Basic Substances and Potential Basic Substances: Key Compounds for a Sustainable Management of Seedborne Pathogens
Abstract
:1. Introduction
2. Methods for Seed Treatment
2.1. Seed Immersion
2.2. Seed Dressing and Coating
3. Seed Treatment with Approved Basic Substances
3.1. Activity of Approved Basic Substances against Fungi and Oomycetes
3.2. Activity of Approved Basic Substances against Bacteria
4. Seed Treatment with Potential Basic Substances against Pathogens
4.1. Activity of Potential Basic Substances against Fungi and Oomycetes
4.2. Activity of Potential Basic Substances against Bacteria
Potential Basic Substances—Bacteria | |||||||
---|---|---|---|---|---|---|---|
Crop | Target Disease/Pathogen | Substance (Concentration) | Application | Effectiveness (Disease/Symptoms Reduction) | Possible Phytotoxicity | Activity/Defense Response | Reference |
Tomato (Solanum lycopersicum) | Clavibacter michiganensis subsp. michiganensis 1 | Cinnamomum zeylanicum EO (0.4% v/v) | Immersion | 25% | Germination reduced by 1–2% | Bactericidal activity | [67] |
Origanum vulgare EO 0.4% (v/v) | Immersion | 100% | Rate of seed germination equal to the control | ||||
C. michiganensis subsp. michiganensis 1 | O. onites HE (15 mg mL−1) | Immersion | 75% | Rate of seed germination equal to the control | Different extracts increased seed germination and plant height | [62] | |
Xanthomonas axonopodies pv. vesicatoria 1 | O. onites CE (20 mg mL−1) | 76.91% | |||||
X. campestris pv. zinniae 1 | O. onites chloroform extract (15 mg mL−1) | 74.22% | |||||
Pseudomonas syringae pv. tomato 1 (Pst) | Zingiber officinale AE | Immersion | 100% | Rate of seed germination equal to the control | [63] | ||
O. vulgare L. AE (Istanbul thyme and Izmir thyme) | 100% | ||||||
Eucalyptus camaldulensis AE | 98% (incidence) 97% (severity) | ||||||
Allium sativum AE | 99% (incidence) 57% (severity) | ||||||
Coriandrum sativum extracts | Up to 63% (incidence) | ||||||
Soybean (Glycine max) | P. savastanoi pv. glycinea B076 1 | Thymus vulgaris EO (1.76 mg mL−1) | 24.05% | Seed germination increasing | Increasing seed germination | [64] | |
P. syringae M7-C1 1 | 29.76% | ||||||
Rice (Oryza sativa) | Burkholderia glumae 1 | S. aromaticum EO Cymbopogon nardus | 50% | Rate of seed germination equal to the control | [65] | ||
Tomato (Solanum lycopersicum) | C. michiganensis subsp. michiganensis 1 | Cistus ladaniferus subsp. ladanifer EO | Immersion for 1 h | Minimal inhibitory concentration (MIC): 0.78 mg mL−1 | Rate of seed germination equal to the control | Bacterial growth inhibition | [66] |
Cistus ladaniferus subsp. ladanifer ME | Seed germination increasing | ||||||
Mentha suaveolens EO | Rate of seed germination equal to the control |
4.3. Activity of Potential Basic Substances against Viruses and Phytoplasma
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Umesha, S. Diversity of Seed-Borne Bacterial Phytopathogens; Springer: Singapore, 2020. [Google Scholar] [CrossRef]
- Bonde, M.R.; Peterson, G.L.; Schaad, N.W.; Smilanick, J.L. Karnal Bunt of Wheat. Plant Dis. 1997, 81, 1370–1377. [Google Scholar] [CrossRef]
- Rong, I. Karnal bunt of wheat detected in South Africa. Plant Prot. News 2000, 58, 15–17. [Google Scholar]
- Malaker, P.K.; Barma, N.C.D.; Tiwari, T.P.; Collis, W.J.; Duveiller, E.; Singh, P.K.; Joshi, A.K.; Singh, R.P.; Braun, H.-J.; Peterson, G.L.; et al. First report of wheat blast caused by Magnaporthe oryzae pathotype triticum in Bangladesh. Plant Dis. 2016, 100, 2330. [Google Scholar] [CrossRef]
- Tembo, B.; Mulenga, R.M.; Sichilima, S.; M’siska, K.K.; Mwale, M.; Chikoti, P.C.; Singh, P.K.; He, X.; Pedley, K.F.; Peterson, G.L.; et al. Detection and characterization of fungus (Magnaporthe oryzae pathotype triticum) causing wheat blast disease on rain-fed grown wheat (Triticum aestivum L.) in Zambia. PLoS ONE 2020, 15, e0238724. [Google Scholar] [CrossRef] [PubMed]
- Dwyer, G.I.; Gibbs, M.J.; Gibbs, A.J.; Jones, R.A.C. Wheat streak mosaic virus in Australia: Relationship to isolates from the Pacific Northwest of the USA and its dispersion via seed transmission. Plant Dis. 2007, 91, 164–170. [Google Scholar] [CrossRef] [PubMed]
- Wangai, A.W.; Redinbaugh, M.G.; Kinyua, Z.M.; Miano, D.W.; Leley, P.K.; Kasina, M.; Mahuku, G.; Scheets, K.; Jeffers, D. First Report of Maize chlorotic mottle virus and Maize Lethal Necrosis in Kenya. Plant Dis. 2012, 96, 1582. [Google Scholar] [CrossRef]
- International Seed Federation. Seed Treatment. Available online: https://worldseed.org/our-work/seed-treatment (accessed on 15 September 2023).
- Munkvold, G.P. Seed pathology progress in Academia and industry. Annu. Rev. Phytopathol. 2009, 47, 285–311. [Google Scholar] [CrossRef]
- Moumni, M.; Brodal, G.; Romanazzi, G. Recent innovative seed treatment methods in the management of seedborne pathogens. Food Secur. 2023, 15, 1365–1382. [Google Scholar] [CrossRef]
- Lamichhane, J.R.; You, M.P.; Laudinot, V.; Barbetti, M.J.; Aubertot, J.N. Revisiting sustainability of fungiside seed treatments for field crops. Plant Dis. 2020, 104, 610–623. [Google Scholar] [CrossRef]
- Sharma, K.K.; Singh, U.S.; Sharma, P.; Kumar, A.; Sharma, L. Seed treatments for sustainable agriculture—A review. J. Appl. Nat. Sci. 2015, 7, 521–539. [Google Scholar] [CrossRef]
- Kesraoui, S.; Andrès, M.F.; Berrocal-Lobo, M.; Soudani, S.; Gonzales-Coloma, A. Direct and indirect effects of essential oils for sustainable crop protection. Plants 2022, 11, 2144. [Google Scholar] [CrossRef]
- Chrapačienė, S.; Rasiukevičiūtė, N.; Valiuškaitė, A. Control of seed-borne fungi by selected essential oils. Horticulturae 2022, 8, 220. [Google Scholar] [CrossRef]
- Romanazzi, G.; Orçonneau, Y.; Moumni, M.; Davillerd, Y.; Marchand, P.A. Basic substances, a sustainable tool to complement and eventually replace synthetic pesticides in the management of pre and postharvest diseases: Reviewed instructions for users. Molecules 2022, 27, 3484. [Google Scholar] [CrossRef] [PubMed]
- Marchand, P.A.; Davillerd, Y.; Riccioni, L.; Sanzani, S.M.; Horn, N.; Matyjaszczyk, E.; Golding, J.; Roberto, S.R.; Mattiuz, B.-H.; Xu, D.; et al. BasicS, an Euphresco International Network on Renewable Natural Substances for Durable Crop Protection Products Chronicle of Bioresource Management An International E-magazine BasicS, an Euphresco International Network on Renewable Natural Substances for. Chron. Bioresour. Manag. 2021, 2021, 77–080. [Google Scholar]
- EC. Commission Regulation No 1107/2009 of the European parliament and of the council of 21 October 2009 concerning the placing of plant protection products on the market and repealing council directives 79/117/EEC and 91/414/EEC. OJ 2009, L309, 1–50. [Google Scholar]
- Afzal, I.; Javed, T.; Amirkhani, M.; Taylor, A.G. Modern seed technology: Seed coating delivery systems for enhancing seed and crop performance. Agriculture 2020, 10, 526. [Google Scholar] [CrossRef]
- Zulfiqar, Z.F. Effect of seed priming on horticultural crops. Sci. Hortic. 2021, 286, 110197. [Google Scholar] [CrossRef]
- Orzali, L.; Forni, C.; Riccioni, L. Effect of chitosan seed treatment as elicitor of resistance to Fusarium graminearum in wheat. Seed Sci. Technol. 2014, 42, 132–149. [Google Scholar] [CrossRef]
- Kalaivani, K.; Kalaiselvi, M.M.; Senthil-Nathan, S. Effect of methyl salicylate (MeSA), an elicitor on growth, physiology and pathology of resistant and susceptible rice varieties. Sci. Rep. 2016, 6, 34498. [Google Scholar] [CrossRef] [PubMed]
- Riccioni, L.; Orzali, L.; Romani, M.; Annicchiarico, P.; Pecetti, L. Organic seed treatments with essential oils to control ascochyta blight in pea. Eur. J. Plant Pathol. 2019, 155, 831–840. [Google Scholar] [CrossRef]
- Hussain, S.; Zheng, M.; Khan, F.; Khaliq, A.; Fahad, S.; Peng, S.; Huang, J.; Cui, K.; Nie, L. Benefits of rice seed priming are offset permanently by prolonged storage and the storage conditions. Sci. Rep. 2015, 5, 8101. [Google Scholar] [CrossRef]
- Kimmelshue, C.; Goggi, A.S.; Cademartiri, R. The use of biological seed coatings based on bacteriophages and polymers against Clavibacter michiganensis subsp. nebraskensis in maize seeds. Sci. Rep. 2019, 9, 17950. [Google Scholar] [CrossRef] [PubMed]
- Taylor, J.B.; Cass, K.L.; Armond, D.N.; Madsen, M.D.; Pearson, D.E.; St. Clair, S.B. Deterring rodent seed-predation using seed-coating technologies. Restor. Ecol. 2020, 28, 927–936. [Google Scholar] [CrossRef]
- Shang, Y.; Hasan, K.; Ahammed, G.J.; Li, M.; Yin, H. Applications of nanotechnology in plant growth and crop protection: A review. Molecules 2019, 24, 2558. [Google Scholar] [CrossRef] [PubMed]
- Shelar, A.; Nile, S.H.; Singh, A.V.; Rothenstein, D.; Bill, J.; Xiao, J.; Chaskar, M.; Kai, G.; Patil, R. Recent advances in nano-enabled seed treatment strategies for sustainable agriculture: Challenges, risk assessment, and future perspectives. Nanomicro Lett. 2023, 15, 54. [Google Scholar] [CrossRef] [PubMed]
- Prasad, R.D.; Chandrika, K.S.V.P.; Godbole, V. A novel chitosan biopolymer based Trichoderma delivery system: Storage stability, persistence and bio efficacy against seed and soil borne diseases of oilseed crops. Microbiol. Res. 2020, 237, 126487. [Google Scholar] [CrossRef]
- EU. Regulation (EU) 563/2014 of 23.5.2014 approving the basic substance chitosan hydrochloride. Off. J. Eur. Union 2014, L156, 5–7. [Google Scholar]
- EU. Commission Implementing Regulation (EU) 2022/456 of 21 March 2022 approving the basic substance chitosan in accordance with Regulation (EC) No 1107/2009 of the European Parliament and of the Council concerning the placing of plant protection products on the market, and amending the Annex to Implementing Regulation (EU) No 540/2011. OJ 2022, L93, 138–141. [Google Scholar]
- El-Mohamedy, R.S.R.; Shafeek, M.R.; El-Samad, E.E.D.H.A.; Salama, D.M.; Rizk, F.A. Field application of plant resistance inducers (PRIs) to control important root rot diseases and improvement growth and yield of green bean (Phaseolus vulgaris L.). Aust. J. Crop Sci. 2017, 11, 496–505. [Google Scholar] [CrossRef]
- Ghule, M.R.; Ramteke, P.K.; Ramteke, S.D.; Kodre, P.S.; Langote, A.; Gaikwad, A.V.; Holkar, S.K.; Jambhekar, H. Impact of chitosan seed treatment of fenugreek for management of root rot disease caused by Fusarium solani under in vitro and in vivo conditions. 3 Biotech 2021, 11, 290. [Google Scholar] [CrossRef] [PubMed]
- Bhardwaj, N.R.; Atri, A.; Banyal, D.K.; Dhal, A.; Roy, A.K. Multi-location evaluation of fungicides for managing blast (Magnaporthe grisea) disease of forage pearl millet in India. J. Crop Prot. 2022, 195, 106019. [Google Scholar] [CrossRef]
- Buzón-Durán, L.; Martín-Gil, J.; Marcos-Robles, J.L.; Fombellida-Villafruela, Á.; Pérez-Lebeña, E.; Martín-Ramos, P. Antifungal activity of chitosan oligomers–amino acid conjugate complexes against Fusarium culmorum in spelt (Triticum spelta L.). Agronomy 2020, 10, 1427. [Google Scholar] [CrossRef]
- Zohara, F.; Surovy, M.Z.; Khatun, A.; Prince, M.F.R.K.; Akanda, M.A.M.; Rahman, M.; Islam, M.T. Chitosan biostimulant controls infection of cucumber by Phytophthora capsici through suppression of asexual reproduction of the pathogen. Acta Agrobot. 2019, 72, 1763. [Google Scholar] [CrossRef]
- Kowalska, J.; Tyburski, J.; Krzymińska, J.; Jakubowska, M. Effects of seed treatment with mustard meal in control of Fusarium culmorum Sacc. and the growth of common wheat (Triticum aestivum ssp. vulgare). Eur. J. Plant Pathol. 2021, 159, 327–338. [Google Scholar] [CrossRef]
- Berbegal, M.; Landeras, E.; Sánchez, D.; Abad-Campos, P.; Pérez-Sierra, A.; Armengol, J. Evaluation of Pinus radiata seed treatments to control Fusarium circinatum: Effects on seed emergence and disease incidence. For. Pathol. 2015, 45, 525–533. [Google Scholar] [CrossRef]
- Górski, R.; Szopińska, D.; Dorna, H.; Rosińska, A.; Stefańska, Z.; Lisiecka, J. Effects of plant extracts and disinfectant huva-san tr 50 on the quality of carrot (Daucus carota L.). Seeds. Ecol. Chem. Eng. 2020, 27, 617–628. [Google Scholar] [CrossRef]
- Alkemade, J.A.; Arncken, C.; Hirschvogel, C.; Messmer, M.M.; Leska, A.; Voegele, R.T.; Finckh, M.R.; Kölliker, R.; Groot, S.P.C.; Hohmann, P. The potential of alternative seed treatments to control anthracnose disease in white lupin. Crop Prot. 2022, 158, 106009. [Google Scholar] [CrossRef]
- Pernezny, K.; Nagata, R.; Raid, R.N.; Collins, J.; Carroll, A. Investigation of seed treatments for management of bacterial leaf spot of lettuce. Plant Dis. 2002, 86, 151–155. [Google Scholar] [CrossRef] [PubMed]
- Sanna, M.; Gilardi, G.; Gullino, M.L.; Mezzalama, M. Evaluation of physical and chemical disinfection methods of Brassica oleracea seeds naturally contaminated with Xanthomonas campestris pv. campestris. J. Plant Dis. Prot. 2022, 129, 1145–1152. [Google Scholar] [CrossRef]
- Chouhan, S.; Sharma, K.; Guleria, S. Antimicrobial activity of some essential oils—Present status and future perspectives. Medicines 2017, 4, 58. [Google Scholar] [CrossRef]
- Gonçalves, L.A.; Lorenzo, J.M.; Trindade, M.A. Fruit and agro-industrial waste extracts as potential antimicrobials in meat products: A brief review. Foods 2021, 10, 1469. [Google Scholar] [CrossRef] [PubMed]
- M Maurya, A.; Prasad, J.; Das, S.; Dwivedy, A.K. Essential Oils and Their Application in Food Safety. Front. Sustain. Food Syst. 2021, 5, 653420. [Google Scholar] [CrossRef]
- Moumni, M.; Romanazzi, G.; Najar, B.; Pistelli, L.; Amara, H.B.; Mezrioui, K.; Karous, O.; Chaieb, I.; Allagui, M.B. Antifungal activity and chemical composition of seven essential oils to control the main seedborne fungi of cucurbits. Antibiotics 2021, 10, 104. [Google Scholar] [CrossRef]
- Grzanka, M.; Sobiech, Ł.; Danielewicz, J.; Horoszkiewicz-Janka, J.; Skrzypczak, G.; Sawinska, Z.; Radzikowska, D.; Świtek, S. Impact of essential oils on the development of pathogens of the Fusarium genus and germination parameters of selected crops. Open Chem. 2021, 19, 884–893. [Google Scholar] [CrossRef]
- Valente, M.T.; Orzali, L.; Manetti, G.; Magnanimi, F.; Matere, A.; Bergamaschi, V.; Grottoli, A.; Bechini, S.; Riccioni, L.; Aragona, M. Rapid molecular assay for the evaluation of clove essential oil antifungal activity against wheat common bunt. Front. Plant Sci. 2023, 14, 1130793. [Google Scholar] [CrossRef] [PubMed]
- Yousafi, Q.; Bibi, S.; Saleem, S.; Hussain, A.; Hasan, M.M.; Tufail, M.; Qandeel, A.; Khan, M.S.; Mazhar, S.; Yousaf, M.; et al. Identification of novel and safe fungicidal molecules against Fusarium oxysporum from plant essential oils: In vitro and computational approaches. Biomed Res. Int. 2022, 2022, 5347224. [Google Scholar] [CrossRef]
- Gonçalves, D.C.; Queiroz, V.T.; Costa, A.V.; Lima, W.P.; Belan, L.L.; Moraes, W.B.; Iorio, N.L.P.P.; Póvoa, H.C.C. Reduction of Fusarium wilt symptoms in tomato seedlings following seed treatment with Origanum vulgare L. essential oil and carvacrol. Crop Prot. 2021, 141, 105487. [Google Scholar] [CrossRef]
- Bota, V.; Sumalan, R.M.; Obistioiu, D.; Negrea, M.; Cocan, I.; Popescu, I.; Alexa, E. Study on the Sustainability Potential of Thyme, Oregano, and Coriander Essential Oils Used as Vapours for Antifungal Protection of Wheat and Wheat Products. Sustainability 2022, 14, 4298. [Google Scholar] [CrossRef]
- Trombete, F.M.; Porto, Y.D.; Freitas-Silva, O.; Pereira, R.V.; Direito, G.M.; Saldanha, T.; Fraga, M.E. Efficacy of ozone treatment on mycotoxins and fungal reduction in artificially contaminated soft wheat grains. J. Food Process. Preserv. 2017, 41, e12927. [Google Scholar] [CrossRef]
- Naz, R.; Bano, A.; Nosheen, A.; Yasmin, H.; Keyani, R.; Shah, S.T.A.; Anwar, Z.; Roberts, T.H. Induction of defense-related enzymes and enhanced disease resistance in maize against Fusarium verticillioides by seed treatment with Jacaranda mimosifolia formulations. Sci. Rep. 2021, 11, 59. [Google Scholar] [CrossRef]
- Porto, Y.D.; Trombete, F.M.; Freitas-Silva, O.; de Castro, I.M.; Direito, G.M.; Ascheri, J.L.R. Gaseous ozonation to reduce aflatoxins levels and microbial contamination in corn grits. Microorganisms 2019, 7, 220. [Google Scholar] [CrossRef]
- Brito, J.G.D.; Faroni, L.R.D.A.; Cecon, P.R.; Benevenuto, W.C.A.D.N.; Benevenuto, A.A.; Heleno, F.F. Efficacy of ozone in the microbiological disinfection of maize grains. Brazilian J. Food Technol. 2018, 21, e2017022. [Google Scholar] [CrossRef]
- Soudani, S.; Poza-Carrión, C.; De la Cruz Gómez, N.; González-Coloma, A.; Andrés, M.F.; Berrocal-Lobo, M. Essential oils prime epigenetic and metabolomic changes in tomato defense against Fusarium oxysporum. Front. Plant Sci. 2022, 13, 804104. [Google Scholar] [CrossRef]
- Moumni, M.; Allagui, M.B.; Mezrioui, K.; Ben Amara, H.; Romanazzi, G. Evaluation of seven essential oils as seed treatments against seedborne fungal pathogens of Cucurbita maxima. Molecules 2021, 26, 2354. [Google Scholar] [CrossRef]
- Silva, A.A.; Pereira, F.A.C.; de Souza, E.A.; de Oliveira, D.F.; Nobre, D.A.C.; Macedo, W.R.; Silva, G.H. Inhibition of anthracnose symptoms in common bean by treatment of seeds with essential oils of Ocimum gratissimum and Syzygium aromaticum and eugenol. Eur. J. Plant Pathol. 2022, 163, 865–874. [Google Scholar] [CrossRef]
- Waureck, A.; da Luz Coelho Novembre, A.D. Physiological and sanitary attributes of organic lettuce seeds treated with essential oils during storage. Comun. Sci. 2022, 13, e3394. [Google Scholar] [CrossRef]
- Dorna, H.; Szopińska, D.; Rosińska, A.; Górski, R. Chemical composition of fir, pine and thyme essential oils and their effect on onion (Allium cepa L.) seed quality. Agronomy 2021, 11, 2445. [Google Scholar] [CrossRef]
- Er, Y.; Özer, N.; Katırcıoğlu, Y.Z. In vivo anti-mildew activity of essential oils against downy mildew of sunflower caused by Plasmopara halstedii. Eur. J. Plant Pathol. 2021, 161, 619–627. [Google Scholar] [CrossRef]
- McHugh, T. Ozone processing of foods and beverages. Food Technol. 2015, 69, 72–74. [Google Scholar]
- Kotan, R.; Cakir, A.; Ozer, H.; Kordali, S.; Cakmakci, R.; Dadasoglu, F.; Dikbas, N.; Aydin, T.; Kazaz, C. Antibacterial effects of Origanum onites against phytopathogenic bacteria: Possible use of the extracts from protection of disease caused by some phytopathogenic bacteria. Sci. Hortic. 2014, 172, 210–220. [Google Scholar] [CrossRef]
- Karabüyük, F.; Aysan, Y. Aqueous plant extracts as seed treatments on tomato bacterial speck disease. Acta Hortic. 2018, 1207, 193–196. [Google Scholar] [CrossRef]
- Sotelo, J.P.; Oddino, C.; Giordano, D.F.; Carezzano, M.E.; Oliva, M.d.l.M. Effect of Thymus vulgaris essential oil on soybeans seeds infected with Pseudomonas syringae. Physiol. Mol. Plant Pathol. 2021, 116, 101735. [Google Scholar] [CrossRef]
- Sari, S.P.; Safni, I.; Lubis, L. Seed treatments to control Burkholderia glumae on rice seeds in the screenhouse. IOP Conf. Ser. Earth Environ. Sci. 2022, 977, 012021. [Google Scholar] [CrossRef]
- Benali, T.; Bouyahya, A.; Habbadi, K.; Zengin, G.; Khabbach, A.; Achbani, E.H.; Hammani, K. Chemical composition and antibacterial activity of the essential oil and extracts of Cistus ladaniferus subsp. Ladanifer and Mentha suaveolens against phytopathogenic bacteria and their ecofriendly management of phytopathogenic bacteria. Biocatal. Agric. Biotechnol. 2020, 28, 101696. [Google Scholar] [CrossRef]
- Orzali, L.; Valente, M.T.; Scala, V.; Loreti, S.; Pucci, N. Antibacterial activity of essential oils and trametes versicolor extract against Clavibacter michiganensis subsp. michiganensis and Ralstonia solanacearum for seed treatment and development of a rapid in vivo assay. Antibiotics 2020, 9, 628. [Google Scholar] [CrossRef]
- Stommel, J.R.; Dumm, J.M.; Hammond, J. Effect of ozone on inactivation of purified pepper mild mottle virus and contaminated pepper seed. PhytoFrontiers 2021, 1, 85–93. [Google Scholar] [CrossRef]
Basic Substances—Fungi and Oomycetes | |||||||
---|---|---|---|---|---|---|---|
Crop | Disease/Pathogen | Substance (Concentration) | Application | Effectiveness | Possible Phytotoxicity | Activity/Defense Response | Reference |
Green bean (Phaseolus vulgaris) | Rhizoctonia solani 1,* | Chitosan (1 g L−1) | Immersion | 54.4% | Data not available | [31] | |
Fusarium solani 1,* | Chitosan (1 g L−1) | Immersion | 52.6% | Rate of seed germination equal to the control | |||
Fenugreek (Trigonella foenum-graecum) | Fusarium solani 1,* | Chitosan (2 g L−1) | Immersion | 87.5% | Rate of seed germination equal to the control | Radicle length improvement | [32] |
Pearl millet (Pennisteum glaucum) | Magnaporthe grisea 2 | Chitosan (0.5 g L−1) | Immersion | 4.7%–26.9% | Data not available | [33] | |
Spelt (Triticum spelta) | F. culmorum 2 | Chitosan (1.5 g L−1) | Immersion | 50.0% | Rate of seed germination equal to the control | Seed germination increasing | [34] |
Groundnut (Arachis hypogaea) | Aspergillus niger 2,* | Chitosan (1 g L−1) + Trichoderma spores | Immersion | 51.8% | Rate of seed germination equal to the control | [28] | |
Safflower (Carthamus tinctorius) | Macrophomina phaseolina 2,* | Immersion | 15.7% | ||||
Cucumber (Cucumis sativus) | Phytophthora capsici 1,* | Chitosan (500 ppm) | Immersion | 85.0% | Increased seed germination | Seedling shoot and root growth increasing | [35] |
Durum wheat (Triticum durum) | Fusarium foot rot F. graminearum 1,2 | Chitosan (0.5% v/v) | Immersion | In field 1: 36% In field 2: 56% In greenhouse 2: 38% | Rate of seed germination equal to the control | Phenolic content increasing and defense-related enzyme activation | [20] |
Common wheat (Triticum aestivum) | F. culmorum 2 | White mustard meal (15 g mustard + 45 mL H2O per kg) | Wet and dry seed dressing | In vitro: 67% In field: 43%–78% | Rate of seed germination equal to the control | Plant development stimulation: improving grain quality and wheat plant growth | [36] |
Pine (Pinus radiata) | F. circinatum 2 | Hydrogen peroxide (33% w/v) | Immersion | 98.2% | Seedling emergence reduction | [37] | |
Carrot (Daucus carota) | Alternaria radicina 1 | Hydrogen peroxide stabilized with silver ions (0.025%) | Immersion | 43.2% | Rate of seed germination equal to the control | [38] | |
White lupin (Lupinus albus) | Colletotrichum lupini 1 | Vinegar (5% acetic acid) | Immersion for 30 min | 16.9% | Rate of seed germination equal to the control | [39] |
Basic Substances—Bacteria | |||||||
---|---|---|---|---|---|---|---|
Crop | Disease/Pathogen | Substance (Concentration) | Application | Effectiveness (Disease/Symptoms Reduction) | Possible Phytotoxicity | Activity/Defense Response | Reference |
Lettuce (Lactuva sativa) | Xanthomonas campestris pv. vitians 2 | Hydrogen peroxide (3% w/v) | Immersion | 100% | Rate of seed germination equal to the control | Direct antibacterial activity | [40] |
Hydrogen peroxide (5% w/v) | Significant reductions in germination | ||||||
Cabbage (Brassica oleracea) | Xanthomonas campestris pv. campestris 1 | Hydrogen peroxide (10%; 20% w/v) | Immersion | Depending on the concentration up to 100% | Rate of seed germination equal to the control | Direct antibacterial activity | [41] |
Potential Basic Substances—Fungi and Oomycetes | |||||||
---|---|---|---|---|---|---|---|
Crop | Target Disease/Pathogen | Substance (Concentration) | Application | Effectiveness (Disease/Symptoms Reduction) | Possible Phytotoxicity | Activity/Defense Response | Reference |
Durum wheat (Triticum durum) | Common bunt/Tilletia laevis * | Syzygium aromaticum EO (0.3% v/v) | Immersion for 10 min | From 30% to 90% | Seed germination reduction | Reduction in pathogen incidence | [47] |
S. aromaticum formulation (2.5% v/v) | From 40% to 100% | Rate of seed germination equal to the control | |||||
S. aromaticum EO (1% v/v) | Coating | From 30% to 82% | Rate of seed germination equal to the control | ||||
S. aromaticum formulation (5% v/v) | Coating | From 30% to 85% | |||||
Wheat (Triticum aestivum) | Fusarium equiseti 2; F. culmorum 2; F. poae 2; F. avenaceum 2 | S. aromaticum EO 5 × 103 ppm | Immersion for 8 min | 100% | Total inhibition of seed germination | Inhibition of pathogen development | [46] |
Alternaria spp. Fusarium spp. Drechslera spp. | Origanum vulgare, Thymus vulgaris and Coriandrum sativum Eos | Vapour | 50% | Inhibition of seed germination at 0.4% (thyme and oregano EO) | Inhibition of deoxynivalenol (DON) occurrence | [50] | |
Aspergillus spp. Fusarium spp. 1,2 | Ozone (60 mg L−1) | Ozonation for 300 min | 54.3% | – | [51] | ||
Pea Pisum sativum | Ascochyta blight fungal complex (Dydimella pinodes, D. pinodella, D. pisi) 2 | S. aromaticum- based formulation (0.2% v/v) | Immersion for 10 and 20 min | From 68% to 71% | Rate of seed germination equal to the control but in field an excessive handling after imbibition could damage seeds | In vivo: reduction in seed infection percentage In field: seedling protection and established plants enhancement | [22] |
Thymus vulgaris EO (0.2% v/v) | 86% | ||||||
Melaleuca alternifolia EO (2% v/v) | 71.5% | ||||||
S. aromaticum- based formulation (0.4% v/v) + pinolene | Seed coating | From 6% to 80% | Rate of seed germination equal to the control | ||||
T. vulgaris EO (0.3% v/v) + pinolene | 53% | ||||||
M. alternifolia EO (2% v/v) + pinolene | 5% | ||||||
Maize (Zea mays) | F. verticillioides 2 | Jacaranda mimosifolia WE (0.6% v/v) | Immersion for 1 h | Pot experiment: 75% Field experiment: 64% | – | Induction of defense-related enzymes | [52] |
F. equiseti 2; F. culmorum 2; F. poae 2; F. avenaceum 2 | S. aromaticum EO (5 × 104 ppm) | Immersion for 8 min | Total inhibition of seed germination | Inhibition of pathogen development | [46] | ||
Aspergillus spp. 2 | Ozone (60 mg L−1) | Ozonation for 480 min | 99.7% | – | Aflatoxins and microbial contamination reduction | [53] | |
Fusarium spp. 2 | 99.9% | ||||||
Aspergillus spp. 1 | Ozone (2.14 mg L−1) | Ozonation for 50 h | 78.5% | – | Pathogen incidence reduction | [54] | |
Penicillium spp. 1 | 98.0% | ||||||
Tomato (Solanum lycopersicum) | Fusarium wilt F. oxysporum * | Artemisia absinthium EO (0.5 mg mL−1) | Seed coating | Reduction in disease symptoms. | Rate of seed germination equal to the control | Induction of a long-term response (ROS production and callose deposition) | [55] |
Eucalyptus grandis EO (6% v/v) | Immersion | 73.0% | Rate of seed germination equal to the control | [48] | |||
Cuminum cyminum EO (6% v/v) | 53.1% | ||||||
Citrus sinensis EO (6% v/v) | 84.3% | ||||||
F. oxysporum f. sp. lycopersici * | Origanum vulgare EO 1200 μg mL−1 | Immersion | 52.0% | No phytotoxicity | Reduction in percentage disease severity and incidence | [49] | |
Squash (Cucurbita maxima) | Stagonosporopsis cucurbitacearum 1 and seven other fungal species | Cymbopogon citratus EO and six other essential oils. (0.5 mg mL−1) | Immersion for 6 h | From 67% to 84.4% | Seedling emergence increasing | [56] | |
Bean (Phaseolus vulgaris) | Anthracnose/ Colletotrichum lindemuthianum 2 | Ocimum gratissimum EO (80 mg kg−1) | Immersion | Anthracnose symptoms reduction of 73.9% | Rate of seed germination equal to the control | [57] | |
S. aromaticum EO (80 mg kg−1) | Anthracnose symptoms reduction of 65.5% | ||||||
Lettuce (Lactuca sativa) | Cladosporium sp. 1 | Eugenia caryophyllus EO (500 µL L−1) | 86.0% | Seed germination reduction | [58] | ||
Alternaria sp. 1 | 70.0% | ||||||
Cladosporium sp. 1 | Cymbopogon citratus EO (500 µL L−1) | 98.0% | |||||
Alternaria sp. 1 | 85.0% | ||||||
Cladosporium sp. 1 | Rosmarinus officinalis EO (500 µL L−1) | 33.0% | |||||
Alternaria sp. 1 | 7.5% | ||||||
Onion (Allium cepa) | A. alternata 1 | Abies alba EO (0.2 µL cm−3) | Immersion for 6 h | 10.4% | Rate of seed germination equal to the control | [59] | |
Botrytis allii 1 | 80.5% | ||||||
B. cinerea 1 | 76.9% | ||||||
Cladosporium spp. 1 | 28.5% | ||||||
Fusarium spp. 1 | 84.2% | ||||||
A. alternata 1 | Pinus sylvestris EO (0.2 µL cm−3) | Immersion for 6 h | 16.3% | ||||
Botrytis allii 1 | 55.5% | ||||||
B. cinerea 1 | 88.4% | ||||||
Cladosporium spp. 1 | 7.1% | ||||||
Fusarium spp. 1 | 84.2% | ||||||
A. alternata 1 | T. vulgaris EO (0.2 µL cm−3) | Immersion for 6 h | 10.4% | ||||
Botrytis allii 1 | 80.5% | ||||||
B. cinerea 1 | 100% | ||||||
Cladosporium spp. 1 | 35.7% | ||||||
Fusarium spp. 1 | 94.7% | ||||||
Sunflower (Helianthus annuus) | Plasmopara halstedii 1 | Nigella sativa EO (0.6%) | Spray | Decrease in sporangium quantity 70.1% | – | [60] | |
Sambucus nigra EO (0.6%) | 87.3% | ||||||
Hypericum perforatum EO (0.6%) | 90.5% | ||||||
Allium sativum EO (0.6%) | 90.0% | ||||||
Vitis vinifera EO (0.6%) | 91.2% | ||||||
Zingiber officinale EO (0.6%) | 90.2% |
Potential Basic Substances—Viruses | |||||||
---|---|---|---|---|---|---|---|
Crop | Target Disease/ Pathogen | Substance (Concentration) | Application | Effectiveness (Disease/Symptoms Reduction) | Possible Phytotoxicity | Activity/Defense Response | Reference |
Pepper (Capsicum annum) | Pepper mild mottle virus (PMoV) 1 | Ozone (20 ppm) | Ozonation for 14 h | Inactivation of the seedborne virus; however, at high seed contamination levels, this treatment was insufficient to prevent infection | Rate of seed germination equal to the control | [68] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Orzali, L.; Allagui, M.B.; Chaves-Lopez, C.; Molina-Hernandez, J.B.; Moumni, M.; Mezzalama, M.; Romanazzi, G. Basic Substances and Potential Basic Substances: Key Compounds for a Sustainable Management of Seedborne Pathogens. Horticulturae 2023, 9, 1220. https://doi.org/10.3390/horticulturae9111220
Orzali L, Allagui MB, Chaves-Lopez C, Molina-Hernandez JB, Moumni M, Mezzalama M, Romanazzi G. Basic Substances and Potential Basic Substances: Key Compounds for a Sustainable Management of Seedborne Pathogens. Horticulturae. 2023; 9(11):1220. https://doi.org/10.3390/horticulturae9111220
Chicago/Turabian StyleOrzali, Laura, Mohamed Bechir Allagui, Clemencia Chaves-Lopez, Junior Bernardo Molina-Hernandez, Marwa Moumni, Monica Mezzalama, and Gianfranco Romanazzi. 2023. "Basic Substances and Potential Basic Substances: Key Compounds for a Sustainable Management of Seedborne Pathogens" Horticulturae 9, no. 11: 1220. https://doi.org/10.3390/horticulturae9111220
APA StyleOrzali, L., Allagui, M. B., Chaves-Lopez, C., Molina-Hernandez, J. B., Moumni, M., Mezzalama, M., & Romanazzi, G. (2023). Basic Substances and Potential Basic Substances: Key Compounds for a Sustainable Management of Seedborne Pathogens. Horticulturae, 9(11), 1220. https://doi.org/10.3390/horticulturae9111220