Special Issue “Sustainable Control Strategies of Plant Pathogens in Horticulture”
1. Introduction
2. Special Issue Contents
3. Conclusions
Author Contributions
Funding
Conflicts of Interest
List of Contributions
- Chrapačienė, S.; Rasiukevičiūtė, N.; Valiuškaitė, A. Control of Seed-Borne Fungi by Selected Essential Oils. Horticulturae 2022, 8, 220. https://doi.org/10.3390/horticulturae8030220.
- Galletti, S.; Cianchetta, S.; Righini, H.; Roberti, R. A Lignin-Rich Extract of Giant Reed (Arundo donax L.) as a Possible Tool to Manage Soilborne Pathogens in Horticulture: A Preliminary Study on a Model Pathosystem. Horticulturae 2022, 8, 589. https://doi.org/10.3390/horticulturae8070589.
- Alvarez, N.H.; Stegmayer, M.I.; Seimandi, G.M.; Pensiero, J.F.; Zabala, J.M.; Favaro, M.A.; Derita, M.G. Natural Products Obtained from Argentinean Native Plants Are Fungicidal against Citrus Postharvest Diseases. Horticulturae 2023, 9, 562. https://doi.org/10.3390/horticulturae9050562.
- Morcia, C.; Piazza, I.; Ghizzoni, R.; Delbono, S.; Felici, B.; Baima, S.; Scossa, F.; Biazzi, E.; Tava, A.; Terzi, V.; Finocchiaro, F. In Search of Antifungals from the Plant World: The Potential of Saponins and Brassica Species against Verticillium dahliae Kleb. Horticulturae 2022, 8, 729. https://doi.org/10.3390/horticulturae8080729.
- Righini, H.; Roberti, R.; Cetrullo, S.; Flamigni, F.; Quintana, A.M.; Francioso, O.; Panichi, V.; Cianchetta, S.; Galletti, S. Jania adhaerens Primes Tomato Seed against Soil-Borne Pathogens. Horticulturae 2022, 8, 746. https://doi.org/10.3390/horticulturae8080746.
- Koçi, R.; Dupuy, F.; Lebbar, S.; Gloaguen, V.; Faugeron Girard, C. A New Promising Plant Defense Stimulator Derived from a By-Product of Agar Extraction from Gelidium sesquipedale. Horticulturae 2022, 8, 958. https://doi.org/10.3390/horticulturae8100958.
- El-Fawy, M.M.; Abo-Elyousr, K.A.M.; Sallam, N.M.A.; El-Sharkawy, R.M.I.; Ibrahim, Y.E. Fungicidal Effect of Guava Wood Vinegar against Colletotrichum coccodes Causing Black Dot Disease of Potatoes. Horticulturae 2023, 9, 710. https://doi.org/10.3390/horticulturae9060710.
- Pane, C.; Spaccini, R.; Caputo, M.; De Falco, E.; Zaccardelli, M. Multi-Parameter Characterization of Disease-Suppressive Bio-composts from Aromatic Plant Residues Evaluated for Garden Cress (Lepidium sativum L.) Cultivation. Horticulturae 2022, 8, 632. https://doi.org/10.3390/horticulturae8070632.
- Duan, Y.; Zhou, Y.; Li, Z.; Chen, X.; Yin, C.; Mao, Z. Effects of Bacillus amyloliquefaciens QSB-6 on the Growth of Replanted Apple Trees and the Soil Microbial Environment. Horticulturae 2022, 8, 83. https://doi.org/10.3390/horticulturae8010083.
- El-Gendi, H.; Al-Askar, A.A.; Király, L.; Samy, M.A.; Moawad, H.; Abdelkhalek, A. Foliar Applications of Bacillus subtilis HA1 Culture Filtrate Enhance Tomato Growth and Induce Systemic Resistance against Tobacco mosaic virus Infection. Horticulturae 2022, 8, 301. https://doi.org/10.3390/horticulturae8040301.
- Parraguirre Lezama, C.; Romero-Arenas, O.; Valencia de Ita, M.D.L.A.; Rivera, A.; Sangerman Jarquín, D.M.; Huerta-Lara, M. In Vitro Study of the Compatibility of Four Species of Trichoderma with Three Fungicides and Their Antagonistic Activity against Fusarium solani. Horticulturae 2023, 9, 905. https://doi.org/10.3390/horticulturae9080905.
- Chikh-Rouhou, H.; Garcés-Claver, A.; Kienbaum, L.; Ben Belgacem, A.; Gómez-Guillamón, M.L. Resistance of Tunisian Melon Landraces to Podosphaera xanthii. Horticulturae 2022, 8, 1172. https://doi.org/10.3390/horticulturae8121172
- Scortichini, M. Sustainable Management of Diseases in Horticulture: Conventional and New Options. Horticulturae 2022, 8, 517. https://doi.org/10.3390/horticulturae8060517.
- Orzali, L.; Allagui, M.B.; Chaves-Lopez, C.; Molina-Hernandez, J.B.; Moumni, M.; Mezzalama, M.; Romanazzi, G. Basic Substances and Potential Basic Substances: Key Compounds for a Sustainable Management of Seedborne Pathogens. Horticulturae 2023, 9, 1220. https://doi.org/10.3390/horticulturae9111220.
References
- Regulation (EC) No 1107/2009 of the European Parliament and of the Council of 21 October 2009 Concerning the Placing of Plant Protection Products on the Market and Repealing Council Directives 79/117/EEC and 91/414/EEC. Available online: https://eur-lex.europa.eu/eli/reg/2009/1107/oj (accessed on 1 January 2024).
- Council Directive 79/117/EEC of 21 December 1978 Prohibiting the Placing on the Market and Use of Plant Protection Products Containing Certain Active Substances. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX:31979L0117 (accessed on 1 January 2024).
- Council Directive 91/414/EEC of 15 July 1991 Concerning the Placing of Plant Protection Products on the Market. Available online: https://eur-lex.europa.eu/legal-content/EN/ALL/?uri=CELEX%3A31991L0414 (accessed on 1 January 2024).
- Geiger, F.; Bengtsson, J.; Berendse, F.; Weisser, W.W.; Emmerson, M.; Morales, M.B.; Ceryngier, P.; Liira, J.; Tscharntke, T.; Winqvist, C.; et al. Persistent negative effects of pesticides on biodiversity and biological control potential on European farmland. Basic Appl. Ecol. 2010, 11, 97–105. [Google Scholar] [CrossRef]
- Pathak, V.M.; Verma, V.K.; Rawat, B.S.; Kaur, B.; Babu, N.; Sharma, A.; Dewali, S.; Yadav, M.; Kumari, R.; Singh, S.; et al. Current status of pesticide effects on environment, human health and it’s eco-friendly management as bioremediation: A comprehensive review. Front. Microbiol. 2022, 17, 962619. [Google Scholar] [CrossRef] [PubMed]
- Guyomard, H.; Soler, L.G.; Détang-Dessendre, C.; Réquillart, V. The European Green Deal improves the sustainability of food systems but has uneven economic impacts on consumers and farmers. Commun. Earth Environ. 2023, 4, 358. [Google Scholar] [CrossRef]
- Montanarella, L.; Panagos, P. The relevance of sustainable soil management within the European Green Deal. Land Use Policy 2021, 100, 104950. [Google Scholar] [CrossRef]
- Vieira, M.E.O.; Nunes, V.V.; Calazans, C.C.; Silva-Mann, R. Unlocking plant defenses: Harnessing the power of beneficial microorganisms for induced systemic resistance in vegetables—A systematic review. Biol. Control 2023, 188, 105428. [Google Scholar]
- Pastor, N.; Palacios, S.; Torres, A.M. Microbial consortia containing fungal biocontrol agents, with emphasis on Trichoderma spp.: Current applications for plant protection and effects on soil microbial communities. Eur. J. Plant Pathol. 2023, 167, 593–620. [Google Scholar] [CrossRef]
- Ünlü, E.; Çalış, Ö.; Say, A.; Karim, A.A.; Yetişir, H.; Yılmaz, S. Investigation of the effects of Bacillus subtilis and Bacillus thuringiensis as bio-agents against powdery mildew (Podosphaera xanthii) disease in zucchini (Cucurbita pepo L.). Microb. Pathog. 2023, 185, 106430. [Google Scholar] [CrossRef] [PubMed]
- Righini, H.; Somma, A.; Cetrullo, S.; D’Adamo, S.; Flamigni, F.; Quintana, A.M.; Roberti, R. Inhibitory activity of aqueous extracts from Anabaena minutissima, Ecklonia maxima and Jania adhaerens on the cucumber powdery mildew pathogen in vitro and in vivo. J. Appl. Phycol. 2020, 32, 3363–3375. [Google Scholar] [CrossRef]
- Davari, M.; Ezazi, R. Mycelial inhibitory effects of antagonistic fungi, plant essential oils and propolis against five phytopathogenic Fusarium species. Arch. Microbiol. 2022, 204, 480. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Wang, J.; Xiao, Y.; Jiang, C.; Cheng, L.; Guo, S.; Luo, C.; Wang, Y.; Jia, H. Proteomics analysis of a tobacco variety resistant to brown spot disease and functional characterization of NbMLP423 in Nicotiana benthamiana. Mol. Biol. Rep. 2023, 50, 4395–4409. [Google Scholar] [CrossRef] [PubMed]
- Mbinda, W.; Masaki, H. Breeding strategies and challenges in the improvement of blast disease resistance in finger millet. A current review. Front. Plant Sci. 2021, 11, 602882. [Google Scholar] [CrossRef] [PubMed]
- Biedenkopf, D.; Will, T.; Knauer, T.; Jelonek, L.; Furch, A.C.U.; Busche, T.; Koch, A. Systemic spreading of exogenous applied RNA biopesticides in the crop plant Hordeum vulgare. ExRNA 2020, 2, 12. [Google Scholar] [CrossRef]
- Haile, Z.M.; Gebremichael, D.E.; Capriotti, L.; Molesini, B.; Negrini, F.; Collina, M.; Sabbadini, S.; Mezzetti, B.; Baraldi, E. Double-stranded RNA targeting dicer-like genes compromises the pathogenicity of Plasmopara viticola on grapevine. Front. Plant Sci. 2021, 12, 667539. [Google Scholar] [CrossRef] [PubMed]
- Van Bruggen, A.H.C.; Finckh, M.R. Plant diseases and management approaches in organic farming systems. Annu. Rev. Phytopathol. 2016, 54, 25–54. [Google Scholar] [CrossRef] [PubMed]
- Regulation (EC) No 178/2002 of the European Parliament and of the Council of 28 January 2002 Laying Down the General Principles and Requirements of Food Law, Establishing the European Food Safety Authority and Laying Down Procedures in Matters of Food Safety. Available online: https://www.legislation.gov.uk/eur/2002/178/contents (accessed on 1 January 2024).
Natural Substances | Plant/Pathogen/Method | Activity | Ctrb. |
---|---|---|---|
Essential oils of thyme, common juniper, hyssop | Carrot (C), tomato (T) and onion (O) seeds naturally infected by Alternaria spp. Agar plate assay amended with essential oils. | Thyme and common juniper: 40–100% long-lasting antifungal activity for C, T and O. Hyssop: no activity for C; 20–60% long-lasting antifungal activity for T and O. | 1 |
Giant reed extract | Zucchini. Plant growth substrate inoculated with Pythium ultimum and treated with the extract. | Disease reduction up to 73% and pathogen growth (colony forming units) in the substrate by 90%. | 2 |
Forty extracts from 20 Argentinian plant species | Penicillium digitatum, P. italicum and Geotrichum citri-aurantii. Agar plate diffusion assay. | Inhibition of G. citri-aurantii growth of more than 50% by most of the extracts. Inhibition of P. digitatum and P. talicum by some extracts. | 3 |
Saponins from Medicago species and oat grains and homogenates from sprouts of Brassica species | Verticillium dahliae. Agar plate assay amended with saponins and homogenates. Maize and tomato seeds treated and sown on filter paper. | Reduction in mycelium growth and conidium formation. No phytotoxic effect on seed germination. | 4 |
Water-soluble polysaccharides from Jania adhaerens | Tomato. Seeds treated with polysaccharides. Plant growth substrate inoculated with Rhizoctonia solani and P. ultimum before seeding or with Fusarium oxysporum before transplant. | Disease reduction of R. solani, P. ultimum and F. oxysporum up to 58%, 53% and 29%, respectively. Increase in seedling emergence and plant development. Up-regulation of HQT, HCT, PR1 PAL and PR2 genes. Increase in β-1,3-glucanase activity. | 5 |
Gelidium sesquipedale by-product (alkaline residue) | Tomato. Greenhouse experiments. Grapevine. Plasmopara viticola in field trials. | Increase in peroxidase and PAL activities and up-regulation of PR9 genes in tomato plants. Reduction in downy mildew symptoms in grapewine. | 6 |
Guava wood vinegar by-product of charcoal production | Potato. Colletotrichum coccodes. Agar plate assay amended with the by-product. Pot experiments—stem/soil inoculation with the pathogen. | Inhibition of pathogen mycelial growth. Black dot disease reduction by an average of 23% (stem colonization), 20% (roots covered with sclerotia) and 30% (wilted plants) in the two seasons of experiments. | 7 |
Bio-composts from aromatic plant residues | Garden cress. R. solani, Sclerotinia sclerotiorum. | Reduction in S. sclerotiorum damping-off by all of the raw composts. Reduction in R. solani damping-off by 7 composts. Overall, 2 composts showed suppression levels up to 60%. | 8 |
Plant/Pathogen/Method | Activity | Ctrb. | |
---|---|---|---|
Microorganisms | |||
Bacillus amyloliquefaciens QSB-6 | Apple replant disease. Soil amendment. Field conditions. | Increase in plant growth parameters (i.e., plant height), soil bacteria population (i.e., Actinomycetes) and soil enzymatic activity. Reduction in soil phenolic acid content and Fusarium spp. population. | 9 |
Bacillus subtilis HA1 culture filtrate | Tomato. TMV. Foliar treatment. Pot experiments. | Increase in plant growth (root and shoot parameters). Increase in total phenolic and flavonoid content up to 27 and 50%, respectively, and in the activity of ROS-scavenging enzymes. Reduction in TMV accumulation up to 91%. Up-regulation of PR1, PAL, CHS and HQT genes. | 10 |
Trichoderma asperellum T. hamatum T. harzianum T. koningiopsis | Fusarium solani. Dual plate assay on agar medium not amended or amended with the fungicides captan, chlorothalonil and mancozeb. | Trichoderma species inhibited F. solani up to 67%. High compatibility of T. asperellum with captan and mancozeb. No compatibility of Trichoderma species with chlorothalonil. | 11 |
Resistant varieties | |||
Fourteen Tunisian melon landraces | Podosphaera xanthii, 3 races (2, 3.5 and 5). Artificial infection in a growth chamber. Natural infection in a greenhouse. | Susceptibility of all landraces to the 3.5 and 5 races and resistance of several landraces to race 2, in the growth chamber. The resistance of three landraces to P. xanthii race 2 was confirmed under natural conditions. | 12 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Righini, H.; Roberti, R.; Galletti, S. Special Issue “Sustainable Control Strategies of Plant Pathogens in Horticulture”. Horticulturae 2024, 10, 146. https://doi.org/10.3390/horticulturae10020146
Righini H, Roberti R, Galletti S. Special Issue “Sustainable Control Strategies of Plant Pathogens in Horticulture”. Horticulturae. 2024; 10(2):146. https://doi.org/10.3390/horticulturae10020146
Chicago/Turabian StyleRighini, Hillary, Roberta Roberti, and Stefania Galletti. 2024. "Special Issue “Sustainable Control Strategies of Plant Pathogens in Horticulture”" Horticulturae 10, no. 2: 146. https://doi.org/10.3390/horticulturae10020146
APA StyleRighini, H., Roberti, R., & Galletti, S. (2024). Special Issue “Sustainable Control Strategies of Plant Pathogens in Horticulture”. Horticulturae, 10(2), 146. https://doi.org/10.3390/horticulturae10020146