A531Y329, A0A7G3ZP82, A0A7G3ZPG3 |
Type III secretion system effector protein Candidatus | 50 | A0A1E2USP0, A0A1J7D1C9, A0A249DXM8, A0A2D3T254, A0A2D3T9Z4, A0A2D3TD58, A0A2D3TFY7, A0A2U8I5A1, A0A4P2SM26, A0A5K6V4X6, A0A5K6V7I2, A0A6L2ZRP7, A0A9D2KKF3, A0A9E4K1U0, A0A9E4KC36, A0A9E4P750, C4K6C8, C4K8T3, E0WUZ2, G2GX33, G2GYW6, G2J8Z5, I6PE34, W0HMT0, A0A0C1H4D9, A0A0G1JG32, A0A1A9HUH7, A0A1A9HUI4, A0A1A9HVU6, A0A1A9HWR9, A0A1J7C9A4, A0A3A4PR12, A0A3C1SQQ9, A0A3S0UHE5, A0A6L2ZKD9, A0A6L2ZKI3, A0A6M1YMG1, A0A6M1YQX0, A0A6M1YRV2, A0A6M1Z4N3, A0A6M1Z7H7, A0A6M1ZIG1, A0A6M2AFE6, A0A846KW82, A0A924DW95, A0A956SX96, E0WTJ4, I6SXS7, Q6MD78, W6MBI3 |
Conserved hypothetical protein * | 1 | Q3LBN8 |
Uncharacterized protein * | 1 | U4KNV3 |
Candidatus hypothetical proteins | 6 Zaofeng | A0A660HMR4, A0A660HM07, A0A660HM34, A0A660HNE9, A0A660HMI8, A0A660HNK1 |
Characteristics | Number of Effectors | % of the Total * |
---|---|---|
≤200 amino acids | 518 | 70.2 |
201–400 amino acids | 156 | 21.1 |
401–1000 amino acids | 63 | 8.5 |
>1000 amino acids | 1 | 0.1 |
Signal peptide ** | 527 | 71.4 |
TMDs | 249 | 33.8 |
Nuclear target (NLS) | 29 | 3.9 |
≥25 Asn residues | 109 | 14.8 |
≥25 Lys residues | 341 | 46.2 |
≥25 Leu residues | 155 | 21 |
≥25 Ser residues | 61 | 8.3 |
0 Trp residues | 225 | 30.5 |
1 Trp residue | 234 | 31.7 |
2 Trp residues | 158 | 21.4 |
3–7 Trp residues | 121 | 16.4 |
0 Cys residues | 378 | 51.2 |
1 Cys residue | 214 | 29 |
2 Cys residues | 86 | 11.7 |
3 Cys residues | 30 | 4.05 |
4 Cys residues | 10 | 1.35 |
5–8 Cys residues | 20 | 2.7 |
Tribe | WebLogo Sequence | Number of Effector Members | Distribution of Tribes’ Effector Members among Phytoplasmas | Phytoplasmas |
---|---|---|---|---|
1 | Figure S1 | 223 | Wide; usually 6–8 members per genome. Some phytoplasmas (“Ca. Phytoplasma phoenicium”, “Ca. Phytoplasma solani”, “Echinacea purpurea” witches’ broom phytoplasma, loofah witches’ broom phytoplasma) have 18–24 members. | Apple proliferation phytoplasma, aster yellows witches’ broom phytoplasma (strain AYWB), “Ca. Phytoplasma aurantifolia”, “Ca. Phytoplasma fragariae”, “Ca. Phytoplasma japonicum”, “Ca. Phytoplasma oryzae”, “Ca. Phytoplasma phoenicium”, “Ca. Phytoplasma pini”, “Ca. Phytoplasma pruni”, “Ca. Phytoplasma sacchari”, “Ca. Phytoplasma solani”, “Ca. Phytoplasma sp”, “Ca. Phytoplasma tritici”, “Ca. Phytoplasma vitis”, “Ca. Phytoplasma ziziphi”, “Catharanthus roseus” aster yellows phytoplasma, “Chrysanthemum coronarium” phytoplasma, clover proliferation phytoplasma, Crotalaria phyllody phytoplasma, “Cynodon dactylon” phytoplasma, “Echinacea purpurea” witches’ broom phytoplasma, “Echinacea purpurea” witches’ broom phytoplasma, lime witches’ broom phytoplasma, loofah witches’ broom phytoplasma, mulberry dwarf phytoplasma, onion yellows phytoplasma (strain OY-M), “Parthenium sp.” phyllody phytoplasma, Paulownia witches’ broom phytoplasma, periwinkle leaf yellowing phytoplasma, Phytoplasma australiense, Phytoplasma mali (strain AT), poinsettia branch-inducing phytoplasma, porcelain vine witches’ broom phytoplasma, rapeseed phyllody phytoplasma, rice orange leaf phytoplasma, Ziziphus jujuba witches’ broom phytoplasma |
2 | Figure S2 | 74 | Restricted; 68 members are from “Ca. Phytoplasma solani” | “Ca. Phytoplasma phoenicium”, “Ca. Phytoplasma solani”, “Ca. Phytoplasma vitis”, “Ca. Phytoplasma ziziphi”, “Dodonaea viscosa” witches’ broom phytoplasma, “Echinacea purpurea” witches’ broom phytoplasma, loofah witches’ broom phytoplasma |
3 | Figure S3 | 49 | Restricted; 47 members are from elm yellows phytoplasma | Elm yellows phytoplasma, alder yellows phytoplasma, Phytoplasma vitis (Flavescence dorée phytoplasma) |
4 | Figure S4 | 48 | Restricted; 17 members from apple proliferation phytoplasma. One to five members in the other genomes | Apple proliferation phytoplasma, “Ca. Phytoplasma aurantifolia”, “Ca. Phytoplasma oryzae”, “Ca. Phytoplasma phoenicium”, “Ca. Phytoplasma pruni”, “Ca. Phytoplasma solani”, Crotalaria phyllody phytoplasma, “Echinacea purpurea” witches’ broom phytoplasma, faba bean phyllody phytoplasma, loofah witches’ broom phytoplasma, loofah witches’ broom phytoplasma, onion yellows phytoplasma (strain OY-M), “Parthenium sp.” phyllody phytoplasma, peanut witches’ broom phytoplasma, periwinkle leaf yellowing phytoplasma, Phytoplasma mali (strain AT), rapeseed phyllody phytoplasma, rice orange leaf phytoplasma, Ziziphus jujuba witches’ broom phytoplasma |
5 | Figure S5 | 39 | Restricted; 17 members from alder yellows phytoplasma, and 15 members from Flavescence dorée phytoplasma. One or two members in the other genomes | Alder yellows phytoplasma, Phytoplasma vitis (Flavescence dorée phytoplasma), “Ca. Phytoplasma pruni”, “Ca. Phytoplasma solani”, “Ca. Phytoplasma sp.”, clover phyllody phytoplasma, “Echinacea purpurea” witches’ broom phytoplasma, “Parthenium sp.” phyllody phytoplasma, peanut witches’ broom phytoplasma, periwinkle leaf yellowing phytoplasma, Phytoplasma mali (strain AT), rapeseed phyllody phytoplasma, rice orange leaf phytoplasma, Ziziphus jujuba witches’ broom phytoplasma |
6 | Figure S6 | 37 | Wide; few members (1–6) per genome | Apricot aster yellows phytoplasma A-AY, aster yellows phytoplasma AY2192, “Ca. Phytoplasma aurantifolia”, “Ca. Phytoplasma phoenicium”, “Ca. Phytoplasma pruni”, “Ca. Phytoplasma sp”, carrot yellows phytoplasma CA-76, “Citrus aurantiifolia” phytoplasma, clover proliferation phytoplasma, Crotalaria phyllody phytoplasma, “Echinacea purpurea” witches’ broom phytoplasma, eggplant dwarf phytoplasma ED, faba bean phyllody phytoplasma, Gladiolus witches’ broom phytoplasma, Leontodon yellows phytoplasma LEO, lime witches’ broom phytoplasma, loofah witches’ broom phytoplasma, peach yellows phytoplasma PYR, rapeseed phyllody phytoplasma, “Solanum lycopersicum” phytoplasma, Ziziphus jujuba witches’ broom phytoplasma, “Ca. Phytoplasma vitis” (Flavescence dorée phytoplasma), peanut witches’ broom phytoplasma, periwinkle leaf yellowing phytoplasma, Phytoplasma mali (strain AT), rapeseed phyllody phytoplasma, rice orange leaf phytoplasma, Ziziphus jujuba witches’ broom phytoplasma |
7 | Figure S7 | 32 | Wide; two or three members per genome | Alfalfa witches’ broom phytoplasma, “Ca. Phytoplasma aurantifolia”, “Ca. Phytoplasma pruni”, “Ca. Phytoplasma sp”, carrot witches’ broom phytoplasma, chickpea phyllody phytoplasma, Crotalaria phyllody phytoplasma, “Cucurbita pepo” phytoplasma, “Echinacea purpurea” witches’ broom phytoplasma, eggplant big bud phytoplasma, faba bean phyllody phytoplasma, Hyparrhenia grass white leaf phytoplasma, Lactuca serriola phytoplasma, lime witches’ broom phytoplasma, Napier grass stunt phytoplasma, parsley witches’ broom phytoplasma, “Parthenium sp.” phyllody phytoplasma, pear decline phytoplasma (Taiwan II), periwinkle phyllody phytoplasma, sesame phyllody phytoplasma |
8 | Figure S8 | 31 | Restricted; 10 members from apple proliferation phytoplasma, 5 members from “Ca. Phytoplasma pyri”, 3 members from “Ca. Phytoplasma solani” and one or two members in the other genomes | Apple proliferation phytoplasma, “Ca. Phytoplasma pruni”, “Ca. Phytoplasma prunorum”, “Ca. Phytoplasma pyri”, “Ca. Phytoplasma solani”, “Ca. Phytoplasma sp”, “Echinacea purpurea” witches’ broom phytoplasma, loofah witches’ broom phytoplasma, “Parthenium sp.” phyllody phytoplasma, rapeseed phyllody phytoplasma, rice orange leaf phytoplasma, tsuwabuki witches’ broom phytoplasma, “Sesamum indicum” phyllody phytoplasma |
9 | Figure S9 | 30 | Wide; one member per genome | “Brassica napus” phytoplasma, “Ca. Phytoplasma solani”, “Catharanthus roseus” aster yellows phytoplasma, “Chrysanthemum coronarium” phytoplasma, chrysanthemum yellows phytoplasma, “Echinacea purpurea” witches’ broom phytoplasma, eggplant dwarf phytoplasma, hydrangea phyllody phytoplasma, Iceland poppy yellows phytoplasma, “Lactuca sativa” aster yellows phytoplasma, lettuce yellows phytoplasma, maize bushy stunt phytoplasma, marguerite yellows phytoplasma, mulberry dwarf phytoplasma, mulberry yellow dwarf phytoplasma, onion yellows phytoplasma, Paulownia witches’ broom phytoplasma, periwinkle leaf yellowing phytoplasma, Phytoplasma sp. AYBG, porcelain vine witches’ broom phytoplasma, potato purple top phytoplasma, “Primula acaulis” yellows phytoplasma, rapeseed phyllody phytoplasma, rice orange leaf phytoplasma, strawberry lethal yellows phytoplasma (CPA) str. NZSb11, sumac witches’ broom phytoplasma, tomato yellows phytoplasma |
10 | Figure S10 | 30 | Restricted; 24 members from elm yellows phytoplasma; 1 member in the other genomes | Elm yellows phytoplasma, clover proliferation phytoplasma, Korean potato witches’ broom phytoplasma, lime witches’ broom phytoplasma, loofah witches’ broom phytoplasma, “Parthenium sp.” phyllody phytoplasma, Phytoplasma vitis (Flavescence dorée phytoplasma) |
11 | Figure S11 | 26 | Restricted; 18 members from alder yellows phytoplasma; 1–3 members in the other genomes | Alder yellows phytoplasma, “Ca. Phytoplasma pruni”, “Ca. Phytoplasma solani”, “Ca. Phytoplasma sp.”, periwinkle leaf yellowing phytoplasma, rapeseed phyllody phytoplasma |
12 | Figure S12 | 20 | Restricted; 18 members from poinsettia branch-inducing phytoplasma; 1–3 members in the other genomes | Poinsettia branch-inducing phytoplasma, “Ca. Phytoplasma pruni”, “Ca. Phytoplasma solani”, “Ca. Phytoplasma sp.”, periwinkle leaf yellowing phytoplasma, rapeseed phyllody phytoplasma |
13 | Figure S13 | 20 | Restricted; 19 members from “Ca. Phytoplasma pyri” | “Ca. Phytoplasma pyri”, “Ca. Phytoplasma pruni” |
14 | Figure S14 | 19 | Restricted; 12 members from “Ca. Phytoplasma meliae”; 3 members from “Ca. Phytoplasma solani”; 1 member in the other genomes | “Ca. Phytoplasma japonicum”, “Ca. Phytoplasma meliae”, “Ca. Phytoplasma solani”, “Echinacea purpurea” witches’ broom phytoplasma, Hyparrhenia grass white leaf phytoplasma, Napier grass stunt phytoplasma |
15 | Figure S15 | 18 | Restricted; 14 members from “Ca. Phytoplasma prunorum”; 1–2 members in the other genomes | “Ca. Phytoplasma oryzae”, “Ca. Phytoplasma prunorum”, “Echinacea purpurea” witches’ broom phytoplasma, Ziziphus jujuba witches’ broom phytoplasma |
SLiMs | SLiM Pattern | SLiM Description | Number of Effectors Proteins | ID of Effector Proteins |
---|---|---|---|---|
LIG_PDZ_Class_2 | ...[VLIFY].[ACVILF]$ | The C-terminal class 2 PDZ-binding motif is classically represented by a pattern such as (VYF)X(VIL) | 10 | A0A859I9H9, A0A531XZH1, A0A0P7J0F0, A0A531XYW6, A0A859I9B6, A0A0P7KH40, A0A531Y2Y1, A0A859IA25, A0A7S7FZA6, A0A1E2USP0 |
LIG_DCNL_PONY_1 | ^M[MIL].[MIL] | DCNL PONY domain binding motif variant based on UBE2M and UBE2F interactions. | 10 | A0A975FJD4, A0A0P7JJB4, A0A531XZZ7, A0A0N8IAS3, A0A7G3ZP82, A0A975FIG9, A0A531Y098, A0A0P7KHL3, A0A531Y0A1, A0A7S7FZA7 |
LIG_PCNA_PIPBox_1 | [QM].[^FHWY][LIVM][^P][^PFWYMLIV](([FYHL][FYW])|([FYH][FYWL])).. | The PCNA binding motifs include the PIP-box and APIM motifs, and are found in proteins involved in DNA replication, repair, methylation and cell cycle control. | 8 | A0A975FJD4, A0A531XZZ7, A0A859IAA9, A0A975FIG9, A0A975FIA7, A0A531Y053, A0A859I9W5, A0A081D424 |
LIG_GBD_Chelix_1 | [ILV][VA][^P][^P][LI][^P][^P][^P][LM] | Amphipathic alpha-helix that binds the GTPase-binding domain (GBD) in WASP and N-WASP. | 8 | A0A859I9H9, A0A0P7IR40, A0A859I9B6, A0A531Y053, A0A859I9W5, A0A7S7FZA6, A0A1J7D1C9, AYJ01076.1 |
LIG_NRP_CendR_1 | [RK].{0,2}R$ | The CendR motif has a carboxy-terminal arginine, which binds to the neuropilin b1 domain binding site. CendR motifs are either located at the protein C-terminus or are generated by internal cleavage by a polybasic protease, such as furin. | 7 | A0A531Y0U6, A0A531XZZ7, A0A7G3ZP82, A0A975FIG9, A0A531Y090, A0A3G3BKC1, F8QQ90 |
TRG_ER_diLys_1 | K.{0,1}K.{2,3}$ | ER retention and retrieving signal found at the C-terminus of type I ER membrane proteins (cytoplasmic in this topology). Di-Lysine signal is responsible for COPI-mediated retrieval from post-ER compartments. | 7 | A0A0L0MK48, A0A0N8IAS3, A0A531Y0U5, Q7M1T6, A0A076EAG8, A0A0D6DTS2, A0A4E9CZE5 |
DOC_PIKK_1 | [DEN][DEN].{2,3}[ILMVA][DEN][DEN]L | DOC_PIKK_1 motif is located in the C terminus of Nbs1 and its homologues and interacts with PIKK family members. | 6 | A0A975ILX0, A0A859I930, A0A0P7J0F0, A0A531Y0U5, A0A385GMC4, A0A3G3BKC1 |
DOC_CYCLIN_yClb1_LxF_4 | (P.[KR]L.F)|(.N[KR]L.F)|(.N.L.F[LMIVFY]) | The LxF motif found in budding yeasts serves as a docking site for mitotic cyclin-CDK complexes (M-CDK). It is found in both regulators and mitotic phosphorylation target proteins. | 6 | A0A859I9U4, A0A859IAA9, A0A531Y0U5, A0A531Y053, A0A859I9W5, A0A7S7FZA6 |
LIG_TYR_ITSM | ..T.(Y)..[IV] | ITSM (immunoreceptor tyrosine-based switch motif). This motif is present in the cytoplasmic region of the CD150 subfamily within the CD2 family and it enables these receptors to bind to and to be regulated by SH2 adaptor. | 6 | A0A531XZZ8, A0A531Y0C0, A0A531Y0U5, A0A531XYW6, A0A859I9B6, A0A1E2USP0 |
LIG_FXI_DFP_1 | [FYWHIL].DF[PD] | The DFP motif enables binding to the second apple domain of coagulation factor XI (FXI) and plasma kallikrein heavy chain. | 5 | A0A975FJ78, A0A531XZZ8, A0A531Y0C0, A0A5J6ED47, A0A5J6EFI7 |
LIG_PTB_Phospho_1 | (.[^P].NP.(Y))|(.[ILVMFY].N..(Y)) | This phosphorylation-dependent motif binds to Shc-like and IRS-like PTB domains. The pTyr is positioned within a highly basic-charged anchoring pocket. A hydrophobic residue -5 (compared to pY) increases the affinity of the interaction. | 5 | A0A0P7IRG7, A0A859I9N5, A0A1V0PKR5, A0A0A8JBX1, A0A0A8JBX6 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Carreón-Anguiano, K.G.; Vila-Luna, S.E.; Sáenz-Carbonell, L.; Canto-Canché, B. Novel Insights into Phytoplasma Effectors. Horticulturae 2023, 9, 1228. https://doi.org/10.3390/horticulturae9111228
Carreón-Anguiano KG, Vila-Luna SE, Sáenz-Carbonell L, Canto-Canché B. Novel Insights into Phytoplasma Effectors. Horticulturae. 2023; 9(11):1228. https://doi.org/10.3390/horticulturae9111228
Chicago/Turabian StyleCarreón-Anguiano, Karla Gisel, Sara Elena Vila-Luna, Luis Sáenz-Carbonell, and Blondy Canto-Canché. 2023. "Novel Insights into Phytoplasma Effectors" Horticulturae 9, no. 11: 1228. https://doi.org/10.3390/horticulturae9111228
APA StyleCarreón-Anguiano, K. G., Vila-Luna, S. E., Sáenz-Carbonell, L., & Canto-Canché, B. (2023). Novel Insights into Phytoplasma Effectors. Horticulturae, 9(11), 1228. https://doi.org/10.3390/horticulturae9111228